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IofI'e-Regel criterion and resistivity of metals

M. Gurvitch
Bell Laboratories, Murray Hill, Rem Jersey 07974

(Received 7 May 1981)

Resistivity saturation is a general phenomenon observed in metals whose electrons have
short mean free paths. The approach to saturation can be described rather well by the
parallel-resistor formula. 1/p= 1/p, d„i+1/p„„where p,& l is calculated by the usual
theory and p„, represents a constant "shunt" resistor. In this work it is shown that the
requirement of the minimum time between collisions (Ioffe-Regel criterion), incorporated
in the distribution of free times, leads to the parallel-resistor formula.

Years ago, Ioffe' and Ioffe and Regel used the

argument based on the uncertainty relation to point
out that the usual theory of electrical conduction
has to break down when the mean free path (mfp)
of carriers I approaches the interatomic distance a.
Tile Ilotloll tllat values of I & 0 al'e, III fact, lnlpos-
sible is known as Ioffe-Regel criterion. Similar
ideas were expressed by Mott. Morc recently the
concept of mimmum mfp was brought up by Fisk
and Webb in order to understand qualitatively
what they called "resistivity saturation" of 315
compounds, and by Mooij in his analysis of the
resistivity of many transition-metal alloys. It was

argued that resistivity does not readily increase
beyond a certain "saturation" value p„„which
roughly corresponds to I -Q. Mott and others cal-
culate this value using the Kubo-Greenwood for-
mula, suitable when /-a, and find what we may
call o», ——ps,I'=ce /fia, with c =0.39 or 0.5,
depending on slight modifications of the pro-
cedure. Mott points out that an almost identical
result follows froH1 a BoltzIDann foImula for thc
spherical Fermi surface o =S~e I /12Ir'fi, with

I =a. For the case KF ——Ir/a he finds from this
formula 0'»t ——0.338 /Ski. For g =4 A this gives

Psat = 5OO p~ cm. Experii11ental values of P„, usu-
ally fall between IOO and 300 pQ cm. Mott's for-
mula can be easily generalized to account for this
variation. The condition Ez ——m/a used by Mott is
equivalent to na = I, where n is electron concen-
tration. In general, there are e electrons per cubic
cell a', and with na'=u we get

or, in terms of n and a,

I.29' IO"
Psat = 2' p (2)

where tn1=cm and t'a]=A. The last formula
shows explicitly the dependence of p„, on n and

helps one to understand the variation of p„, values

among different metals.
The recent interest in the resistivity of 315 com-

pounds is in part because they display most clearly
the approach to the value of p„, with both thermal

and static disorder. To dcscribc that approach
%icsmann et a/. proposed a phenomenological
"parallel-resistor" formula

I I +
P Ptdeal Psat

(3)

in which the measured resistivity p=po+p(T) is

pI'csentcd as a parallel COI1ncction of thc two
branches. The "ideal" or classical branch

Pjdeal=P0(ld)+Pe —ph{id) is thc rc»st»ity as it would
be if there were no limiting value of I -a. The
SCCOnd bran{ h iS a COnStant ShuIlt rCSistOr Psa
the value of which is to be found from experiment.
Formula (3) proved to be rather successful in fit-

ting much of the AI5 resistivity data " as well as
the resistivity of Nb, Chavrel phases, ' ' and ter-

nary borides. '

Despite these successes and despite the theoreti-
cal ground provided for (3) in the work of Chakra-

borty and Allen' which concentrated on the non-

Boltzmann nature of the phenomenon, there exist
certain doubts about the physical significance of
the parallel-resistor formula. It is sometimes re-

garded as just a fitting formula. %hat's lacking is
an intuitive understanding of why p„, and p„
should enter in parallel, and why resistivity should
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always be influenced by the presence of the shunt

p„„even when the mfp is considerably longer than
a. The aim of this paper is to resolve these diffi-
culties and to derive (3) from a very transparent
physical model based on the Ioffe-Regel criterion.

