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Specific sine-Gordon soliton dynamics in the presence of external driving forces
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We consider the acceleration of a single sine-Gordon (SG) soliton kink wave by an external time-dependent force
y(t), first without any dissipation, and then in the presence of a weak damping effect. We use the method of Fogel,
Trullinger, Bishop, and Krumhansl fFTBK, Phys. Rev. B 45, 1S78 (1977)] which consists in perturbing the SG
equation about its kink solution and solving the resulting linear inhomogeneous equation for the perturbation
function by expanding it in the complete set of eigenfunctions of the Schrodinger operator with potential
1 —2 sech'x. Our results concerning the accelerated soliton dynamics strongly disagree with the FTBK conclusion
that the soliton should undergo an acceleration proportional to g (this is the so-called Newtonian dynamical
behavior of SG soliton, which is also predicted by all existing perturbation theories dealing with the perturbed SG
equation). On the contrary, we find that this Newtonian acceleration is exactly balanced by a reaction effect of the
continuous phonon spectrum excited by the external force g, upon the moving kink, so that there is no soliton
acceleration at all m'thin the frame of this linear perturbation theory, i.e., for small time values. Actually, we show by
the simple example of a static external force that the acceleration of an initially static kink is a higher-order effect
(proportional to yt', where t is the time, instead of being constant and proportional to g). We emphasize that this
last result has already been checked by numerical experiments and show, both by theory and by numerical
simulations, that it does not qualitatively change when a small damping effect is taken into account.

INTRODUCTION

The sine-Gordon (SG) partial differential wave
equation plays a major role in nonlinear physics.
Its success in modeling nonlinear physical phe-
nomena has been emphasized in the pioneering
papers of Perring and Skyrme' and Scott. ' Its
complete integrability and accompanying remark-
able soliton properties were established later by
Ablowitz, Kaup, Newell, and Segur, using the
powerful tools of the inverse scattering technique. '
We note with historical interest that Bef. 1 already
numerically described the basic property of the
SG solitary-wave solutions which led to their later
name "solitons, " namely, their emerging from
multi-solitary-wave collisions with the same
shapes and velocities with which they entered.
In Bef. 2, the emphasis was placed on the excep-
tional simplicity of the qualitative kinetic study
of the SG nonlinear wave solutions. This sim-
plicity broke the widespread belief that there were
no basic and elementary problems in the non-
linear wave theory. Reference 2 showed in par-
ticular an easily constructed mechanical analog
of the Josephson junction transmission bne (this line
is directly related to the discovery of the physical
interest of SG equation in condensed-matter phys-
ics"'). Here again, the soliton properties of
the solitary-wave solutions during pulse inter-
actions were noted, and due to unavoidable energy
losses in the mechanical device, the progressive
slowing down of SG solitons due to damping and

the subsequent Lorentz contraction of their spatial
dimensions were emphasized. This mechanical

study of weak perturbations of the SG soliton dy-
namics was continued some ten years later by
Nakajima et g).' They obtained the main charac-
teristic features of these perturbation effects,

, thus illustrating the fruitful intuitive approach
to the SG equation praised by Scott.

The theoretical interest for SG solitons and
their perturbations strongly increased after the
basic conclusions of Ref. 3 concerning the soliton
integrability. The SG kinklike soliton solution
was often referred to in order to describe non-
linear excitations, both in elementary-particle
physics, "where it was regarded as an extended
relativistic particlelike. solution of nonlinear .field
equations, and in condensed-matter physics; to
name a few, we point out its relation with the
theories of Bloch walls which separate domains
in magnetic materials, ' with the structural phase
transitions 9,xo with liquid ~He iz, i2 with flux quanta
on Josephson transmission lines, """and with
charge carriers in "one-dimensional" Frohlich
charge-density-wave condensates. " People set
about studying the interaction of the soliton with
spatial inhomogeneities (e.g. , due to impurities or
defects" ") and with external forces (e.g. , ex-
ternal electric or magnetic field" "), which may
dramatically influence the soliton dynamics in
system of practical interest.

