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Cyclotron resonance of Si(001}inversion layers
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Based on a memory-function formalism, the cyclotron data of Wagner, Kennedy,
McCombe, and Tsui on inversion-layer electrons in Si metal-oxide —semiconductor field-
effect transistors are analyzed. The cyclotron effective mass and the relaxation time of
these electrons are evaluated as functions of density. Our theoretical results are found to
be in good agreement with the data, if the impurity density is assumed to be 0.037 &( 10"
cm '.

I. INTRODUCTION

I(t,r, ), —
(4pF)J(t, r, ), — (1.2)

Since around 1974, cyclotron resonance and
magnetotransport have been effectively used for
the investigation of the electronic properties of the
quasi-two-dimensional electrons in Si inversion
layers. ' It has been revealed that the effective
mass and scattering time of these electrons depend
on carrier density, ' although there are other fac-
tors which affect the dependences. These include
magnetic field (frequency), temperature, ' impurity
ions, etc. In particular, Fang, Fowler, and Hart-
stein have found that the effects of impurity ions
are surprisingly strong.

More recently, Wagner, Kennedy, McCombe,
and Tsui have reported extensive cyclotron reso-
nance data on Si(001) inversion layers. ' Their results

depend on carrier densities, and in both high and
low densities show interaction effects. Since it
seems worthwhile to analyze theoretically such cy-
clotron data, we report in the present paper our
results, in particular, on the density dependences of
the effective mass and relaxation time.

For this purpose, we shall follow the theory given

by Tzoar, Platzman, and Simons. A similar ap-
proach, which may be called, after Gotze and
Wolfle, a memory function approach, has been
developed by Ting, Ying, and Quinn. By assuming
Coulomb scattering, the effective mass shift and re-
laxation time are then given in terms of the real and
imaginary parts of the dielectric function as follows.

where nl is the impurity concentration and

I(t, r, ) = —I s ds e, (s,0)—
t 2

e„(s,t)
(1.3)

(1.4)

II. RESULTS AND DISCUSSIONS

Figure 1 illustrates the function I(t, r, ) of Eq.
(1.3) which determines the cyclotron effective mass
shift as a function of the reduced frequency variable
t. For a given r„ I(t, r, ) shows a characteristic
discontinuity at t = 1, i.e., ~ = pF. Below this fre-

quency, the function drops rather fast from a limit-

ing value for each r, indicated by a cross. Note that
the value corresponds to t = 0.01.

Although Fig. 1 shows a minimum only for the
case r, = 1.0, we have found that the curves for

2
E(s t)

J(t, r, ) = —f s ds
[e f'

where s = q/pz, t = m/pF are dimensionless vari-

ables in the units in which A = 1 and 2m = 1, m

being the electron mass.
The random-phase approximation dielectric func-

tion of a two-dimensional (2D) electron gas has been

evaluated by Stern. Later, Isihara and Toyoda'
obtained the same result for the correlation energy.
We have evaluated numerically the ratio e„/

~

e
~

in

the integrand of Eq. (1.3) and e;/
~

e
~

in Eq. (1.4)
because of their important roles, For a three-

dimensional (3D) case, Pines and Nozier'es have il-

lustrated these ratios as functions of r, ." We have

found that the 2D graphs are generally similar to
the 3D cases, except that around r, = 1 the real

part ratio shows a resonance while the'imaginary

part ratio is zero for zero frequency.
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r, = 2 and 3 also reach minima at around t = 5.4
and 7.5, respectively. Therefore, all three cases are

similar to each other concerning frequency depen-

dence. Before reaching the minimum, the larger the

r„ the higher l(t, r, ) and larger the effective-mass

shift.
Figure 2 represents the function J(t,r, ) which

determines the relaxation time. The three curves

have the common feature of having a discontinuity

in slope at t = 1, followed by a maximum which

depends on r, . The dotted curves represent the

plasmon contribution which was not considered be-

fore. The maximum of J(t, r, ) appears in

correspondence to the minimum in Fig. 1.
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FIG. 2. Relaxation-time function J(t, r, ) as a func-

tion of t for three r, values.
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FIG. 1. Effective-mass function I(t, r, ) plotted against

a dimensionless frequency variable t.

FIG. 3. Effective mass m* in the unit of the electron
mass as a function of electron density. The data which

are due to Wagner et al. (Ref. 7) correspond to frequen-

cy 25.4 cm ' and sample 3 (m, = m).

m*=mo+Am . (2.1)

The mass shift Am has been evaluated from Eq.
(1.1). As we see, this formula gives the mass shift
in terms of the impurity concentration nz. We
have found that nq

——0.037)& 10' cm gives a
reasonable fit, as illustrated in Fig. 3. This value

is approximately ten times smaller than what

Tzoar et al. suggested. However, they only es-

timated their impurity concentration for r, of or-
der 1.5. This r, corresponds approximately to an

electron density of 6.6&10' cm if an average
dielectric constant 7.8 and valley degeneracy 2 are
used. For such a high density, the effective-mass
shifts are very small. In other words, the electron
density 1&10' cm which they used for their es-

timation is approximately a factor of 10 smaller
than the above value. This explains the difference
in the impurity concentration, and we believe that
theoretically we are consistent with Tzoar et al.
However, we might add that we have evaluated the
function I(t, r, ) for various different r, values and

also obtained m* as a function of electron density.
We believe that these new results are useful for fu-

ture analyses of experimental results.
In any case, it is very interesting to observe in

Fig. 3 that the theoretical curve is close to the ex-

Figure 3 compares our theoretical result (full

curve) on the density dependence of the effective

mass with the data (sample 3) of Wagner et al.
for v = 25.4 cm ', where v = co/2n. c. The experi-
mental transverse effective mass mo of 0.191 has
been used for our theoretical calculation. The cy-
clotron effective mass m* is given by (in Fig. 3, we

have used their notation m, which is m in the
present paper)
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FIG. 4. Relative effective-mass shift Am/mo against
n where mo ——0. 19I m and hm = m —mo, m* be-

ing the effective mass. The data (squares) are obtained
from Fig. 17 of Wagner et aL (Ref. 7).

perimental data on the high-density side. On the
other hand, the data show y maximum followed by
a drop at low densities of order 0.25 X 10 cm
Although impurity ion and some other effects are
conceivable, a certain deviation may be expected
theoretically also.

