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The Fermi-Dirac distribution function is an approximation describing a special case of
Boltzmann statistics. A general occupation probability formula is derived and a criterion

given for the use of Fermi-Dirac statistics. Application to classical problems of defects in

solids is discussed.

As pointed out by Beshers, ' the Fermi-Dirac dis-

tribution function is applicable to impurity atoms
in a crystal in a case, for example, where the im-

purities interact with a stress field so that there is a
spread of energies depending on position and/or
orientation. The Fermi-Dirac distribution function
is an approximation describing a special case of
Boltzmann statistics. It is commonly derived by
considering Gibbsian ensemble averages or by
averaging over a large number of states of a single
thermodynamic system, but it is difficult to assess
the physical conditions required for these deriva-
tions to be valid. The following discussion is given
to help clarify these conditions.

If a system has a number of discrete states, the
probability of being in a state with energy Q; is

P;=
—Q; /kT
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where fj is the number of particles in the jth par-
ticle state when the system is in the ith system
state and the sum is over particle states. With a

The sum is over system states not energy states, be-

cause of possible degeneracies in the energy.
For a system consisting of n indistinguishable

particles in m discrete particle states with energies

EJ, the total energy is

Qi gfij +j ~

system in which (a) each particle state is either
empty or occupied by one particle (i.e., f1 is either
0 or 1), and (b) the Ej's are constant independent
of the state of the system, the sum of the P s in
which the kth particle state is occupied (the occu-
pation probability of the kth state) is
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with the superscript n indicating the number of
particles in the system and

r

1t(n) g(1) yg( )n)
( 1)g( —))

J

—E~ /kT
Rk ——e

This formulation is correct for any number of par-
ticles and states but is inconvenient to use for large
m and n because mn recursion calculations must be
carried out.

After some algebraic manipulation, Eq. (3) can
be written in the form

Fk =(n)
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The second term in the product on the right-hand
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side of Eq. (7) is independent of the particle state
k. Thus, Dk"' is independent of k if the ratio
Fk" + "/Fk"' is independent of k. The resulting
D'"' is then taken as

(9)

the standard form of the Fermi-Dirac distribution
function. Instead of calculating D'"' from the re-

cursion relations, it can be determined through the
conservation condition

(10)

In general, the Fermi-Dirac distribution function
overestimates the occupation probability of the
states with lowest probabilities and underestimates

the occupation probability of the states with

highest probabilities. The resulting errors become
negligible when the ratio I'k"+"/I'k"' becomes in-

dependent of the particle state k.
If condition (a) on the system is changed to per-

mit occupancy of each particle state by any
number of particles, the only modifications in this
formalism are that the minus in front of the second
term in Eq. (4) becomes a plus and pluses in Eqs.
(6) and (9) become minuses. Thus, the criterion for

applicability of Bose-Einstein statistics is the same
as for Fermi-Dirac statistics, i.e., that F~"+"/Fk"'
is independent of k.

As an example, assume there are trapping sites
for impurities which are filled with one impurity.
%ith 10 ppm trapping sites with binding energy
0.4 eV, 20 ppm trapping sites with binding energy
0.3 eV, and 30 ppm impurities, the concentration
of impurities at the trapping sites is 6.95 and 2.23

ppm, respectively, at 400 K using the Fermi-Dirac
formula. This value for the more tightly bound
sites is almost 1% lower than that calculated with
10 total sites using the recursion relations and the
values of Fk"'/Fk' ' vary by almost 3%%uo. The
same numbers can be applied to trapping sites in a
semiconductor band gap. The errors due to the use
of the Fermi-Dirac distribution function are minor
for practical purposes in this example, but do illus-
trate that it is an approximate formula and must
be used with care. It is clearly a better approxima-
tion than the more common procedure of in-

correctly using Boltzmann statistics by taking the
ratio of the occupation of the two types of trap-
ping sites equal to the ratio of their Boltzmann
factors, which gives 18.2 in this example.
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