There are now a great number of extensive re-
view papers' 2 '2' or books' which summarize
the progress and main results obtained in the past
few years in the analytical treatment of weakly
perturbed SG soliton or multisoliton solutions.
Unfortunately, the number of experimental —or
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numerical —papers dealing with the same subject
is by far smaller than the number of the former.
To take a simple example which is the subject
of this article, we note that there are to our
knowledge only two papers" "giving numerical
results concerning the simplest case of accelera-
tion of a simple SG (static) kink, namely, its per-
turbation by a static driving force in the absence
of any damping. Only one of them shows the soli-
ton velocity plotted versus time. " Moreover,
even in this last reference, the authors chose too
small a time scale in their figure 2, so that the
basic result of the present paper concerning the
anomalous kinetic behavior of SG solitons (at non-
relativistic velocities) with regard to existing
theoretical predictions could not be checked.

Actually we are faced with the following situa-
tion. In a recent paper (Ref. 31, hereafter re-
ferred to as I), we showed by performing several
numerical experiments on the "forced" SG equa-
tion (written in reduced units),

0
u — u+ sinu = const =X,

Bt Bx

that a single nonrelativistic kink moving with ve-
locity P(t), defined as the velocity of the kink's
point of steepest slope and assumed small com-
pared to its limit value 1, does not undergo the so-
called Newton acceleration which is predicted by all
existing theories" ":

(2)

To the contrary, it moves according to a time-
dependent acceleration (proportional to t'). We
also showed that a weak damping, I'(s /at)u (I' & 0),
added to the left-hand side (lhs) of (1) does not
qualitatively change this result. We gave some
theoretical arguments which helped in the under-
standing of this unexpected soliton dynamics and
recovering its quantitative formulation. These
arguments lay on the crucial assumption that the
kink profile distortion function could be consid-
ered, in first approximation, as uniform func-
tion of time, i.e., independent of the spatial co-
ordinate in the soliton rest frame. This assump-
tion, obvious for small time values, is by no
means evident when taking into account recent re-
sults dealing with the soliton shape change Itail
or "continuum spectrum" growth due to the pres-
ence of the force y in Eg. (1), Refs. 19-21 and

27]. So the aim of the present paper is to dis-
cuss its validity and recover the accuracy of the
statement that SG solitons do not behave like New-
tonian (classical) particles when driven by ex-
ternal forces" (see Note added in proof).

It is, of course, impossible to enter into a crit-

ical study of the whole theoretical literature de-
voted to the acceleration of SG solitons by ex-
ternal forces. Some authors (actually, those who
first announced the classical Newton response of
SG kinks to perturbations" ") used a linear per-
turbation scheme having an analogy with inverse
scattering techniques restricted to a single soli-
ton situation, while others treated the problem of
perturbation of multisoliton solutions by extend-
ing the inverse scattering transform to these sit-
uations. ' 2 The same general situation was con-
sidered in Refs. 27 and 29, where the authors
developed a perturbation formalism based on a
Green's-function technique.

It is clear that such multisoliton perturbation
techniques have the great advantage of proposing
a wide "spectrum" of new results concerning the
single perturbed soliton case as well as the effect
of perturbations on kink-antikink collisions" "
and their subsequent possible decay into a breather
mode, "on breathers themselves, leading to
breather decay, "and so on. It is out of our scope
to consider these multisoliton effects and, for the
sake of clear physical interpretation, we shall
concentrate on the simplest possible example di-
rectly related to our previous numerical results,
namely, the acceleration of a single SG kinklike
soliton by a time -dependent ex. ternal force, first
in the absence of damping, and then in the pres-
ence of a weak damping.

We shall use the linear perturbation formalism
of Ref. 19. Indeed it is a quite clear and adequate
technique for a single soliton situation. The com-
plete set F of eigenfunctions of the Schrodinger
operator with potential 1 —2 sech'g, which spans
the linearized perturbation function g about the
SG kink solution, is entirely appropriate to our
problem since it leads to a system of simple sec-
ond-order differential equations in time, the space
derivatives being removed due to the particular
Schrodinger potential. This system may then be
exactly integrated in the absence of damping, thus
leading to an exact solution of the problem.