Figure 4 illustrates Am /mo as a function of
n '~ in view of the form of Eq. (1.1). Note that
our theoretical result (full curve) is slightly convex,
showing the effect of the function I(r„r,). The
data points (triangles) are what we have obtained
from the work of Wagner eI; aI. for 25.4 cm
We have used mo ——0.191 m as before. They plot-
ted Am/moI in expectation of a straight line.
Our theoretical impurity concentration is again
0.037 )& 10' cm, as in Fig. 3.

Figure. 5 g1ves the theoretical effective mass in
the unit of the electron mass as a function of mw.

As wc can find froIIl F1g. 6, ouI' thcofctlcal relaxa-
tion time is close to the data around density of
0.5 g 10' cm . Hence, we have obtained the
data points (squares) in Fig. 5 from the data of
Wagner et ah. corresponding to v = 25.4 cm ' and
for the same electron density. They showed in
their Fig. 16(b) a least-square fit represented by a
straight line. Therefore, the effective mass be-
comes very small for high frequencies. In our
case, the solid curve approaches the bulk value of

bJ(t, r, ) = ——I dss 5(e„(s,t)),
2t

(2.2)

I 8-

Lal

IO-

z 8
K
tLI
I—

CA

Q.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O I.2

ELECTRON DENSITY n (IQ cn1 ~)

FIG. 6. Scattering time ~ against electron density n.
The data are due to Wagner et al. (Ref. 7) for 25.4
cm-',

FIG. 5. Effective mass ratio m*/m as a function of
m~. The five squares near the maximum of Fig. 6 are

used. Their m /m are obtained from Fig. 8 of Wagner
et al. (Ref. 7).

0.19m.
Finally, we have plotted in Fig. 6 the scattering

time as a function of electron density. The solid
line represents our theory while the squares illus-

trate the data of Wagner et al. for v = 25.4 cm
There are systematic deviations at both low and

high densities due mainly to the maximum which

the present theory has failed to reproduce. We
have investigated the pole contribution which must

be added theoretically to the scattering time. This
contribution is given by
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where s| ——(1 + t)'r —l. ~e find

+J(t, r, ) = —nsyF'F+ I2 rgt

&( ( 2'—'F F++6+F+ —G —F

where the subscript p stands for pole and

F+ ——[(s~ + t) —4' ]'r

6+ = $p + 2$pt —3t + 4'

(2.3)

(2.4)

We have then examined this pole contribution

numerically. For the experimental situation in
which v=25.4 cm ' and n =0.5)& 10' cm
the contribution is found to be too small to explain
the deviation. As can be seen from Fig. 2, it is ef-
fective around t = 2 for r, = 1 and t = 4 for
ps 2

ACKNOWLEDGMENT

This work was supported by the ONR under
Contract No. N-00014-79-C-0451.

'See, for instance, Proceedings of the Second Yamada
Conference on Electronic Properties of Two
Dimensional System, Yamanaka, Japan, 1979, edited
by S. Kawaji (North-Holland, Amsterdam, 1980).

2J. L. Smith and P. J. Stiles, Phys. Rev. Lett. 29, 102
(1972); G. Abstreiter, P. Kneschaurek, J. P. Kotthaus,
and J. F. Koch, ibid. 32, 104 (1974); S. J. Allen, D.
C. Tsui, and J. V. Dalton, ibid. 32, 107 (1974).

J. P. Kotthaus, G. Abstreiter, and J. F. Koch, Solid
State Commun. 15, 517 (1974); G. Abstreiter, J. F.
Koch, P. Goy, and Y. Couder, Phys. Rev. B 14, 2494
(1976); G. Abstreiter, J. P. Kotthaus, J. F. Koch, and
G. Dorda, Phys. Rev. B 14, 2480 (1976).

4T. A. Kennedy, R, J. Wagner, B. D. McCombe, and D.
C. Tsui, Phys. Rev. Lett. 35, 1031 (1975); Solid State
Commun. 21, 459 (1977).

5H. Kiiblbeck and J. P. Kotthaus, Phys. Rev. Lett. 35,

1019 (1975).
F. F. Fang, A. B. Fowler, and A. Hartstein, Surf. Sci.

73, 269 (1978); Phys. Rev. B 16, 4446 (1977).
7R. J. Wagner, T. A. Kennedy, B. D. McCombe, and D.

C. Tsui, Phys. Rev. B 22, 945 (1980).
N. Tzoar, P. M. Platzman, and A. Simons, Phys. Rev.

Lett. 36, 1200 (1976); W. Gotze and P. Wolfle, Phys.
Rev. B 6, 1226 (1972); C. J. Ting, S. C. Ying, and J. J.
Quinn, ibid 16, 5.394 (1977), A. K. Ganguly and C.
S. Ting, ibid. 16, 3541 (1977).

F. Stern, Phys. Rev. Lett. 18, 546 (1967).
' A. Isihara and T. Toyoda, Z. Phys. B 23, 389 (1976);

Ann. Phys. (N. Y.) 101, 394 (1977).
'iDavid Pines and Phillippe Nozieres, The Theory of

Quantum Liquids (Benjaimin, New York, 1966), p.
291.


