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We propose a fitting formula for the dielectric screening function of the degenerate elec-
tron liquids at metallic and lower densities which accurately reproduces the recent Monte
Carlo results as well as those of the microscopic calculations and which satisfies the self-

consistency conditions in the compressibility sum rule and the short-range correlation.

The frequency- and wave-number-dependent,
longitudinal dielectric function e(q, co) is an essen-
tial quantity for description of the electronic prop-
erties of metals and related substances such as the
laser-compressed plasmas and the interiors of
heavy planets. The electrons (with number density
n) in such a system usually form a strongly cou-
pled system in that the Coulomb coupling constant
r, = (3/4trn) '~ me /fi is greater than unity. The
standard Lindhard function based on the random-
phase approximation' (RPA) is not applicable in

these circumstances; theories proposed to go
beyond the RPA description thus far have failed to
satisfy consistency requirements or exact boundary
conditions (see below for details). In this Report
we wish to present a simple fitting formula for the
dielectric function of strongly coupled degenerate
electron liquids, which satisfies a number of self-

consistency conditions and which accurately repro-
duces the recent Monte Carlo results as well as
those of the latest microscopic calculations. The
result should be of use to numerical studies of the
strong coupling effects involving degenerate elec-
tron liquids.

Following the polarization-potential approach,
we take account of the strong-coupling effects
through the local-field correction G(q), so that the
dielectric function is expressed as

u(q)Xp(q, co)
e(q, co) = l—

I +u(q) G(q)XD(q, to)

Here, u(q) = 4tre /q, and

Xo(q, to)== I dk
(2tr)

F(k) —F(k+ q)
co —(A'/2m)(2k q+q )+it)

(2)

is the Lindhard polarizability of the free elec-
trons, ' with F(k) representing the Fertni step
function. Three essential ingredients that we shall
evoke for determination of G(q) are: (1) Monte
Carlo data of Ceperley and Alder for the correla-
tion energy, (2) the ladder diagram calculation. of
the short-range correlations by Yasuhara, and (3)
the self-consistent dielectric formulation of Utsumi
and Ichimaru.

We begin by noting the long-wavelength
behavior (q « qF, the Fermi wave number),

«q) )'DQ' (Q=q/qF»— (3)

where the coefficient yo is connected to the correla-
tion energy E,(r, ) in rydbergs per electron via the
compressibility relation, '

1 7TCX 5 d
4 24 'dr r, E(r, )

drs

with a—:(4/9tr)'r . Vosko, Wilk, and Nusair car-
ried out a Pade approximate fitting of Ceperley and
Alder's Monte Carlo data on E,(r, ) at six values of
r, . For an electron liquid in the paramagnetic
state, which we are here concerned with, their fit-
ting formula reads
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dE, (r, ) 1+bix
2 3dr, 1+b]x+b2x +b3x

(5)

1 z
g(0)=—

8 Ii(z)

'2

z =4(ar, lrr)'

where I i(z) is a modified Bessel function of the first

order. Use of (7) in (6) thus determines the short-

wavelength behavior of G (q).
Recent advances in the microscopic formulation

of the dielectric function enable us to set up a set

of nonlinear integral equations, through a numeri-

cal solution of which both the exchange and

Coulomb-correlational effects in the local-field

correction have been evaluated. ' Internal con-

sistency and accuracy of the theory have been ex-

amined and ascertained through comparison with

the Monte Carlo and variational results. ""To
simulate the numerical results of the microscopic
theory as well as to accommodate the boundary

conditions (3} and (6), we find it appropriate to ex-

press

G(q)=AQ +BQ +C

+[AQ +(8+ 3 A)Q —C]

where bo ——0.062 1814, bi ——9.81379, b2 ——

2.82224, and bs ——0.736411. We use (5) in (4) to
determine the long-wavelength behavior (3) as a
function of r, .

According to Kimball's analysis on the dielec-

tric function of the form (1), the short-wavelength

behavior of G (q) is related to the radial distribu-

tion function g (r) as

lim G(q)=1 —g(0} .
Q~ oo

The short-range correlation can be described by the

electron-electron ladder interactions, through a

consideration of which Yasuhara derived an ex-

pression,

Equation (9) is adopted so that Eq. (8) closely
simulates the results of the microscopic theory ','

Fig. 1 shows such a comparison at r, = 4 and 10.
For r, & 1S, A begins to decrease gradually from
0.029.

Equation (8) coupled with (4), (5), (7), (9), (10),
and (11) is the principal result in this paper; the
dielectric screening function is calculated according
to (1). Following the standard procedure' involv-

ing the use of the fluctuation-dissipation theorem,
one can then proceed to calculate various funda-

mental quantities such as the correlation energy
and the radial distribution function. For internal

consistency of the theory represented by (8), the
values of yo and g(0) so calculated should repro-
duce those input values derived from (5) and (7}.
The former is the requirement known as the
compressibility sum rule; the latter is the self-

consistency requirement for the short-range corre-
lation. The balance of this paper is devoted to ex-
amination of the extent to which these require-
ments are satisfied and investigation of a salient
feature in (8).