In Sec. I, we briefly recall the construction of
the set W, which is physically equivalent to the
set of small oscillations in the presence of a static
soliton (kink) free of external influences. We em-
phasize, as is usually done, " "the role of the
zero-frequency bound state (Goldstone) mode f, (x)
in the soliton dynamics. We compare the nature
of this "translation" mode, "corresponding to the
single discrete eigenvalue &, =0, to the "continu-
um" states f,(x) (extended modes) labeled by a
wave vector k and describing phase-shifted pho-
non waves having the usual dispersion relation
~„'= 1+k' [in our reduced units, see Ecl. (1)].

Then, in Sec. II, we consider the (small) func-
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tion g describing the change of the soliton state
due to the presence of the external force X in
Eq. (1) and, following Ref. 19, we expand it in the
complete set 0:=(f„f,). The time evolution of g
is therefore determined by the time dependance of
the amplitudes P, =((,f, ) and g, =(P,f,), where the
parentheses here mean the scalar product defined
in the set K The kinetic equations for g, and P,
are obtained by substitution of the solution u«&+ (
into Eq. (1), linearization in g in order to obtain
a partial differential equation of the form

(where g is a definite linear operator), and sub-
sequent gd hoc integration over the space in order
to use the orthonormality relations between the
elements of 5'."

Considering an initial static (V = 0) kink, these
equations easily lead to the expected perturba-
tion function

acceleration, at least in the leading order of the
present linea, r nonrelativistic perturbation scheme
[actually, it does, but this acceleration appears
as a second-order t' term in this theory, where
t is always assumed small compared to unity in
order to have the kink velocity V(t) «V„,, = I].

As an application of the present study, we con-
sider in Sec. III the case of an oscillating field
)t(t) =X cost@,t and give the expression of the cor-
responding function g. The case v, = 0 allows us
to recover the results of I. Finally (Sec. IV), by
using arguments similar to those in Refs. 19 and

20, we remark that the presence of a weak damp-
ing I" in the nonrelativistic case (V«1) does not
change the conclusions of the dissipationless
study, since it introduces additional coupling
terms proportional either to I"V or to I'(V in the
kinetic equation for (, and g, . These terms are
at least of second order in the small quantities
I', V, and g. We give the approximate equation
of motion of the weakly damped soliton in the case
of a static field &,=0,

for small time values (t o 0). The principal new

result of our paper is the physical interpretation
of the spectral expansion of p in the complete set

In order to illustrate the difficulty, consider
the expansion in 6: of a constant (for example,
unity, since the problem of the development of a
function independant of the space variable g in 5
may always be reduced to this case by obvious
linearity of the scalar product). We obtain by
use of the completeness relation of 5:

and verify that 1 —(n /~2) f, is orthogonal to f, .
Expansion (4) looks obvious, but its mathematical
and physical meaning are not obvious at all. In-
deed, expression (4) mathematically means that
the projection of the function I on the basis vec-
tor f, is n/~2, while the dynamical contribution
of 1 to the soliton motion is zero because so is
the coefficient of f, in expression (4). We em-
phasize that this coefficient is the quantity which
has a physical meaning since it measures the
(small) translation of a soliton, the perturbation
function g of which would be 1.

Therefore the above result applies to the start
of the soliton motion, and we find that the soliton
remains static even when the perturbation y is
"switched on, " while an erroneous interpretation"
of relation (4) was to predict the Newtonian be-
havior V(t) ~ ngt/v 2, by retaining only the math-
ematical projection of the force X onto f„As.
a consequence, the soliton does not undergo any

T( ~t'
V(t) =tanh + — 1 t——

24 2

(+ and —signs for antikinks and kinks, respec-
tively), and check it by numerical simulations.

