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The influence of the electronic interactions on bond alternation in trans-polyacetylene is

examined on the basis of the Pariser-Parr-Pople Hamiltonian. The ground state of the

dimerized chain is studied within a recently developed local approach to the computation
of electronic correlation energies. For a Hubbard-type interaction it is shown that elec-

tronic correlations are the principle driving mechanism for the dimerization. When the

long-range part of the Coulomb interaction is included, the correlations turn out to stabi-

lize the undimerized structure. A rather weak static screening due to o electrons, howev-

er, is suAicient to recover the instability found for the Hubbard interaction.

I. INTRODUCTION

Bond alternation in long polyenes has been a
subject of discussions for many years. The back-
bone structure of the polyene molecules is deter-
mined by the sp2 hybridization of the valence orbi-
tals. Three of the four carbon valence electrons fill

the 0. orbitals formed by these hybrids. The
remaining electron occupies the m band, which is
formed by orbitals of 2p, symmetry. The m band
is half-filled.

The energy of the lowest excitation in short
polyenes scales with the inverse chain length, ' in

good agreement with early results obtained from
the molecular orbital (MO) theory by Lennard-
Jones and Coulson. However, MQ theory predict-
ed a vanishing gap for the long polyenes, whereas
experiments tend to a finite gap of about 2 eV.
Later Kuhn proposed that bond alternation should
persist in the long polyenes. This was confirmed

by Longuet-Higgins and Salem, who proved
within the linear combination of atomic orbitals
(LCAO) theory, by using rather general arguments,
that the infinite polyene is unstable with respect to
dimerization. This result is reminiscent of the
Peierls instability ' in one-dimensional metals.
Here the instability results from the half-filled band
of m electrons. This explains the optical gap quali-
tatively and, provided the bond alternation is large
enough, even quantitatively. * There is, however,
no experimental data which measures the degree of
bond alternation in polyacetylene directly.

A different explanation for the origin of the opti-

cal gap was suggested by Ovchinnikov, ' who ar-

gued that the gap results from electronic correla-
tions and not from bond alternation. Estimating
the relevant physical parameters for polyacetylene
from substances such as benzene, ethylene, and

graphite, he found that the bond alternation was
too small to explain the experimental gap. The
Peierls gap obtained was only of the order 0.1 —0.3
eV. The influence of the electronic interaction on
bond alternation was investigated by Harris and
Falicov" in cyclic polyenes C4~+2H4~+2 within
the unrestricted Hartree-Fock theory. They com-
pared the normal Hiickel solution which exhibits
bond alternation with a spin-density-wave (SDW)
ground state. The SOW state turned out to be
most stable without bond alternation and to have a
much lower energy than the bond-alternating state.
However, their result that bond alternation is not
very likely is not conclusive, since they compare
ground states on different levels of sophistication.
The SDW state due to the broken spin symmetry
includes correlation whereas the normal state does
not. But their results certainly reveal that correla-
tion effects are important. We will show below
that the bond-alternation ground state does, in fact,
have a lower energy than the SOW state when
correlations are taken into account.

There are indications from two different sources
that electronic interactions could favor bond alter-
nation in polyacetylene. Chui' et al. showed for
the one-dimensional interacting electron gas
model' ' that the transition temperature for the
Peirerls instability Tz is higher for the interacting
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case than for the noninteracting case. Kondo'
considered a half-filled Hubbard model for the m

electrons, with an effective intrasite Coulomb ener-

gy U and alternating transfer integrals tp+t&. In
the strong correlation limit, i.e., U y& tp, this
model can be mapped on a spin- —, Heisenberg

chain model. ' This model was shown to undergo
a spin-Peierls transition'; that is, even in the range
of large U a tendency towards dimerization per-
sists. This is in contradiction to the result ob-
tained within the unrestricted Hartree-Fock
scheme, which predicts a complete suppression of
the dimerization. The latter model applies to
(CH)» but the strong coupling condition for the
parameters may not be fulfilled in polyacetylene. '

