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Frequency-dependent charge transport in a one-dimensional disordered metal
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We report observation of the frequency- and temperature-dependent conductivity and dielec-
tric constant of the organic conductor quinolinium dietetracyanoquinodimethanide

[Qn(TCNQ)2]. The experimental results are analyzed in terms of a random-barrier classical

hopping model, with a specific distribution of barrier heights specified by three parameters. The
model successfully fits both the real and imaginary parts of the conductivity over a very wide

range of frequencies and temperatures.

Quinolinium ditetracyanoquinodimethanide
[Qn(TCNQ) 2] is the prototype of organic conductors
in which the charge transport is highly anisotropic
with various evidence suggesting an important role
for disorder in the transport properties. " Although
different models have been proposed to describe the
temperature dependence of the dc conductivity
[a.»,( T) ], which is metallic at high (240 K) tempera-
tures ( T), and semiconducting at low T, recent NMR
experiments' demonstrate that o.», ( T) is determined
by a temperature-dependent electron mobility. The
strong decrease of o»,( T) at low temperatures then
suggests the increased role of disorder.

In this Communication, we report the first obser-
vation of a frequency (r»)-dependent conductivity
[o(r», T) =. o.'(ro, T) +io "(r», T) ] and dielectric con-
stant (« ~ o "/r») caused by single-electron motion in
a highly anisotropic metal over a wide range of fre-
quencies. We suggest that the temperature depen-
dence of both quantities reflects the pecularities of
random transport in one dimension, and we claim
that the entirety of the experimental observations can
be accounted for by a simple random barrier classical
hopping model.

The quantities o(r», T) and «(r», T) were measured
along the high-conductivity direction at selected fre-
quencies between dc and 420 MHz using several ra-
dio frequency bridge circuits. In all cases, a two-
probe configuration was used. It is important that
both dc and ac measurements are made simultane-
ously on the same samples. In this way, the effect of
sample and geometry variations can be minimized,
and all measurements normalized to o.»,( T) at room
temperature. Careful checks of the dependence of
o (c», T) and «(r», T) on sample dimensions showed

that the effect of contact resistance was negligible.
This was further substantiated by an experiment
which showed that o.», ( T) measured in our apparatus
gave the same temperature dependence as o.», ( T) us-

ing a four-probe method. Except for «(~, T) to be
discussed later, our estimated experimental uncer-
tainties are indicated by error flags or scatter in our
data.

We exhibit a. '(co, T) including earlier measure-
rnents at 9.14 GHz in Fig. 1. Only a small represen-
tative fraction of the points actually measured are
presented. The full dependence of o (cv, T) on r» for
selected temperatures is exhibited in Fig. 2. Finally,
«(r», T) vs T is plotted in Fig. 3 at two frequencies
plus data from Holczer and Janossy. 4 Evaluation of
«(r», T) was carried out using the relation
« = (3.5 x 10 ")RCo. ', where R is the sample resis-
tance (in 0), C is its capacitance (in F), and o.' is

expressed in (0 cm) '. The room-temperature
values of e represent averages measured on several
samples with different resistances.

The first point to be noted from Figs. 1 —3 is that
the strong ~ dependence of cr and e immediately
rules out various models in which the temperature
dependence of crd, is interpreted in terms of extended
electron states, as well as models in which e mea-
sured at microwave frequencies is interpreted as the
static dielectric constant. The overall behavior of
the frequency and temperature dependence of o is
similar to that found in three-dimensional amorphous
semiconductors, where cr», ( T) is accounted for by
excitations across a mobility gap (i.e. , to extended
states) while the frequency-dependent part arises
from localized states in the gap region. Recent NMR
measurements, however, demonstrate that a», ( T)
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FIG. 1. Temperature dependence of o'(ra, T) in