I. REVIEW OF THE FREE SOLITON LINEAR
PERTURBATION THEORY

We briefly recall the nature of small oscilla-
tions in the presence of a soliton (kink) free of
external influences. "" The soliton has the fol-
lowing profile, where the plus and minus sign is
used, respectively, for a kink and an antikink:

Sr(g) = 4 tan-' exp(+ z) .

g is the Lorentz-transformed spatial variable:

(6)

The soliton (6) is solution of the reduced SG equa-
tion

8 8
2 u — 2u+ sinu =0.

Bt Bx

Since this equation is relativistically covariant,
we write it in the soliton rest frame,

82 82
2u — 2u+ sinu =0,

BT Bz

(6)

(9)

where the "local" time 7 is deduced from the labo-
ratory time t by a Lorentz transformation:

(10)

Now we consider, in the soliton rest frame, a
small perturbation function P(z, w) that we write
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asl 9,20, 28

q(z, i)=f(z)e ' ',
and we assume that the function u = S~+ g, des-
cribing the free soliton (6) surrounded by a cloud
of small oscillations (ll), is the solution of Eg.
(9). After linearization in )I), the amplitude f (z)
is found to obey the Schrodinger-type eigenvalue
equation:

d2
,f + (1 —2 sech'z )f = ~2f .

d8
(12)

This equation allows the existence of a single
"bound" state,

1
iv, =0, f,(z) =~ sechz, (13)

and the presence of a set of "scattering" or "con-
tinuum" states (expanded modes) labeled by a wave
vector k:

Jt dz f,'(z) =1,

8 jhow

id„'=1+k', f, (z) = (k+i tanhz).
2 7t'

The bound state (13) is usually called the "transla-
tion" mode, ""since the addition to S of a per-
turbation proportional to this mode, P(z, ~) = n f,(z),
corresponds to the translation of the soliton $~
by an amount proportional to Q. . Therefore, when
we deal in the next section with solitons perturbed
by external forces, we shall concentrate on the
value of the coefficient of f„which appears in
the development of the perturbation function )t)

[and which may differ from the value of the pro-

jectionn

of )t on f„see Eq. (4)], since this coef-
ficient will give indications about the kinetic re-
sponse of the perturbed soliton to the external
for ce.

We note that the existence of the translation
mode (13) is related to the property that an arbi-
trary rigid translation necessarily yields a solu-
tion of Eq. (9). Since expressions (13) and (14)
are eigenfunctions of the self-adjoint spatial op-
erator -(d'/dz')+ (1 —2 sech'z), they form a, com-
plete set which spans the space of functions of z.
The orthonormality and completeness relations are

and, according to (15) and (16), any function
g(z, v) may now be expanded in the complete set
6' =ff, (z),f„(z)]'

i( , z)=z), i )f,zi )zf d):)(k, )f(z). (17)

II. NONRELATIVISTIC RESPONSE TO AN EXTERNAL
DRIVING FORCE: THE DEVIATION

FROM NEWTON'S LAW

We allow the presence of a (small) time-de-
pendant torque g(q. ) at the right-hand side (rhs)
of Eq. (9) and consider the corresponding per-
turbation function g„(z, 7) developed as shown by
Etl. (17). We suPPose a nonrelativistic dynamics:
We assume, as in Ref. 19, the soliton velocity is
always small compared to its limiting value equal
to unity:

8 9 ,q„+ (1 —2 sech'z)y„= g(t) . (19)

The substitution of expression (17) of )C) into Eq.
(19) and the subsequent multiplication by either
f, (z) or f„"(z) and integration over z leads, with
the aid of the orthonormality relations (15), to
the kinetic equations for the amplitudes P, (z) and

g„(t), respectively:

(20)

8 OO—)I)(k, t)+v„'P(k, t) =X(t) dz'f~*(z'). (21)

These equations are immediately integrated and
yield, once we assume an exact soliton waveform
(6) (moving at velocity V) as the initial condition
u(z, 0) in Eq. (9),

y, (t) = z(t),

(16)

Therefore we may approximate the soliton rest
time (10) with the laboratory time t.

