
PHYSICAL REVIE% 8 VOLUME 24, NUMBER 12 15 DECEMBER 1981

Effects of electron-positron correlation on positron annihilation:
Self-consistent band-structure calculations in Al

B. Chakraborty
Materials Seienee Division, Argonne Nationa/ Laboratory, Argonne, JllInois 60439
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A formalism has been developed for calculating positron-annihilation characteristics in perfect
solids and solids containing defects taking into account the effects of electron-positron correla-
tion self-consistently. The lifetime and two-dimensional angular-correlation spectra have been
calculated for positrons annihilating in defect-free aluminum and are in excellent agreement
arith experiment.

Positron-annihilation spectroscopy has developed
into an extremely useful tool for studying the elec-
tronic structure of solids. The annihilation charac-
teristics, especially the two-dimensional angular-
correlation measurements, provide a ~ealth of infor-
mation about the electrons sampled by the positron.
In order to interpret the spectra and understand the
phenomenon microscopically, a theoretical study of
the annihilation process becomes necessary. The
problem of a positron in an interacting electron gas
has been studied extensively. ' ' In these calculations
the effects of electron-positron correlation are treated
accurately, but since details of the electronic structure
are ignored, they are expected to give reasonable
results only in nearly free-electron-like metals. The
alternative approach of band-structure calculations to
positron-annihilation studies 8 has suffered from the
inability to include the effects of electron-positron
correlation properly. Enhancement of the lifetime
has usually been estimated by the Brandt-Rein-

heimer prescription, and there has been some at-
tempt' at incorporating momentum-dependent
enhancement effects by a generalization of the Kaha-
na theory. '

In this Communication, we present a formalism for
calculating annihilation characteristics in real metals
taking into account the correlation effects self-
consistently. The results for positron annihilation in
defect-free Al are presented and compared with those
from experiment, The formalism is based on the
density functional scheme" for a two component sys-
tem. The strong correlation effects enter through the
electron-positron correlation energy in the energy
functional. Within the local density approximation"
this is determined by the electron-positron correlation
energy for a homogeneous, interacting electron gas,
here taken from the results of Arponen and Pajanne.

The energy functional for the electron-positron sys-
tem is

n r n r n+ r n+ r +

~here v + are the ionic potentials, n '+' the elec-
tron and positron densities, and G [n, n+) the kinetic
and interaction energy functional. " Ideally, in deal-

ing with density-functional theory, one would prefer
to ignore the fact that there is only one positron in
the system and deal only with densities. However,
there is no information available about the variation
of electron-positron correlation effects with positron
density, and in order to develop a consistent theory it
was necessary to treat the positron as a single particle.
This necessitates neglect of the positron-positron in-

teraction term in Eq. (1) and writing the exchange-
correlation energy functional" E„,[n, n+] (within the
1ocai de11s1ty approximation) as

E„,[n, n+] = J e„,(n ( r ))n+( r )d r

+ Jfe,,+(n ( r ))n+( r )d r

where e„, is the electron-electron exchange-
correlation energy and ~,,+„ the electron-positron
correlation energy in a homogeneous system. Gen-
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eralizing the Kohn-Sham scheme'2 leads to the fol-

lowing set of self-consistent equations:

used by Lam and Platzman for Compton scattering, '

Feynman's theorem implies the relation

[—V'/2+ u ( r ) + Vc,„,( r )

+p,„,(n (r ),n+(r))]y) (r ) =a, y, (r ),
[-V'/2+~+(r )- V,.„,(r)

N-„ i= (Oid—odoc-„„c-„,(0) =
ih 0

'BE-„„„(z)'