In Fig. 2, we exhibit the correlation energy com-
puted from (1) and (8), together with Vosko, Wilk,
and Nusair's fitting formula [i.e., the input values

of (5)] and Ceperley and Alder's data; good agree-
ment observed here indicates that Eqs. (1) and (8)
satisfy the compressibility sum rule to a good de-

gree of accuracy. 4'e also compute the correla-

tion-energy contributions E,(q;r, ) from different re-

gions of momentum transfer' as defined by

1.5
(1.0)

rs='0

1,0
(0.5)

where

4 —Q 2+Q
4Q 2 —Q

(8)

0.5
(0)

0::
0.1 '

qzqF 10 100

A =0.029 (0& r, (15),

8 =—„yo——[1—g(0)]——„&,
C = ——,yo+ —„[1—g(0)]——,& .

Equations (10) and (11) derive from (3) and (6).

(9)

(10) FIG. 1. Local-field correction G(q) at r, = 4 {below)
and r, = 10 {above). The solid curves represent the
present fitting formula, the dashed curves, the calcula-
tions of Utsumi and Ichimaru (Ref. 5), and the dots,
those of Vashishta and Singwi (Ref. 3).
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FIG. 2. Correlation energy E,(r, ) in rydbergs per
electron. The solid curve refers to the present result

[Eq. (9) has been used throughoutj, the dashed curve,

the fitting formula of Vosko, %ilk, and Nusair (Ref. 8),
and the dots, the Monte Carlo results of Ceperley and

Alder (Ref. 4). In the inset, the correlation-energy con-

tributions E,(q;r, ) from different regions of momentum
transfer at r, = 4 are shown [see Eq. (12) for the defini-

tionj. The solid curve refers to the present theory, the
dashed curve, the FHNC calculations of Zabolitzky
(Ref. 12) and the dots, the calculations of Utsumi and
Ichimaru (Ref. 5).

E,(r, )= I dq E,(q;r, ) .
ar qF

The E,(q;r, ) values predicted in the present theory

at r, = 4 are compared in the inset of Fig. 2 with

the Fermi hypernetted chain (FHNC) calculations

carried out by Zabolitzky. '

The values of g(0) computed from (1) and (g)

are compared with those of Yasuhara's formula (7)

in Fig. 3. Here again we find that the self-

consistency requirement is well satisfied; notably
the positivity condition g (0))0 is maintained. In
Table I, we additionally list and compare numeri-

cal values for g (0) at metallic densities predicted in

FIG. 3. Values of g(0). The solid curve represents
the present theory, the dashed curve, Yasuhara's formu-

la (Ref. 7) Eq. (7), and the dots, the results obtained on
the basis of Eq. (13). In the inset, the radial distribution
function g (r) at r, = 4 is shown. The solid curve refers

to the present theory, the dashed curve, the calculations
of Utsumi and Ichimaru (Ref. 5), the open circles, those
of Vashishta and Singwi (Ref. 3).

G(q) =acQ'/(Q'+a, ), (13)

in place of (8); the coeAicients, ao and a i, are to be

determined from (3) and (6). In Fig. 3, the values

of g(0) calculated from a substitution of (13) in (1)
are also plotted. We find that the value of g(0) in

the scheme (13) quickly goes into the negative

various theories. In the inset of Fig. 3 we show the
function g (r) at r, = 4 evaluated in this and other
theoretical schemes.

A notable feature in (8) is its involvement of the
logarithmic singularity at q =2qF and the accom-

panying peak at q=1.9qF (see, e.g. , Fig. 1). Some
of the local-field corrections proposed in the past,
on the contrary, do not exhibit such a feature. To
simulate the latter situation one may adopt a form,

TABLE I. Values of g(0) in various theories.

Ref. rs =2 rs —3 r, =4 r, =5 r, =6

Present theory
Utsumi and Ichimaru
Yasuhara
Vashishta and Singwi
Lantto
Zabolitzky

5
7
3

11
12

0.279
0.276
0.266
0.19
0.27
0.304

0.181
0.168
0.150
0.034

0.202

0.128
0.107
0.088

—0.04
0.10
0.143

0.094
0.070
0.053

—0.07

0.105

0.070
0.046
0.033

—0.075
0.04
0.081

0.052
0.031
0.021

—0.08
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domain and that the self-consistency condition is
violated with a wide Inargin. It appears that a
local-field correction of the form (13) cannot ade-
quately accommodate those exact boundary condi-
tions.

In conclusion we have shown that the fitting for-
mula (8) accurately reproduces the recent Monte
Carlo results as well as those of the microscopic
calculations; it satisfies the self-consistency condi-

tions in the compressibility sum rule and the
short-range correlation. The formula may thus

provide a simple and useful analytic description of
the static correlations and screening properties of
degenerate electron liquids at metallic and lower
densities. Since the local-field correction (8) does
not take account of the frequency-dependent ef-

fects, however, the resulting dielectric function (1)
should be less accurate in describing the dynamic
properties such as the detailed features in the spec-
tral function of the density-Auctuation excita-
tions.
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