The small perturbation function )I)„(z,t) satis-
fies the following linearized kinetic equation:

(15)
i, iz) s, iz) f a.y;("), =

where

(23)

dz f, (z)f,(z)=0,

f iz)f (z)+ f dlrf;iz, )f (z,)=z(z, —z,), (16)

Z(t) = dt' dt"X(t"),
0 0

E,(t) = g(t) —g(0) crt,st —&v, 'g(0)si &v,nt,

and the function g(t) is a particular solution of

(24)
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g+ (d,'g = }l(t) . (26)

It is worth noting that the integration constants in
(22) and (23) are, respectively, due to the follow-
ing.

Equation (Z2). (i) The vanishing velocity of
the soliton at t= 0 measured with respect to the
Galilean moving frame of velocity P:

v(t) =+
2 —,y(t)

1 s

d=o 2»t '
~=0

(27)

(kink: -sign; antikink:+sign, see Ref. 19).
(ii) A regular adjusting of the solitary wave pro-

file to the kink waveform (6) as t —0.
Equation (23). (i) The stability of the soliton

waveform, which implies that, at each point of
abscissa z in the soliton rest frame, there is a
local minimum of energy, i.e. , that

a—q(k, t) =0.
Bt t=0

(28)

(ii) The choice of a kink as initial condition

u(z, 0).
According to expansion (17), the response of

the soliton to the external driving field }t(t) is

q=(o„t«1. (30)

+ CO + OO

t)(z, t) =
2 f (z)tt(t) + f dz' dtt z,(t)f (z)f, (z') .

(29)

It is now of interest to consider the start of the
dynamics, since it helps to understand the origin
of the non-Newtonian aspect of the soliton behav-

ior by recovering Eq. (4). Therefore, let us as-
sume as a first stage of our kinetic study

y(t) = ltcosw, t. (33)

III. EXPLICIT CALCULATION OF THE SOLITON
SHAPE DISTORTION IN THE PRESENCE

OF AN OSCILLATING FIELD

In this section, we explicitly calculate the inte-
grals of the singular functions involved in Eq. (29)
by use of the method of contours when y(t} is given

by Eq. (33). We recover all the above-men-
tioned results which were obtained for t-0 [see
inequality (30)].

The function F,(t) defined by Eq. (25) reads, when

}((t) is given by Eq. (33);

law of motion (t),(t) = ()(/v 2 )F(t) predicted by all
existing theories. ' ' The fact that this motion is
identically cancelled by the kinetic (i.e. , propor-
tional to f,) contribution of the phonon spectrum
-F(t)f,(z) f dz'f, (z') means that there is actually
no classical (i.e. , Newtonian) particlelike behavior
of SG solitons for small time values t in the pres-
ence of external driving forces, a result which
agrees with our numerical experiments in I.

There is an important consequence of Eq. (32).
In the nonrelativistic description of the soliton
response to applied fields, the perturbation func-
tion (j)„may be considered in first approximation in

z [see definition (30)] as z independent: It is only
a function of time. This was precisely the basic
assumption of the analytical study performed in I.

In order to free ourselves from the rather drastic
assumption (30) and add some more comments to
the above results, we need to consider definite
expressions of the force X(t). We take as a basic
example a periodic force" "

Then Eq. (29), with the aid of Eqs. (24}-(26), re-
duces to lowest order in & to F~(t) =, , (cos&ot —cos(d, t) .X

(d ~
—Q)0

(34)

)( t) =Et(t)z( f (z)+f dz' f dttf (z)f ( ')) . .