In this paper we study the influence of electronic
correlations on bond alternation in polyacetylene.
The m.-electron system is represented by a tight-
binding model of the Pariser-Parr-Pople type. '

Two different model interactions are considered, (i)

Hubbard and (ii) long-range Coulomb interaction.
%e use a local approach to the electronic correla-
tion problem. By means of a specific set of local
operators the mean-field ground state is modified
in order to allow for a correlated motion of elec-

trons. The ground-state energy is determined by
variation. The approximations made in the present
work apply to the case where the Hubbard U is
sma11er or equal to the m bandwidth 8'. Up to
now this method has been applied to various sys-

tems, including small atoms and molecules, ' ' the
homogenous electron gas, and the ground state of
diamond. For the molecules it was shown that
this method yields approximately 95% of the
correlation energy which is obtainable within a
given basis set.

The paper is organized as follows. In Sec. II we

introduce the Pariser-Parr-Pople model Hamiltoni-
an. In Sec. III we consider the characteristic
features of the bond-alternation ground state within

the independent electron picture. In Sec. IV we

discuss the variational method used for the compu-
tation of correlation energies. Section V contains
the results obtained for the correlation energies for
the Hubbard and the long-range interactions and a
discussion of the implications for the Peierls transi-
tion in polyacetylene. The results are summarized
in Sec. VI.

II. THE m-ELECTRON HAMILTGNIAN

The ~-electron system of the conjugated hydro-
carbon chain can be represented by a tight-binding

Hamiltonian of the Pariser-Parr-Pople (PPP) type'

H =Hp+H, ', +H,'„,

Hp g tn ~ l, n(Cn+ Iaena+H C )

n, o

+ —, QE(un+~ u—„)

(2.1)

~ra = U g nn &
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2 ~ Vmnnnonmo'
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~mnnna+ 2 g ~mn
m, n;o m, n

tn+], n =tP —a(un+] (2.2)

where a is the electron-lattice coupling constant.
The elastic contribution in Hp stabilizes the undi-
merized geometry. E is the o-bond stretching
force constant.

The intra-atomic interaction Hamiltonian H,',
consists of a Hubbard term U and a term which
guarantees a correct ionization potential I in the
atomic limit. Changes of U due to the displace-
ments of the atoms are assumed to be small and
will be neglected.

The interatomic interaction Hamiltonian H,'„
consists of three terms arising from electron-
electron repulsion, electron-ion attraction, and ion-
ion repulsion. The prime on the sum indicates that
interactions are excluded between electrons at the
same site, i.e., m+n. For the interaction integrals
V „various empirical parametrizations have been
proposed. ' Here we employ the Mataga-Nishi-
moto formula for Vm„, which is given by

Here cn and cn are fermion creation and annihi-

lation operators, respectively referring to the mutu-
ally orthogonal atomic 2p, orbitals at site n and
with spin o.. The m-electron number operator is
denoted by n« ——c„~no. The Hamiltonian is sub-
divided into three parts", Hp represents the
kinetic energy of the m electrons and includes an
elastic contribution due to the o. electrons as well,
while H~ and H,', represent the intra-atomic and
interatomic interaction, respectively.

The Hamiltonian Hp is equivalent to that used
by Su et al. ' The resonance integrals tn+~ „are
changed when the atoms and consequently the 2p,
orbitals are displaced by u„ from their positions in
the undimerized state. Here the u„'s are projec-
tions of the real displacments onto the chain axis.
To first order in the displacements tn+ & „ is given
by
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14.397
14.397/U+r „

(2.3)
The phase Pa is defined by

tgga —— t si—n(2ka)/[T+t cos(2ka)] . (3.6)
where r „ is the interatomic distance in A. and U
is put equal to 11.13 eV.

Neglecting the interatomic Hamiltonian H„al-
together and taking t„+& „——to, the Hamiltonian H
reduces to the one-dimensional Hubbard model.
Note that for the half-filled case this model has a
gap in the excitation spectrum for any value of U. 4Ea;„————toE(1 —y ), (3.7)

In the undimerized limit, i.e., T=t, the phase is
ga ———ka, whereas in the limit of independent di-
mers, i.e., t =0, one finds 1(ta =0.