Qn(TCNQ)2. The solid line represents the best fit to the
data for o.d, ( T). The model parameters are 4m;„290 K,
~max=600 K, T~ =320 K, and ~at=1 9 "10' sec, and

the fitting procedure is outlined in the text. The data at 9.14
GHz are taken from Holczer and Janossy (Ref. 4).
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FIG. 2. o-'(co, T) (full curves) and —o-"(eo, T) (dashed
curves) vs frequency, calculated for three different tempera-
tures using the parameters listed in the caption to Fig. 1.
The experimental data for Qn(TCNQ)z below 9.14 GHz are
our own (0,~: 60 K; 0, ~: 80 K; and 6, i: 300 K), while
those at 9.14 GHz are from Holczer and Janossy (Ref. 4).
The open points are the real part of the conductivity; the
closed points are the imaginary part. The scale for
—o."(cu, T) has been shifted downward by a decade to avoid
confusion with o.'(co, T).
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for Qn(TCNQ)z reflects temperature-dependent dif-
fusion along the chain direction. The number of
electrons participating in the charge transport is in-

dependent of the temperature, and the strong de-
crease of o.d, ( T) at low temperatures is caused by a
strong decrease in the one-dimensional diffusion con-
stant. We propose, therefore, that od, (T) and
o (ro, T) do not signify different carriers, but rather
that both reflect one-dimensional diffusion processes
associated with random barriers.

The random potentials responsible for electron lo-
calization in one dimension at low temperatures in
Qn(TCNQ) 2 have been attributed to randomly orient-
ed Qn ions (weak disorder) and impurities on the
TCNQ chainsa (strong disorder). We shall assume
that the electrical transport is determined mainly by
high mobility segments of average length Lp, exhibit-
ing metallic conduction, separated by large barriers
with a (random) distribution of heights.

We are able to account for the entirety of the ob-
served behavior of o (c», T) by this simple one-
dimensional model, a variant of that introduced origi-
nally to describe the anomalous behavior of o (ra, T),
in the one-dimensional superionic conductor hollan-
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FIG. 3. Temperature dependence of e(eo, T) in

Qn(TCNQ)2. The solid lines are calculated using the param-
eters listed in the caption to Fig. 1. The data at 9.14 GHz
are taken from Holczer and Janossy (Ref. 4).



7476 RAPID COMMUNICATIONS 24

dite. We assume that for all frequencies and tem-
peratures of interest, the intrinsic segment conduc-
tance is much larger than the intersegment transfer
rates

Wnn+i = tpatexp( ~nn+t, /T)

where 4„„+~represents the barrier height and co„an
attempt frequency. The transport properties of the
system are then completely dominated by the 8'„„+~,
and can be described by a master equation. ' The
conductivity tr(«t, T) of our model system can be ex-
pressed as follows":

o(«), T) =. (npe Lp/AT) (D( i«t))— (2)

p(A) m exp( —6/T ), (3)

with p(A) =0 otherwise. Together with Eq. (1), this
leads to the probability density

where no is the carrier density and e the charge. The
average ( ) is defined with respect to the distribu-
tion of the independent random variables 8'„,„+~.
The frequency-dependent diffusion constant
(D( i «t) ) i—s defined in terms of the solution of the
master equation. '

The barrier heights 4„„+~are assumed to be mutu-
ally independent random variables, distributed ac-
cording to a probability density p(A) which is chosen
to have the specific form

where 8',ff, or g,ff, is determined from a self-
consistency equation. We adopt that which corre-
sponds to Kirkpatrick's' effective-medium theory for
random resistor networks (see Ref. 11),

dtvp(w) t

' =0,
w +

2 (garr+z)
(6)

and we note that z, g, rr(z), and W, tr(z) are complex
quantities. Using an iteration procedure, Eq. (6) can
easily be solved numerically.

For arbitrary p( w), the effective medium approxi-
mation always reproduces the exact cu ~ limit of
(D( —i«t)). For «t 0, it leads to the same «t

dependence for (D ( i«t) )—as that conjectured"" to
be exact when using a general scaling hypothesis. "'"
We expect, therefore, that W, rr( i«t) —will represent a
quite accurate approximation of (D( it«) )—for the
entire frequency range of these measurements (fre-
quencies low compared to the inverse propagation
time along a segment).