Using the completeness relation (16) we obtain

In order to calculate the "continuum" contribution
(j)„' to (t„(z, t), given by the second term in the rhs
of Eq. (29), we first evaluate f dz'f,*(z') using
the method of contours. We obtain

4,(z t) = F(t)f,(z) 1-, «f,(z') +F(t) . dz'f,*(z') =- — 2((k5(k)- —. , - (35)
sinh —,')(k

The first term in in the rhs of Eq. (32) describes
the solitary-wave position in the Galilean frame of

velocity V [this position is proportional to the

translation mode amplitude: see definition (27)].
Since J" dz'f, (z') =)f/~2, we see that it vanishes
identica/ly. This result may be understood as fol-
lows: %'hen neglecting the effect of the "contin-
uous" perturbation spectrum described by Eq.
(21), Eq. (20) leads to the so-called Newtonian

Then the integration over k reads

t'( t) ftdztttt (t)f (z) f d 'f (=').
d)Q ()Q

(cos e,t —cos e,t)(k +i tanhz) e '"
(uP„—uP) ~', sinh —,')(k

(36)

This integral is also evaluated by the method of
contours and yields
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cos& t —cosh' 4n' —1""tg„'(z, &)
= ——,'Xg sechIz

I
—,' +2X Q (-1)"e '"''(2n+tanhIz I)—

~o (1 —4n') (1 —4n' —(u,')

cos&,t —cost+ ytanh z
~ —(d0

(37)

Since the function E(t) is [cf. (24)]

1 —cos&,t
X 2

0

the first term in (37) yields

——'- &(f)f (z)

(38)

(39)

I

This formula, which is verified with quite accept-
able accuracy by experimental simulations per-
formed in the case X=0.3 (see Fig. 1), shows a
resonance effect which symmetrically amplifies
the oscillations on both wings of the kink.

This nonrelativistic description leads to an
important restriction. It does not include the cri-
tical value"

and therefore cancels, as expected from the pre-
ceding section, the Newtonian kinetic term
(m/v 2)F(t)f,(z) related to the amplitude of the
translation mode [cf. Eqs. (20) and (29)]. It is
worth noting that this first term in (37) is obtained
by the method of contours from the root 4 =+i
located in the upper half plane, and therefore cor-
responds to a zero-frequency mode [see the dis-
persion relation (14)], which is precisely the char-
acterization of the translation (Goldstone) mode.
The presence of explosive terms proportional to
cosh(4n' —1)'~'f implies that the present theory is
only relevant for not too large time values, ""
a condition which has already been emphasized
earlier [cf. (18)]. Let us describe both following
particular cases.

|'i) i -0. We have

~~' —cosu —Xu+ 1 = 0. (45)

It is clear that when X is greater than the critical
value (44) determined by

1+(1—X',)'"—~X, + X, sin 'X, =0,

g, = 0.72461. . .
which determines the sudden transition (or bifur
cation) between the regime of an oscillating kink
amplitude and a monotonously increasing one.
palue (44) may be easily obtained when consider-
ing the limit x-+~ of Eq. (9), including a constant
torque X at its rhs, (9'/Bt')u+ sinu = X, and when
solving it by quadratures with the consideration of
the initial conditions u(0) =(8/Bt)uI, =O. Then one
has to study the motion of a fictitious particle,
the trajectory of which is described by

n e '" ' (2n+tanh [z I)
1 —4n2

+tarir~g~),

and therefore [since P„(z, i) is equal to both re-
maining terms in the rhs of Eq. (40); see formu-
las (29) and (39)]

~, e '"'~ 2n+tanh I:. I

I

Ur
t.H

('1

+
0
+

A
+

+
00 +

0 qLgg

+++
+

0 +

R
+

(41)

Note that the large parentheses are identically
equal to 1. We obtain result (32) as expected be-
cause we consider small time values.

(ii) z -~. We obtain in a similar way

@~(z, f) = X tanh
0

We note that in the limit co —1, Eq. (42) yields

g„(z, i) = —,Xt sint tanh
I

z
I

.