The total kinetic energy E~;„can be computed
from the dispersion (3.4) (Refs. 5 and 25)

III. INDEPENDENT PARTICLE SOLUTION
FOR THE PERFECTLY DIMERIZED CHAIN

We begin by considering the kinetic energy
Hamiltonian Ho in the Horn-Oppenheimer approx-
imation. For the perfectly dimerized trans-
polyacetylene the displacements are given by

u„=(—1)"uo . (3.1)

Pa(T'+« "")=~aEa,

&a(T +«+'"")=PaEa .

The energy eigenvalues are given by

Ea =+[TI+2Tt cos(2ka)+t2]I~ .

(3.3)

(3.4)

Here the negative and positive signs refer to
valence and conduction bands, respectively. The
exPansion coefficients aa and Pa are comPlex
quantities. For the valence (b) band

iyk/2 (3.5a)

and foi' the coIlductloll (a) band

aa = e, Pa =— e . (35b)
1 —if, n

2
'

2

There are two diAerent resonance integrals
T= to+ ti and t =to ti accord—ing to Eq. (2.2).
Since there are two sites per unit cell, the general

solution for the valence- and conduction-band
Bloch functions can be written as

ga(«)= g e' "[aalu„(r)+pap„+i(r)],
1

+c n =even

where Pn and Pn+I represent the 2p, orbitals at the
n'th and (n +1)'th atom. The projection of the in-

teratomic distance ro 1.397 A——is denoted by

a =(1/3/2)ro. Assuming the orthogonality of the

basis functions p„, i.e., (p„~ p ) =&„,the secular

equations turn out as

ik n '&k~~X e (e Cnn —en+I n) ~

(3.9b)

In order to obtain a better understanding of the

character of the above solution and also for later

use we consider the electronic density and density

matrix. The density is given by

p(r)=2+& „g(r)P„(r),
mn

(3.10)

where the factor 2 results from the spin summa-
tion. The single-particle density matrix P~„ is de-
fined by

The expectation value is taken with respect to the
ground state

~ $0) evaluated within the indepen-
dent electron picture,

IWo) = ff aa&aai I0) .
k

(3.12)

The P~ (3.11n) can be computed easily from the
inverse of transformation (3.9). For even values of

where E is the complete elliptic integral of the
second kind and y =t~/to ——2o,uo/to. For small
distortions, the asymptotic behavior of Eq. (3.7) is

Ea;„=——to ~ 1+ — 2 ln ——1 . . (3.8)
y2

m 4 y

Here the logarithimic contribution y lny is the
driving term of the Peierls instability, since it over-

compensates the increase of elastic energy in Eq.
(2.1) for small distortions.

The annihilation operators related to valence and
conduction bands are given according to (3.2) and
(3.5) by

1 i' I2 —i'�/2
Cnn+e en~i, n) ~

ii =CVCQ

(3.9a)
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m and n, one finds

]
fol m =7g

I' =j'
0 otherwise

(3.13a)

contribution of the Hubbard interaction to the total
Hamiltonian in the mean-field approximation reads

HH = Ug((n„, &n„,+n„,(n„, &
—(a., &(n. , &) .

(3.17)

I' +, „= g—coslyk ka(—m —n)] .Nt +,5

It is convenient to introduce bond orders '

pcs =2~10 p (3.14)

referring to double and single bonds, respectively.
The kinetic energy is completely characterized by
the two bond orders

(3.16)

(3.15)

In the undimerized limit pd
——p, =2/m while in the

limit of independent dimers, i.e., t =0, p~ ——1, and

p, =0. See Fig. 1 for illustration. The ground
state can therefore be visualized as a wave of alter-
nating bond orders or a bond-order wave (BOW)
state.