For the specific probability density p(ttt) of Eq. (4),
we obtain the following asymptotic dependences

of (D( .—i«t)) over the whole frequency range. It fol-
lows9" that (D(z) ) can be identified with an effec-
tive, frequency-dependent, transfer rate W, ff(z),

(D(z) ) = Waff(z) gaff(z) [gaff(z) +zj/z, (5)

, o w, 8'~;„&w&8'~»
p( w)'

=0, otherwise, (4)

[Qp +0 (ti «t) ' —+. . . , «t ~0 (7a)
aff i«tj ='

bp —bi/( l«t) +. . . , «t )) W „.(7b)

for the transfer rates W„,„+i, where tx =1 —( T/T ),
Wmin «tat exp( ~max/ T) i Wmax = «tat

&& exp( —5;„/T). This distribution for w is peaked for
small w between two temperature-dependent limits,
such that the width of the distribution narrows as the
temperature is increased. The parameter T deter-
mines the strength of the tendancy for p(ttt) to
diverge at low w (though of course it is cut off at
W,„), and thus serves as a measure of the sharp-
ness of the distribution in w about the O';„. For
T ( T, the distribution is peaked at 8',„; for
T & T, the distribution rises smoothly as w in-
creases from 8,„. In the limit of vanishingly small

W;„, this generates a transition from vanishing to
finite dc conductivity at T = T . It will turn out in
the present case that our results are relatively insensi-
tive to the precise value of T, but that it must be
larger than the temperatures at which the conductivi-
ty exhibits a substantial frequency dependence. Oth-
erwise, the distribution in w is too "flat" to yield a
substantial frequency dependence to the conductivity.

Except for its high-frequency asymptotic expan-
sion, a rigorous evaluation of (D(—i«t)) does not
seem possible. " In this Communication, we shall
therefore use an effective-medium (or coherent-
potential) approximation" to investigate the behavior

According to Eqs. (2) and (5), this implies that
Reo.(«t, T) increases with increasing frequency from a
dc value, Ap( T) m tzp(T)/T, to a high-frequency
value, Bp(T) m bp( T)/T, whereas the dielectric con-
stant e(«t, T) m —o."(«t, T)/«t varies as «t

' at low

frequencies and as co
' at high frequencies. The ex-

pansion coefficients a; and b; can easily be calculated
from Eqs. (6) and (4).

A reasonably accurate fit of our model results for
o.(«t, T) to the complete Qn(TCNQ)2 data (Figs.
1 —3) can be obtained from the following procedure.
For a given value of T, we determine A,„and ~,„
from the measured ratio of Reo. («t, T) between high
and low frequencies at T =80 K, and from the mea-
sured ratio of o.q, between T =300 and 80 K. This
leads to 4;„=290K and 4,„=600K for T =320
K. The dependence of 4,„and b,„on T is very
weak, and it does not seem possible to determine T
from the present experimental results. However, as
remarked earlier, T must be larger than the tem-
peratures at which the conductivity exhibits signifi-
cant frequency dependence. This implies a lower lim-
it of roughly 200 K. The value we have taken seems
a reasonable compromise, and fits the strength of the
frequency variation satisfactorily at the temperatures
measured. With these parameters, we obtain a quite
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accurate fit of the measured temperature dependence
of o.», between T =60 and 300 K (see Fig. 1).

Using Eqs. (2), (5), and (6), we have calculated
o.'(r», T) and o."(r», T) over the full frequency
range for several temperatures. The results are ex-
hibited in Fig. 2, and show reasonably good overall
agreement with our measurements at 420 MHz and
below, and with those of Holczer and Janossy at 9.14
GHz, whose data are also included.

The dielectric constant e(r», T) follows immediately
from rc"( —r»T)/r». Our model results, with no fur-
ther adjustable constants, are plotted versus tempera-
ture at three different frequencies (125 MHz, 420
MHz, and 9.14 GHz in Fig. 3. Again, acceptable
agreement between theory and experiment is found.

In conclusion, we have demonstrated how a simple
random barrier model for hopping transport can give
rise to frequency-dependent conductivities of the type
exhibited by a variety of quasi-one-dimensional elec-
tronic conductors. '~ %e should emphasize that we

can account for the complicated behavior exhibited
experimentally for both the real and imaginary parts
of the conductivity using only a simple one-chain
model. %e do not invoke two different mechanisms
or two competing conductivity paths.
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