BA,

u-(s» p') =p

+ e,.+(n ( r )) ] y,+( r ) = ~,+y,+( r ),
'

d~„,(p), ' «...', (p)
+ a„,(p) + p'

dp
"'

dp

where Q (Q+) are the electron (positron) wave func-
tions and Vc,„~( r ) the electrostatic potential due to
the electrons. Usual band-structure methods can be
employed to solve these equations for the electron
and positron eigenstates. In this work we have used
the self-consistent pseudopotential formalism with a
plane-wave basis set. '3 The ionic potential for the
positrons [u+( r ) ] was also replaced by a pseudopo-
tential using a method based on the formalism of
Kubica and Stott. '4 According to this, the positron
wave function is written as a product of a modified
signer-Seitz wave function and a positron pseudo-
wave function. The positron pseudowave function
contains all the information about the crystalline en-
vironment and is calculated self-consistently. The
modified Signer-Seitz solution, being fairly insensi-
tive to the environment, is calculated only once.

The positron annihilation rate A and the annihila-
tion radiation momentum distribution 8 (p) are the
two quantitics of main interest in positron annihila-
tion spectroscopy. The momentum distribution func-
tjon 18 defined as

8 (p) = x (Oidotdoc k „c-„,i0)A "-„„(6)

XA- (G)5(p —k —6), (4)

~here k is the wave vector and n the band index for
the Bloch states, and ~here do and c-„„are the an-

nihilation operators for the states Q+ and Q=„„,
respectively. The expectation value is taken with
respect to the actual ground state of the system. The
positron is assumed to be in its ground state at the
c'enter of the zone. The momentum matrix element
A -„„(6)is defined as

3 -„„(6)= J/d r exp[ —i(k +6) r ]y=„,( r ) y+( r )

To calculate the ground-state expectation value
(O~dodoc-„„c-„,~0) we have employed a method first

Here E-„ i(X) is the exact ground-state energy of

H-„ i(A) = H+A dod~k„c-„

~here A, is an arbitrary parameter. From the
density-functional expression for the ground-state en-
ergy [Eq. (1)], it is clear that there are two sources of
X dependence in E-„(X);(a) an explicit depen-

dence coming from 6 [n, n+] outside of n, n+, and
(b) the dependence contained in n, n+ The se. cond
dependence can be neglected because of the station-
ary property of E with respect to n, n+. The differ-
ence between H-„„„(lt)and H is only in the

electron-positron interaction term
'

0;„,= g, V- -, ,c k c-, ,dodo,krak n " k n
kItk n

where V- -, , is the matrix element of V(r r'), —
kn, k n

the interaction potential. The local-density approxi-
mation [Eq. (2)] then implies that Eq. (6) can be
written as

&~Be,,+(n (r ))

k nn

In an electron gas there is no analog of an interband
interaction and the term on the right-hand side of Eq.
(8) is not defined for n & n' Only N. -„„„canthere-
fore be calculated from local density theory. In this
case the derivative in Eq. (8) is the distribution func-
tion in a homogeneous system. Consequently, we
have to make an additional assumption of neglecting
interband annihilation processes involving an electron
in state k n and a hole in state k n'. Since these are
second-order processes, their contribution is expected
to be small compared to purely intraband annihilation
events.

The momentum distribution [Eq. (4)] can then be
expressed as

~(p) = X N(. -„„)[~-„„(G)['B(p-k-G),
(9)

N(e) = N'(e, n ( r ))n+( r )d r

where N (a, n ( r )) is the momentum distribution
function in a homogeneous interacting electron gas
expressed as a function of the energy, e =p'/2m.
The function N(e) differs from the Fermi distribu-
tion function in two respects; (a) it is enhanced near
the Fermi energy (eq) and (b) it has a long-range tail
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d ~ due to transitions caused by correlation ef-
f ~ H-.": h. --.-.E..
stricted to bands belo~ ~p as in independent-particle-
model (IPM) calculations. ' The electron-positron
correlations also affect Ak„(G), but to 8 lesser extent

n ~+~. The annihilationfor nearly constant densities, n

rate A can similarly be expressed in terms of the cor-
respon lng quad' quantity Ao for the homogenous system

l
I
t

I

l

A = J A'(n ( r ))n+( r )d r (10)