From Eq. (3.13a) it follows that the electronic
charge at an atomic site remains unchanged when
dimerization takes place, i.e., (n«& =P» ———, in-

dependent of dimerization. This result has an im-

portant consequence when one includes the Hub-
bard interaction from H,', . The expectation value
of the Hubbard interaction in the ground state
(3.12) of the independent electron picture

Here the last term prevents double counting of the
interactions. One can show that PI, as given by
(3.2) together with (3.5) are still solutions of the
Hamiltonian H&+H&. The only change is a rigid
upward shift of the single-particle bands E~ by
U j2.

This result of the tight-binding model is in con-
trast to the interacting electron gas model. For
this model one would expect a reduction of the
Peierls transition temperature Tz, when the, interac-
tion is treated within mean-field approxima-
tion. * Up to this point %'e have Qot mentioned
charge-density waves (CDW). Obviously there is
more charge within a double bond than within a
single bond; however, the change of interaction en-

ergy due to the CD% arises from the interatomic
interaction Hamiltonian H,'„(2.l) and not via the
Hubbard interaction. %e will come back to this
point in Sec. V where we treat the interatomic in-
teractions.

In the next section we will consider the correla-
tion energy. Usually the correlation energy is only
a small fraction of the total interaction energy.
But even small changes of the correlation energy
are expected to be significant for bond alternation,
when, as was shown above for the Hubbard model,
the interaction energy in mean-field approximation
does not change when the system dimerizes.

does not depend on dimerization. Therefore,
within mean-field approximation the Hubbard in-
teraction has no effect on bond alternation. The

&.0

CL
UJ
Cl
CV
(3 Q.S

0.& 1.0

FIG. 1. Bond orders of double p~ and single p,
bonds, respectively, are shown as function of the relative
change of the resonance integrals t~ /to.

IV. CORRELATION ENERGY

( g &
=exp(S) ) $0 & . (4.1)

The two particle-hole operator S consists of local

The most important correlations are those which
prevent two electrons with opposite spins being on
the same site. This occurs with a probability of 4

in the mean-6eld ground state
~ $0& and gives rise

to the energy contribution (3.16). For the Hubbard
model one expects this probability to go to zero in
the infinite U limit.

Here we employ a variational method to
study the correlation problem. The correlated
ground state

~
f& is constructed from the ground

state within the independent particle picture (3.12)

by means of a certain set of local operators S, i.e.,
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S2 g rlnm ~nnnmo' (4.2b}

Spin-density operators cannot be neglected general-

ly, for instance they are responsible for the Hunds
rule in atoms. However, in the model considered
here, i.e., with one orbital per site, the additional
inclusion of spin correlations yields only a small

gain of correlation energy. The reason is that here
the local charge fluctuations and spin fluctuations
are not independent. The operator S~ allows for
the reduction of double occupancies of atomic 2p,
orbitals as described above and yields the largest

part of the correlation energy in the case of the
Hubbard model. S2 allows for long-range correla-
tions and therefore it is of particular importance
when the interaction is also long ranged. For the
homogeneous electron gas it is possible to obtain
the random-phase approximation (RPA) result for
the ground-state energy by using S2 which is an
exact description of the long-range correlation ef-

fects.
The variational parameters g are determined by

minimization of the funcional for the ground-state

energy

E(q) = (e"&'He "~'&, . (4 3)

Here the expectation value has to be taken with

respect to the mean-field ground state (3.12), and it
can be evaluated by using %ick's theorem. The
expression (4.3) is correctly normalized when only

connected diagrams are taken into account as indi-

cated by (
The functional for the ground-state energy (4.3)

cannot, in general, be computed without further

approximations. Here we will make use of the
"linear" approximation ' ' where exp(S) is re-

placed by (1+S). This approximation applies to
the weak and intermediate correlation case and

gives good results for intra-atomic ' as well as for
long-range correlations. Equation (4.3) becomes:

E(q) =(H &+2(sH'&, +(sH,s&, + (SH s&, .

