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Hellmann-Feynman theorem, elastic moduli, and the Cauchy relations
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The Hellmann-Feynman theorem is used to derive a formula for the harmonic elastic

moduli of crystals in which every atom is at a center of symmetry in terms of the electron

density and its distortion due to the crystal deformation. It is shown that these moduli

satisfy the Cauchy relations if the electron density distribution deforms according to the

same affine transformation which governs the crystal deformation.

Theoretical investigations of the elastic moduli of
crystals are generally based on empirical interatomic
force laws. These are framed to reflect the expected
nature of the electron density distribution for the
particular type of crystal being considered. In this

paper we use the Hellmann-Feynman theorem'
to express the elastic moduli of centrosymmetric
crystals directly in terms of the electron distribution
and its change due to crystal deformation. This
result is used to derive a new sufficient condition for
the satisfaction of the Cauchy relations for elastic
moduli.

I

ADIABATIC APPROXIMATION

The starting point for the quantum-mechanical
derivation of interatomic force laws for molecules
and crystals is generally the adiabatic approxima-
tion. For a system of n electrons with positions
denoted by rk, k = 1,...,n, , and N nuclei with posi-
tions denoted by xl, l = 1,...,N, this approximation
leads to the electron ground state

g(r&, ..., r„;x~, ..., xN) in a form in which the nuclei

positions play the role of parameters. The corre-
sponding electron ground-state energy E( x &,..., xz)
is the expected value of the sum of the electron
kinetic energy, the electron-electron interaction ener-

gy, and the electron-nucleus interaction energy
when the nuclei are at the positions xi, ..., xN, it
does not, in the convention employed here, include
the nucleus-nucleus interaction energy.

kth electron is defined as

pk(f;X), . ..,X~)

P*Pd r
& drk ..&.d rk+& dr„,...

3(n —1)

where 1( = p(r&, ..., r„;x&, ..., xz), R 3(g, ) is the con-
figuration space for the n —1 electrons, k omitted,
and we have used r = rk as the argument of pk.
The electron density of all of the electrons is

n

p(r;x, , . .., xz) = g pk(r;x~, ...,x~} .
jr=1

(Note that the identity of the electrons leads to the
equality of the distributions pk, k = 1,. ..,n. ) The
nucleus-nucleus interaction is

N

Vw x(xi, .. ., xx) = g qIqrsn' ', l & I'
l,l'= 1

where ql is the charge on nucleus I and

sI~ =
~

xi —xI ~. The Hellmann-Feynman
theorem then states that the force Fl on nucleus l
can be written

—a
(~iv,x + &)

—1

~ VN, N BSl ).

+ eqI f„"p(r;x&, ..., x~)d r,
xl a &3 ix)~

(4)

HELLMANN-FEYNMAN THEOREM

Once the adiabatic approximation has been adopt-
ed, the Hellmann-Feynman theorem' provides a
useful interpretation of the internucleus force law

implied by F. (x ~, ...,x~). The electron density of the

with the integration carried out over all of three-
dimensional space R 3. Here xl, a = 1,2,3 are the

'

Cartesian components of xt (and similarly for other
vectors and tensors in what follows), —e is the
charge on the electron, and sI-„——

~

xt —r
~

. We
introduce an effective total potential energy function
V for the nuclei defined as
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V(xi, ...,xN) = VN N + f„VN,pd»,
3

where

N

VN, (r;xi, ..., xN) = —egq/s/:„' .
1=1

The derivative of V with respect to xl will give the
correct force on nucleus l providing, as shown in

Eq. (4), p is not the differentiated in this calculation.
More simply, since the force interpretation is not
necessary for our purpose, we may say that the first
partials with respect to xl of V and of VN N + E
are equal, providing p is not differentiated in the
computation of 8 V/Bxl .

ELASTIC MODULI
We next apply this general discussion to the case

of a crystal, one which corresponds to a simple Bra-
vais lattice or one with two or more types of atoms
in which each atom is at a center of symmetry, as
in the NaCl structure, for example. Consider the
crystal in its reference stress-free state and in its de-
formed state. In both cases we assume that the
atoms are at rest at the appropriate lattice sites.
That is, we are neglecting thermal and zero-point
motion and the elastic moduli are therefore those of
the classical harmonic theory.

