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Calculation of localization length in disordered chains
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The resistance of a random one-dimensional chain is calculated in a novel way. The electron-
ic wave function is represented by a random walk on a hyperboloid, for which the hyperbolic

angle X is an additive scaling parameter. The resistance is (mt/e2)sinh2(X/2). For strong disor-

der, X is normally distributed and explicit expressions can be obtained for the localization length

and its variance, in good agreement with the results of various computer experiments.

The problem of transmission by one-dimensional
chains is beset by the following difficulty'. The resis-
tance p (in units of mA/e2 =12906 0) has a probabil-
ity distribution with a very long tail. Its average (p)
and its dispersion $p increase exponentially with the
length J.of the chain' but the dispersion increases
faster. Recently, a "scaling" theory of localization'
was proposed, with the aim of finding a better char-
acterization of the "typical" p. It was shown that
ln(1+ p) is an appropriate variable with a normal dis-

tribution, provided that some assumptions about ran-

domness of phases are valid.
In this Communication, we show how it is possible

to calcuktte explicitly the localization length (not only
to evaluate it by Monte Carlo simulations). We con-
struct a vector R (bilinear in the electronic wave
function Q) which current conservation constrains to
lie on a hyperboloid (see Fig. 1). For a random po-

tential, R executes a random walk and the hyperbolic
angle X [related to p by p =sinh (X/2) ) obeys a sirn

p/e equation similar to that for Brownian motion,
making X a natural, easily calculable, additive scaling
parameter. Moreover, if X is normally distributed
(this again depends on the potential randomness) the
parameters of its distribution can be obtained algebra-
ically and give the localization length and its variance.

Consider electrons of momentum Ak impinging on
a potential barrier V(x). To solve the Schrodinger
equation, it is convenient to start from the exit end
of the barrier where Q= e'~ and to progress in the
negative x direction, till we finally obtain P = Me'~
+Re '~ at the entrance. The transmission probabili-
ty is

~
M

~

' and the electric resistance is' p =
( M ~

'
—1 = ~N~'. (The last equality follows from current
conservation. )

It is convenient to introduce a nondimensional
length parameter t =—kx (the minus sign so that t in

creases as we proceed in the negative x direction) and
to write f = dQ/dt. The Schrodinger equation be-

comes ifi+uP—=P, where u =2IV/g'k'= V/E. We
further define a "vector" R = (X, 1;T) by

1' 94+74)/2,

T = (4&+44)/2 .
Note that

T —X —y =[i(Qf —QQ)/2] =1

(la)

(lb)

(lc)

(2)

FIG. 1. Mapping of tII(x) into R(t). (a) In the conduc-
tion band of a periodic potential, the locus of R for consecu-
tive sites is an ellipse. (b) In a forbidden band, it is a hyper-

bola and Tgrows exponentially. (c) For a random potential,
the locus of R performs a random walk which almost always

diverges exponentially.

by current conservation, so that R lies on a unit hy-

perboloid. At the exit of the barrier, we have

Ro=(0, 0, 1) and at its entrance T= ~M['+[X~ .
Therefore the transmission probability is 2/( T+1)
and the resistance is p = ( T —1)/2.

The Schrodinger equation can now be written as
dR/dt = QR, where the "angular velocity" matrix 0
1s

0 2 —u 0
Q=u —2 0 u

0 u 0,
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It generates a pseudorotation (a rotation in a 2+1
dimensional Minkowski space) R(t) =A (t)Rp, where
the transfer matrix A belongs to the SO(2, 1)
group. ' 6

If we have several consecutive barriers, we multi-

ply the corresponding transfer matrices, in precisely
the same order as the barriers. In particular, for n

identical barriers, the transfer matrix is A" and the
resistance is p=(T —1)/2= [(A")rr —1]/2. Now,
the eigenvalues of a SO(2, 1) matrix are I and either
e ~'~ or e -", depending on whether the invariant
eigenvector (the one with eigenvalue 1) is timelike
(Euclidean rotation) or spacelike (Lorentz boost).
Therefore the eigenvalues of A "are 1 and either
e~'"~ (if —1 & TrA & 3 and we are in a conduction
band) or e+-"" (in a forbidden band). The situation is
described by Fig. 1.

If we have several types of sites randomly distri-
buted, the locus of R performs a random walk on the
hyperboloid, which almost always runs away ex-
ponentially, because all the points of the hyperboloid
are equivalent (and thus equiprobable) under
SO(2, 1). This can be calculated as follows. First,
suppose that we have just two kinds of sites,
represented by a transfer matrix A occurring with
probability a, and a matrix B, with probability
b = 1 —a. If consecutive sites are uncorrelated, a
chain such as ABAAB. . . has probability abaab. . .
Then the average R after n sites simply is

(R) = (aA +bB) "Rp, because expanding the
parenthesis yields all the configurations, with each
product of matrices multiplied by the corresponding
probability. This result is readily generalized to more
than two types of sites. For example, if there is a
random parameter s such that the transfer matrix
A (s) occurs with probability p(s), then, for n such
transfer matrices, we have

r ' n

(R) = J A(s)p(s)ds Rp—= (3)"Rp

Now, the average (A ) of different SO(2, 1) ma-

trices is not a SO(2, 1) matrix. It can be shown' that
its largest eigenvalue A must be larger than 1 [except
that A = 1 if all the 2 (s) are powers of the same ma-
trix]. For large n, Eq. (4) will be dominated by A"

and (R) will increase exponentially, 7 so that

(p) -e"'
Likewise, we can easily obtain (p ), or (T ), by

considering tensor products of transfer matrices. For
example, we may take as basis XY, XT, Y1
(X' —Y )/2, and (3 T2 —1)/2 and construct new
transfer matrices belonging to a five-dimensional
representation of SO(2, 1). All the preceding con-
siderations apply without change, but with the A (s)
now being 5 x 5 matrices and we get (p ) —e" . As
(p') & (p)', we must have t & 2(M„ i.e. , the standard
deviation increases faster than the mean.