%e first note that while concepts of the mean
free path and the mean free time w are most fre-

quently used in theory, in a real solid there exist a
certain distribution of free paths and times between
collisions. I.et probability for an electron to scatter
during the time interval dt be proportional to that
interval and independent of time t. If this is the

case, it is easy to show that the probability dP of
having no collisions during t and then collision in
the interval (t, t +dr) is given by

where 7. is the mean time between collisions. Pro-
bability distribution dI'/dt is shown in Fig. 1(a).
It tells us that for any v., more electrons scatter in
the time interval dt near zero than in the interval
dt at ~ or at any other time. Now let us try to
modify distribution (4) according to the Ioffe-Regel
criterion which says that free paths I & a or free
times t & ro-a/VF are forbidden (here VF is a
Fermi velocity). This implies that a new distribu-
tion dP'/dt must be such that dP'/dt =0 for
t &ro At this p.oint we notice that distribution (4)
is a continuous one, while the idea of minimum
time vo introduces an obvious discreteness. One

may be tempted to consider a discrete problem, i.e.,
to consider collisions only at times t =n ~0,
n =0, 1,2, . . . . However, this would not corre-
spond to the physical picture. Indeed, consider,
for example, impurities distributed at random in a
three-dimensional crystal. They cannot be closer
to one another than a minimum distance of the or-

der of a. Hence an electron after having been scat-
tered off a certain impurity will have to travel for
at least ~0-a/t/~ to be scattered again. Now let
us assume that after the original scattering event,

n =0, time wo has passed but no further scattering
corresponding to n =1 has occurred. In this case,
at what time t can the next collision occur? The
answer is by no means t =n&0, n =2,3, . . . . Qn
the contrary, fof the random distribution of impur-
ities the next collision can be separated from the
first one by any t g ~0. This point is illustrated in

Fig. 2 in two dimensions; in three dimensions it is
even more obvious. The same reasoning applies to
phonon scattering. Therefore, we conclude that
the new distribution dP'/dt must be continuous at
t &ro. As before, the probability of scattering at
t p ~0 will be proportional to the time interval and
independent of time. Derivation of (4) can be re-

peated, only now we will write t'=t —~0 instead of
t. Hence the new distribution is [Fig. 1(b)]

(b)

FIG. l. (a} Distribution of times between collisions
when arbitrarily small times are permitted. (b} Distribu-
tion in which times t &wo are forbidden.

FIQ. 2. Randomly distributed impurities. Circles are,
drawn to indicate distances from a given impurity to its
neighbors.
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Now let is follow the conventional procedure for
obtaining o, first using the distribution (4). In the

field E electrons gain velocity V(t) =(eE/m)t.
The drift velocity in a field E will be found as

VD= J V(t)dP=
PET 0 Pl

the current j =e&VD ——oE»d o =&,d„~=e «/~.
However, if we use the new distribution (5), we

gct

VD= JV(t)dP'= Jte ' «
APE 7'

eE (r+ ro?

2
e tlv 00 = + =O Ideal+ O satPl m

which is the parallel-resistor formula.

A few words about Ioffe-Regel criterion. All

agree that the usual theory of conductivity is ex-
pcctcd to brcak down when / —Q. Onc Etltetp'fefs

this by saying that 3 &a and t g ~o are, in fact, im-

possible. This is the hypothesis which leads us to
the parallel-resistor model. It is a hypothesis
which seems to be physically justified. At least in

a classical limit it is valid for both particles and

waves. Indeed, if we consider a billiard ball

scattering off a collection of other fixed billiard

balls separated from each other by a distance )a,
then the existence of a minimum free path -a is

obvious. Likewise a wave of wavelength A, incident

upon a collection of scattering centers will not dis-

tinguish between thc two centers which are located
closer than distance A, to each other. Hence, once
scattered, the wave will propagate at least a dis-

tance A, before it is scattered again. For conduc-

tion electrons in a metal A=i,p-g and hence l pa.
Secondly, an important question is can wc use such

a concept as frcc tlITlc bctwccn co111slons oI' cvcn a
semiclassical approach in general when ~ ap-
proaches ~o-a/Vz'7 Wc believe that the answer is