In order to avoid lattice distortions near the sur-

face, we confine attention to an interior region of
the crystal whose volume is P in the reference
state. Let X/, l = 1,...+ be the positions in the
reference state of the nuclei in P, as well as those
nuclei outside of P with which there is significant
interaction. In the deformed crystal these nuclei
are at the positions

(6)

X/a = a AX/p (cap+ apÃ/p ~

where 5 p is the Kronecker delta, and e p is the
small strain tensor characterizing the deformation,
with eap ——ep and

l cap l
« 1. The summation

convention on repeated Greek subscripts is em-

ployed throughout. Given an arbitrary function

f(xi, ...,xN), it follows from Eq. (7)

ag
8 e+P l= &,

~&la
(8)

Therefore, the stress tensor t p required to maintain
the deformation e p is

av
tap = ~ Reap

N QVN, N + f„'pdr X/p, (9)
l =] +la 3 +la

p( r'x i " "N )
l
aap l

= p(R;xi, ..., xN ),

where r and R are related by Eq. (11) and la p is

the determinant of a p. Since
l
a p l

is the ratio of
corresponding volumes in the deformed and in the
reference states, p is the electron density per unit of
original volume. With this new variable of integra-

tion, Eq. (10) takes the form

~VN, N
t~p = '

p(R;xi, . ..,xN)dR
~e~p 3 ~e p

(13)

In order to obtain expressions for the elastic
moduli which appear in the macroscopic equation

t~p ——c~p&~e&~, it is necessary to expand the terms
in Eq. (13) to first order in e&s. Since the variables

r and R are related by the same affine transforma-
tion as are xl and Xl, it follows from the properties
of the small strain tensor e p that

s/-, = S/ R ( 1 + e apn/ R n/ R p),

s//, =
S// (1 + e pn// n// p),

(14)

(15)

n l R, nil are unit vectors in the directions Xl —R
and Xl —Xl, respectively. Therefore, to second

order in the strains

VN, N( xi txN )"
N —1

q/q/ S// (1 —eapnanp
l, l = &

+cape&snanpnrns), (16)

where we have used Eq. (5) and the understanding
that p is not differentiated in computing the first
derivative of V. By use of Eq. (8) we can also write

BV„„BV,
/ap= ~ &

+ „'pdr . (10)
eap 3 ~cap

Equation (10) can be simplified by use of the
translational symmetry of the crystal to involve a
sum over interacting primitive cells each of which is

electrically neutral, but we shall not pursue this

here. We next introduce a new variable R for the

integration over 8 3 through the relation

r = a pRp ——(5 p+ e,p)Rp,

and describe the electron density in the deformed

crystal in terms of R through the relation
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N —1e—gqISiR (1 —e~pn~np
1=1

+e~persn~n pnr ns), (17)

with the missing subscripts for n (Il' or 1R) the

same as those for S in the equations in which they

appear. It is also necessary to expand p to first or-

der in e p

and, to first order in the strains, Bp
p(R;x), ..., x~) = p(R;X), ...,X~) + e s,

Be yg

(20)

g qI qI, SI,
'

( nn —
p + 2e rsn n pn r n s),

B eap

(18)

eg—ql SI It' ( nan p +—2e rsn an pn rn s),
B e~p

with 0 p/0 ers computed on the basis of Eq. (8) and

evaluated at e~p = 0. Equations (18)—(20) are sub-

stituted into Eq. (13) aud the various powers of e p
collected. The terms free of e p cancel since the
crystal is stress free in the reference state. The
terms linear in ey~ lead to the following expressions
for the elastic moduli c py~.

1V N—1 Bp&c~prs= 2 g qIqI SII. n~npnrns —2egqi „SIRn, npnrnspdR+ egql SIR n np dR,
Bey

(21)

where the missing subscripts for n (Il' or I R) are
the same as those for S in the expression in which
they appear, and the arguments of p and Bp/B ey~
are (R;X,, ...,X~).

CAUCHY RELATIONS
AgR

(22)

i.e., if contours of constant electron density undergo
the same affine deformation as does the lattice of
nuclei as shown schematically in Fig. 1. Since it is

The equalities c&pyp: c~ypp are referred to as the
Cauchy relations. For the case treated here, in

which every atom is at a center of symmetry, the
usually derived sufficient condition for the satisfac-
tion of the Cauchy relations is that the resultant in-

teraction (including electron effects) between crystal
atoms be two-body in character. That this condition
is sufficient and not necessary is sometimes over-
looked and the presence of many-body forces, co-
valent or metallic bonding is regarded as incompati-
ble with the Cauchy relations. The present formula-
tion provides another sufficient condition for the sa-
tisfaction of the Cauchy relations, one which does
not a priori require two-body interactions and in-

cludes the possibility of covalent or metallic bond-
ing. As seen from Eq. (21) the Cauchy relations
will be satisfied for centrosymmetric crystals if
8 p/8 ers = 0 or, from Eq. (20), if

p(R;xi, ..., x~) = p(R;Xi, ...,X~),

(a)

I'IG. 1. Schematic representation of crystal in (a)
reference and (b) deformed configurations. Curves are
contours of constant electron density and they are shown
undergoing the same affine deformation as the lattice.
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to be expected that the electron density distribution
due to the outer shell electrons will suffer greater
distortion upon crystal deformation than that due to
the inner shell electrons, it is unlikely that this con-
dition will be satisfied exactly in real crystals,
although it may be met approximately in some
cases. Nevertheless, the existence of a new sufficient

condition for the Cauchy relations may serve to put
the customary one in better perspective.
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