It is therefore important'2 to find a better estimate

$ =—2 + u (1 +cos$ cothX) (6)

These equations are remarkable. For small
X(cothX = X ') we have d(X sing)/dt = u, whence

pf
Xx=uxsinp=u J)u dt, or X2= [J~ u(t')dt']2.
Thus on the average

4(p) = (x') =2 J Ji (u(t')u(t'+r))dr dt'

When t is much larger than the correlation length of
u, the inner integral is independent of t' and (p)
grows linearly with length.

On the other hand, for large X(cothX = 1) Eq. (6)
is independent of X and directly correlates $ to u, so
that (X) = (u sing) tends to a positive constant'p
(unless u is periodic and (X) =0 in a conduction
band). We thus write X = (X) +(u sing —(X) ) so
that the second term fluctuates around zero. This is
a kind of Langevin equation and the corresponding
Fokker-Planck equation is"

f(x, t) At =—f'(x, t) (Ax) +f"(x, t) ((Ax)')/2—

(8)
where f(X, t) dX is the number of representative
points in [X, X+dX] and f' means 8f/8X. The ratio
of consecutive terms in the right-hand side of (8) is
of the order of t„h,the coherence length of u, divid-
ed by the "mean free path" t r, —~

u I
'. If we as-

sume as usual' that this ratio is small, and if we take
4t such that t„h(& 4t &( t fp, it is a good approxi-
mation to neglect (At)2 and other higher terms in
(8) which becomes

kf = nf'+Pf"/2—
where n = k (AX) /At = k (u sing) is the inverse lo-
calization length, and

(In the weak scattering limit, ~ u ~ && 1, we get P =2n
in agreement with Ref. 3.) The solution of (9), nor-
malized to unity, is a Gaussian distribution

f= exp [—( X —nL) 2/2PL ]/(27r PL ) ' 2, (10)

for "typical" p. Since our problem is a random walk

on the unit hyperboloid, let us parametrize it by
T =cosh' and X + iY = sinhXe'@. The Schrodinger
equation now becomes

X= u sing

and
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where L = r/k is the length of the chain.
The coefficients u and P are simply related to p,

and v which were defined earlier and are easily cal-
culable (even though they have no apparent physical
significance). Since p = e"/4, we have from (10)

(p ) =4 exp[(mu+m'/3/2)L]

u = (4p, —v)/2 (12a)

and

(»b)

We have compared these predictions with the nu-

merical experiments of Andereck and Abrahams, '

who consider a potential V(x) = X V„S(x—n) with

the V„uniformly distributed between —q/2 and q/2.
Between the delta functions, u =, 0, and, therefore,

0 2k 0 cos2k sin2k 0

A = exp —2k 0 0 = —sin2k cos2k 0

, 0 0 0, , 0 0
(13)

At a delta function u =ug(r), we have bp=up and
Eqs. (1) give AR, corresponding to a transfer matrix

—u'/21 —u /2 —u

u'/2

1 u

u 1+u2/2,

(14)

[Note that u„=(2m/t2k) V„=2V„/kwith the units
of Ref. 12.] The complete transfer matrix for one
site is the product of (13) and (14) and its average is

Comparing with (p) —eP and (p2) —e"L, we obtain
p, = (u +P/2) and v = 2 (u + I8), whence

easily obtained. ' Next, we compute the direct prod-
uct of each transfer matrix with itself and then take
the average of these 9 x 9 matrices. The largest
eigenvalues are obtained by standard methods.

For example, with k =1.4 and q =1.0, we obtained
p, =0.0849272 and v=0.257568, whence
u =0.04107 and P =0.087 71, in excellent agreement
with the numerical experiments of Ref. 12 [in their
Fig. 2, L =700 and we expect 4u = 4(P/L)
=0.0112]. Agreement was also achieved with other
parameters and with numerical experiments on ran-
dom models of our own.

However, not every model gave a Gaussian distri-
bution for X. For example, for an "alloy" (two
equiprobable strongly scattering sites) we obtained
u= (X)/L =0.20, p= ((X—uL)2)/L =0.36,
p, = 0.335, and v =0.810, so that Eqs. (12) are not
satisfied. ' For the same alloy in a 1:15 ratio, the
discrepancy was even larger: u =0.060, P =0.127,
p, =0.088, and v=0.402, The distributions were
markedly non-Gaussian, well beyond the statistical
fluctuations of our numerical simulations. (The
latter involved thousands of random chains, with up
to 4096 sites. ) Obviously, a single dichotomic ran-
dom variable is not enough for the central limit
theorem to be valid.

In summary, we have shown that the moments

(p ) can be obtained explicitly from the eigenvalues
of averaged transfer matrices of order (2m +1). In
the strong disorder limit t„t,« t r„these (p )
satisfy Eq. (11) and the scaling parameter X is nor-
mally distributed. The localization length and its
variance can then be obtained explicitly from (12).
For weak disorder (r„t,& t r„)X is not normally dis-
tributed but still is additive, by Eq. (5).
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