'to

FIG. 1. Amplitude gx of the perturbation function at
asymptotic abcissas s + ~ versus time in the case of
an SG antikink perturbed by an oscillating field X(t)
= 0.3 cost. The resonance effect predicted by formula
(43) is clearly seen through both theoretical (o line) and
numerical (+ line) curves. The agreement between these
curves is excellent up to t = 8, which is rather unexpect-
ed since the theory predicted a good agreement only for
t~ 1.
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IV. SINE-GORDON SOLITON DYNAMICS IN THE
PRESENCE OF A STATIC FORCE

AND A WEAK DAMPING

For the sake of simplicity, we now assume
)'(t) = y= const. Therefore the results of the above
section yield, with {dp 0:

F (t) =—,(1 —cosu)„t) .X (47)

In order to recover the result of paper I concern-
ing the next nonzero term in the large paren-
theses in (32), we set e„-l, which means that
we consider the phonon wave packet, excited

00000"
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00

0
0 +++

0 +
0

0 +
0 +

+

0 +

'X =0.2
r =0.01

+»»00»'
0
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5 +

+0 +„»» o +

0 +
0 +

00+
yips

0 feeeeeeee

the particle becomes unbounded in the potential
defined by Eq. (45), and the corresponding soliton
amplitude increases monotonously. " The reason
for the impossibility of the present theory to re-
cover this phenomenon is due to assumption (30),
which means that the above fictitious particle is
not allowed to oscillate —even once —in the poten-
tial well (1 —cosu —yu) defined by Eq. (45). I«
trajectory is restricted to the close vicinity of
the potential as the particle "takes off" at u =0.
It is by no means allowed to reach the point
of abscissa u =~where it would —or would not,
depending on the relative values of X and X,—under-
go a reflection.

I I

1
00ooo

oo0a
00

0
0

0 ++
0 +

++
0 ++

a + +
0 +

X =0.2
I" =O. &

»5 +
Q

o +
+0 +o +

o p+0+

p Ieeeeeeeee

D
A
M

TINE

FIG. 3. Same as Fig. 2 with y =0.2 and I'=0.1.

by the perturbation, as a quasimonochromatic
one centered around the wave vector k=0. This
is indeed suggested by formula (35). Then

t'F(t)-F(t)=)((l —cost)=y ———+ ~ ~ - . (48)p 2 24

Equations (29)-(32) and (48) imply, up to order
t',

4

(2 24

Therefore the corresponding kink velocity is
[see definition (27) 1

(49)

v(t) =v (50)

(antikink:+ sign; kink: —sign),
and we recover the basic result of p per I, which
has been numerically checked with quite accept-
able accuracy. We shall discuss in the Conclusion
of this paper the physical meaning of the assump-

FIG. 2. Soliton velocity V versus time t for the force
X equal to 0.2 and the damping coefficient I' equal to
0.01. o line: the theoretical. curve (54). + line: the
numerical values obtained by numerical simul, ations of
Kq. (51) as described in paper I. Note that the part of
the numerical curve which approaches —and even ex-
ceeds —V=1 is meaningless as explained in I. line:
the Newtonian sol.iton velocity as predicted by all other
theories, i.e. , V(t) = (7rX/4I')(1 —e ~). Mind that we ne-
glect, in the theoretical formula (54), the relativistic
corrections and approximate, therefore, the soliton rest
frame time with the laboratory one. These corrections
would lead to a better fitting of both o and+ curves, as
explained in I.
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tion &~
- 1.

The presence of a weak damping term in the
"forced" SG equation

v(t) =+ 1 — t—
24 2 (53)

8 8 . 8—
gg — g+ sinu+I' —u = g,8t 8g

where

( 51)
Using similar relativistic arguments as those in

I, we obtain the SG soliton dynamics in the pre-
sence of a static force and a weak damping [see
condition (52) ]:

0(I'&& 1, (52)

does not qualitatively change the results of the
above parts as long as we assume a nonrelativistic
soliton dynamics. Indeed, in the approximations
(16) and (52), Eq. (51) simply leads to the addition
of I'(9/Bt)g, (t) and I'(9/Bt)g(k, t) at the lhs of Eqs.
(20) and (21), respectively. '~'o As a consequence,
the integration of these equations will lead to the
existence of a terminal velocity (1 —V,'„) '"V„,
=w rg/41, ""and by either the method described
in this paper or by the method of the associated
fictitious particle described in paper I, one ob-
tains the correction to formula (50) due to the
weak damping:

