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1T-TaSz charge-density-wave metal-insulator transition and Fermi-surface modification
observed by photoemission
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A metal-to-insulator transition is observed using angle-resolved photoemission at the

1T2 1T3 phase transition of TaS2 at T —200 K: a 0.125-e& band gap, d subbands, and

Fermi-surface modifications occur. High-resolution (0.15-eV) Ta4f core-level spectra from

1T3-TaS2 exhibit a charge-density-wave-induced splitting (0.73 eV) with only two narrow lines

(0.25 eV full width ) having an area ratio 0.70 0.04, which is irreconcilable with current

models that give three lines with a 6:6:1 intensity ratio.

The onset and phase transitions of charge density
waves (CDW's) in transition-metal layered com-
pounds continue to be of much interest. ' Microscop-
ic CDW theories, which presently do not exist, re-
quire a better understanding of the electronic struc-
ture of CDW phases. 2 Photoemission spectroscopy is
a unique tool to probe this structure. Previous
angle-resolved photoemission studies of 1 T-TaS2
have reported the dispersion of the d' conduction
band along the I M, I E, and ME' directions of the
metallic room-temperature 1 T2 phase and x-ray pho-
toemission studies with 0.6-eV energy resolution
have been used to determine the 1 T~, 1 T2, and
1 T3 Ta4f core-level splitting which is a measure of
the CDW order parameter. '

Here we report angle-integrated and angle-resolved
photoemission spectroscopy studies from the 1 Tj in-

commensurate, 1 T2 quasicommensurate, and 1 T3
commensurate CDW phases of 1 T-TaS2 which have
been obtained at the Synchrotron Radiation Center of
the University of Wisconsin using a two-dimensional
(2D) display analyzer' (system resolution & 0.15
eV). Single crystals from the same batch used in
Ref. 6, where the preparation procedure is described,
were mounted with silver epoxy to a sample probe
cooled with a Displex refrigerator which operated in
the range 400 to 80 K.

Angle-integrated Ta 4f core-level spectra for 1 Tt,
1T2, and 1T3 phases of Ta2 are shown in Figs. 1(a)
and 1(b) for a photon energy h v =66 eV. The Ta
4f7/2 peak is broad with an overall width of 1-eV full
width at half-maximum (FWHM) in the 1T~ phase, it
becomes split into two peaks of FWHM 0.5 eV in the
1 T2 phase, and becomes split into two sharp peaks
with equal FWHM of 0.25 eV in the 1T3 phase. The
CDW is incommensurate with the lattice in 1Tj and
1 T2, resulting in the observed broadening of the core
levels. Binding energies are listed in Table I.

The pattern of peak splitting in commensurate 1 T3
reflects the inequivalent potentials at Ta sites result-

ing from the triple-axis CDW configuration. "The
1T3 spectrum in Fig. 1(a) exhibits two Ta 4f7/2 com-
ponents of equal FWHM =0.25 +0.01 eV separated
by 0.73 +0.0005 eV with an area ratios A /A

=0.70 +0.04. Experimental signal-to-noise ratios
were ~ 200:1. The absence of a third peak [see Fig.
1(b)] and the area ratio are irreconcilable with

currently proposed 6:6:1,1:6:6,and 6:7 (0.857) CDW
configuration models. ' 9 Lower resolution XPS
spectra have intensity ratios consistent with our
results. If one assumes equivalent CDW configura-
tions for all S-Ta-S sandwiches at the surface and into
the bulk the same area ratio 0.70 +0.04 corresponds
to a 5.3:7.7 ratio of o.2 and o, ~ sites for a 13 atom
layer unit cell. We have measured' the same 4f area
ratio for the commensurate phase 1 T-TaSe2 for
which Brouwer and Jellinek' have used a 13 atom
"Star-of-David" model to fit their x-ray diffraction
results. This model leads to a 6:6:1or 6:7 area ratios.
They found 1T-TaSe2 to be triclinic with three equal-

ly probable twins responsible for the trigonal sym-

metry. The influence of the twins and the twin anti-

phase boundaries on the CDW configuration model
might affect this ratio and explain the discrepancy
with our results.

Helium beam atom diffraction" studies show a
413 && 413 superlattice for the topmost surface layer
of 1T3-TaS2 and are consistent with our assumption
that the CDW configuration at the surface region is

similar to that of the bulk. This assumption appears
to be reasonable in view of the weak interlayer bond-

ing and narrow observed 4f lines.
The 0.73-eV a~-n2 splitting of the two Ta4f7/2

components can be used to estimate the amplitude of
the CDW. A recent self-consistent renormalized
atom model calculation' of the chemical shift of the
core levels as a function of the number of valence d
electrons in the solid finds a 15-eV/electron core-
level shift. Thus our 0.73-eV splitting corresponds to
a CDW amplitude of 0.05 electrons, which is much
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Fly, 1. (a) Ta4f core-level spectra from different CD% phases of 1T-TaS2. (b} Ta 4f core-level vride scan from commensu-

rate phase. (c) Angle integrated Ta "5d" conduction bend.

smaller than a previous estimate of —1 electron
based on empirical chemical shift arguments. '

Angle-integrated "Ta 5d'" valence-band spectra are
shown in Fig. 1(c). The overaH bandwidth is —1.1
eV for 1T2 and 1 T3, with sharp subband structures
and a gap at E~ appearing in the commensurate 1T3
spectrum. The top of the valence band, defined by
the leading edge near E~, moves down by a gap of
0.125 CV from EJ: in the 1T3 phase. IR spectroscopy
studies'3 did not find a sharp unique valence to con-
duction band gap, but suggested a broad "gap" of
-0.5 CV having a diminished state density.

The two-dimensional energy analyzer counts and
displays all clcctrons emitted within a 80 conc of
angles at a selected electron energy E and the com-

ponent of electron momentum k parallel to the sur-
face k II is conserved on crossing a smooth surface
and is given by

(k (
= (2eE/It')'~'stne,

where 8 is the polar angle between the photoelectron
trajectory and the surface normal. Angle-resolved
spectra (h v =21 eV) along the I'M direction for the
1T2 and 1T3 phases are shown in Fig. 2. In contrast
with Ref. 3, emission is seen for all klI down to
k~~=0 because mixed s/p polarization (rather than s
polarization) was used, and normal emission (ks=0)
is only dipole allowed for p polarization because of
the d,' symmetry of the initial state. %hen the CD%

TABLE I. 1T-TaS2 Ta 4f binding energies relative to E~(+0.03 eV).

Phase Ta 4fp2

25.65
25.78

25.36
25.11
25.05

23.72
23.85

23.18
23.12
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