The values or anf Ao d 1VO(e) were obtained from the
work of Arponen and Pajanne. '

This formalism was applied to calculate A and
8 (p) for defect-free aluminum. Contribu intributions from
core electrons an1 t and core orthogonalization effects mere
not taken Into accoun .k t, account. Thc norm-conserving pscu"
dopotentia use or

'
l d for the electrons was calculated by

Pickett. ' The value obtained for A is 6.05 ns, giv-

ing a positron 1 ctime o, tl'f t' of 165 ps which is in excellent
ment with the experimental value' (appropn-agreemen wi

ately extrapolated to 0 K) 161 + ps. e co
tlon frOm COI'C anni 1'h'lations is expected to increase A

d of the order of 6'/o. The functionby a small amoun o e
R (p), for p along [100], is compared in Fig. wt

lt bt 'ned from (a) IPM calculation, all

correlation effects neglected in Eq. (9), and ( e
K h '0 theory. The Kahana enhancement is seen8 ana
to differ significantly from the prediction o q.
The tmo-dimensional angular-correlation spectrum

) = dp„R (p) is shown in Fig. 2(a). The
agreement with experiment is very good excep

d f th high-momentum components
(HMC). ' The effects of electron-positron corre a-

tion are evident on comparing this spectrum with pre-

mental curves showing a more spherical shape '
' . 2 Ref. 19) andwhereas the experimental (cf. Fig. , e .

present theoretical results 5'ig. 2(a)] show a more
'

al sha e. Other than the difference in shape,
the structure seen in Fig. 2(a), resulting rom an
structure effects, is very similar to that obtained by

( f. Fi . 21, Ref. 6). The structure in the ex-
tal s ectrum (Fig. 2, Ref. 19) is less s arp y

defined because of the finite expenmen a r
tion" " A particular cross section of Fig. 2(a,

perimental resolution; the structure in the resulting
Spectrum waS in iS

'
indistinguishable from the experimen-

tal results. The complete two-dimensional spectrum
was not smoot e yh d b the resolution function, since

purpose of this work is to examine many-the main p
results withbod effects by comparing the present resuoye ec

l tions. Thethose o pn f revious band-structure calcu.a
'
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FIG. 1. Momentum distribution along thee 100] direction

—mc(10 3)] obtained from Eq. (10) (solid curve),[1 mrad= mc

ndent- articleKahana theory (dotted curve), and indepen en -p
model (chain-dotted curve}.

0.0
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FIG. 2. (a} Two-dimensional angular-correlation surface
in Al. The integration direction p„ is along f1 n f100]. Experi-
mental two-dimensional resolution e.g., ynearl Gaussian

f 0 6 ad by 1.6S mrad full width at halfcross sections o . m ra
b Hi h-maximum e .m (Ref. 21)] was not taken into account. b) ig-

an ular-momentum region of the two-dimensional angu ar-
correlation surface shovvn in Fig. 1(a), The amplification

HMC f N(p, p ) afe shown in Flg. 2(b) (a vertical
enlargement of the complete spectrum). The m
obvious many- o y-b d effects are seen in the p, and p~
directions, w ere ere ih th 's a clear enhancement of the
d' t 'b t'on over thc IPM predictions in good agree-1Srl U 1

ment with the experimental results of Bcrko er al. (cf.
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Fig. 5, Ref. 22). The overall structure of the HMC is

in much better agreement with experiment than

results of IPM calculations. '
In conclusion, a formalism has been developed for

incorporating electron-positron correlation effects into
band-structure calculations. The application of this
method to defect-free Al has yielded results in excel-
lent agreement with experiment. The method is of
general applicability and is easily applied to perfect

solids, solids with defects, or solid surfaces by gen-

eralization of existing self-consistency schemes.
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