yes. It was already mentioned that both Kubo-
Greenwood and Boltzmann formulations lead to
essentially the same result for o.;d„.&. This makes
one think that concepts associated with Boltzmann
formulation work surprisingly well down to t -wo.
To further substantiate this view, let us consider
materials foI' which dctalled band-structUIc calcu-
lations are available, such as Nb3Sn, Nb3Gc, V3Si,
and Nb. Lct us then cstiDlatc p»t by substltUtlng

ro ——a/( V(EF)) in place of r. Following Allen

et al. ' we write p =4~/ Q~g where 0& is the

Drude plasma frequency np2

=(4me /3)E(Ep)(V (EF)). Using band parame-
ters of Klein et al. ' for 315 compounds we obtain

p„,=136pOcm for Nb3Sn, 160 pQcm for
Nb3Ge, and 122 pQcm for V&Si. With the param-
eters for Nb calculated by Allen' we get p», ——110
pQ cm.

Experimentally found values for 315 com-
pounds lie between 120 and 160 pOcm, ' ' and
in Nb p», was found to be 230 pOcm. We see a
rather impressive agreement between experimental
and calculated values, especially for 315's. Even if
agreemer. t is somewhat fortuitous (for we do not
really expect that ~-~0 should mean precisely
r=ro), it supports the view that the Boltzmann
formulation predicts correct values of resistivity
for scattering times as short as ro.

We note that the reasoning used in the deriva-

tion of (3) applies to the electronic thermal conduc-

tivity K as well. Hence we expect to find K
=E;d ) +E„, in the same class of metals where

resistivity saturation is observed: Not a surprise,

perhaps, for it follows also from the Wiedermann-

Franz law E =ho.T. Note that in a "good" metal

(one with long mfp), at T ) gD rcc I/7 and Q =
K;dea~

——P' Egff Tw/3@i ls independent of tempera-2 2

ture, as experiment confirms. However, in a sa-
turated regime, E =E„,=const T. Substituting
o„,«om (I) and L =rr /3(Egle) into the
%'iedcmann-Franz law we obtain
const= I 09aogttn /. /A We specu. late that lattice
thermal conductlvlty, which ls proportional to thc
mfp of phonons, will also saturate in disordered
systems or at high temperatures. The saturation
value should correspond to the minimum free path
of phonons, which is likely to be of the order of
phonon wavelength, i.e., -a at high temperatures
and -HD/T at T & 8~. In fact there are reports of
the anomalously large thermal conductivity in
disordered alloys.

Arguments used above in the derivation of (3)
are very general. They can be applied to a metal
with a single band as well as to one with many
bands. This can not be said about other treatments
of the parallel-resistor model which depend on the
presence of many bands' and s-d scattering. '

Finally, Mooij found that when p approaches
p„„quite universally dp/dT becomes negative, i.e.,
conduction becomes "activated. " This phenom-
enon probably reflects new (non-Boltzmann) phys-
ics appearing when / approaches a and, as was ar-
gued by Girvin and Jonson and by Imry, can be
due to incipient Anderson localization. Even be-



BRIEF REPORTS

fore this theoretical work appeared, Mooij ex-

pressed the idea that partial localization may be
the cause of' negative dp/dT in disordered alloys.
This behavior can be formally included in the
parallel-resistor model by allowing for the number

of nonlocalized electrons n in (2) to decrease at low

temperatures. This will result in a temperature-
dependent io„, and dpldT &0.

In conclusion, we argue that the particular way
in which metals approach the saturated regime can
be understood on the basis of the Ioffe-Regel cri-
terion. The parallel-resistor formula (3) which

describes this approach can be derived and a sim-

pie physical picture gained when the whole distri-
bution of free times between collisions is considered
and the minimum time ~o is introduced. In partic-
ular, it becomes clear that the vahdity of (3) is
based on the fact that a relatively large number of
electrons always have short free paths (times) and
therefore conduction is sensitive to the details of
the distribution in that region.
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