V(t) =tanh + 1 — t-gyt L'

24 2
(54)

(+and —signs, respectively, for antikinks and
kinks). Formula (54) has been numerically checked
for various values of the force )t ()t=0.2, 0.4, 0.6)
and the damping I (I'=0.01, 0.1, 0.3). The results
are shown on Figs. 2-10. The agreement with
the theoretical formula (54) is excellent for small
time values [when formula (54) reduces to (53)]
and acceptable for larger times [note that the ter-
minal velocity remains equal to unity within ap-
proximation (52), as shown by Eq. (54)]. More-
over, we point out that the relativistic correction
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related to the Lorentz contraction of time 7

=(1—V')' 't leads to the corrected formula [see
paper I]

V(t}=tanh w, 1- t-~gt' 1"

24y' (55)

with y =(1 —V') '", which fits the experimental
curves better in Figs. 2-10, due to the weak de-
pendence of y over the time t; see paper I.

CONCLUSION

In the basic situation of the acceleration of a
single SG kink by an external (time-dependent}
force —which is actually the exact translation to
soliton quasiparticles of Newton's well-known
falling-apple experiment —we have demonstrated
that the theoretically predicted Newtonian kink
acceleration does not occur (see Note added in
proof), due to the dynamical reaction —or screen—
effect upon the moving soliton of the "cloud"
of phonon waves excited by the external force.
This last, effect rigorously balances the New-
tonian acceleration. It has been confirmed by
numerical experiments (I and see Figs. 2-10).
We understand this reaction of the excited phonon
spectrum upon the soliton wave as a kind of reso-
nant effect of the coherent (almost monochromatic)
phonon wave packet defined by 0 -0 with the mov-
ing kink. Indeed, these zero wave-number phonons
have a vanishing group velocity V„= tz '4 =4=0
in the soliton rest frame. Therefore their energy
may be regarded as "trapped" by the moving kink.
We note, in relation to the above statement, that
the resonance effect which appears between the
oscillations of the soliton far wings and a forced
external oscillating field X (t) =

g cost [which is de-
scribed by formula (43) and cheeked in Fig 1ofthe.
present paper] is actually due to the contribution of

the pole k =0 to the integral (36) describing via
the method of contours the continuum contribution
g'„(z, t). This suggests that the modes k-0 are
excited predominantly because they fit the physi-
cally reasonable boundary conditions at the far
wings (z=a~) of the soliton: (s/sz)$„=0. We
similarly note that the resonant "dynamical" in-
teraction between this excited monochromatic
wave packet and the moving kink mathematically
results in a pole k =+i in the integral giving the
expression of the kink state g„(z, t). This pole
yields a corresponding zero-frequency mode
w,'=1+0'=0, which is of the same physical nature
as the (Goldstone) translation mode f, .

Note added in Proof. The authors were recently
informed by Professor A. Newell of numerical
experiments performed in the case of a small
static force X =& 0.5. Newell obtained a quasi-
Newtonian part of the kink trajectory V(t) for
intermediate time values roughly defined by
t„&t& t„, in which t„=v 2 is the time value for
which Eq. (50) yields a Newtonian acceleration
~}t/4, and t~ = (4/~X)(2/3)' ' is of the same order
of magnitude as the time for which relativistic
effects described by the equation V = (1 —V')' '
(~y/4) become important. Thus, the smaller the
value of X, the larger this quasi-Newtonian time
interval. Actually the threshold value X,„needed
for this interval to exist is X,„=4/~~3. Hence
we did not choose small enough X values com-
pared with y,„ in the present paper to obtain
Newell's quasi-Newtonian trajectory sections.
Finally, it must be remembered that even when
g„&t&g~, the soliton dynamics is never exactly
Newtonian, since the interference effect between
the continuum perturbation spectrum and the dis-
crete one, as described in this paper, still does
exist, although progressively reduced by a factor
1-/t as t- t~ (cf. I). The authors are grateful to
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Professor A Newell for this private communica-
tion.
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