(4 4)

The first term on the right-hand side (rhs) (H &

represents the mean-Geld ground-state energy. The

density and spin-density operators. Hence the
method can be considered as a local approach to
the correlation problem. Here we will only use
density-density operators for S. It is convenient to
split S into two parts:

(4.2a)

remaining terms contribute to the correlation ener-

gy E„,defined as the diAerence between the exact
ground-state energy and the mean-field ground-
state energy, i.e.,

Z(q) =(H &+E,.„(q}. (4.5)

The first two terms of the correlation energy ac-
cording to (4.4) and (4.5) are proportional to U2,

while the last term on the rhs of Eq. (4.4) is pro-
portional to U . Note that the variational parame-
ters q in S turn out to be proportional to U when
U is small compared to the bandwidth fK

V. NUMERICAL RESULTS

A. Hubbard interaction

For the Hubbard interaction the largest part of
the correlation energy can be obtained from the
single-site operator Si (4.2a},

Si i)oo w——here 0= g n„,n„, .
n

For illustration we want to consider this simple

case first. Minimizing Eq. (4.4) we find

(5 1)

q, = —(oH'&, y(OH, O &, , (5.2)

-2.0
I i ~ i I ~ i

O. i O.5

t)/to

FIG. 2. Correlation energy per electron for the Hub-
bard interaction. Dashed curve: single-site operator
(5.1) only; solid line: includes long-range correlation
(4.2b).

E„=—(OH'&, /(OH 0&, . (5.3)

Note that for the half-Glled Hubbard chain the
term (OH'0 &„as well as (0 H'&, and (H'0 &,

which appear in (4.3) but have been dropped in

(4.4), are equal to zero and consequently there is no
third-order contribution in U, in agreement with

the exact solution by Lieb and %u. The matrix
elements for Eqs. (5.2) and (5.3) are given in the
Appendix. The only information from the single-

particle solution we need for their evaluation is the
density matrix P~„[(3.13a) and (3.13b)].

The correlation energy is shown in Fig. 2. The
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absolute value of the correlation energy shows a,

nearly linear increase in the region y = t I It0
=0—0.2. Therefore, within the Hubbard model
correlation energy favors bond alternation. This
has to be seen in contrast to the lowering of the
kinetic energy due to the y lny term in Eq. (3.8).
The inclusion of long-range correlation (4.2b) gives
only a minor additional gain of less than 4% of
the correlation energy.

The minimum of the correlation energy can be
understood from the dependence of the quantities
(OH'), and (OHoO), on tt, see Fig. 3. The in-

crease of the absolute value of E„ for small tI
follows from the increase of (OH'), in this region.
The decrease of

~
E«~

~

for large t„h owever, re-

sults from the increase of (OHttO)„while
(OH'), is nearly constant in that region. The ma-
trix element (OHoO), represents the average ki-
netic energy of the virtual excitations from the
valence to the conduction band. Its increase with

increasing t~ results from the opening of' the gap,
i.e., Es 4tt ——The .reduced value of (OH'), for
small t& cannot be explained so easily, but it can be
traced back to the change of the bond orders p,
and p~ (Fig. 1}. Physically the reduced value of
(OH'), reflects the stiffness of the ground-state

wave function in the undimerized case, i.e., small

it. Namely a local modification of the pair-

correlation function requires a change of the wave

function over many dimers in the small t& limit,
whereas in the opposite limit a local change is re-

stricted to one dimer only.
The accuracy of the method can be tested in the

two limits, i.e., t& ——0 and t& ——t0, where accurate

0.2

)

wr Q.)

i i t I t I i l

03 0.5 ).0
t)/t0

FIG. 3. Matrix elements (OH'), and (OHO), as
used for the evaluation of the correlation energy t5.3) for
the Hubbard interaction model (solid lines). An approx-
imative result for (OH'), where the density matrix P „
has been truncated at next-nearest neighbors is denoted

by crosses.

results for the model under investigation exist. Ex-
panding the exact result of Lieb and %u for the
half-flilled Hubbard chain ln the limit U/t0 —+0
yields for the leading U -term of the correlation
energy E„~ = a U jt0 with a =0.01695. VA'thin

the local approach we obtain v=0.015 S2 for the
single-site operator Si (4.2a) and it =0.015 77 when
also long-range correlations are included (4.2b).
These are 91.7/o and 92.6% of the correlation en-

ergy, respectively. In the limit of independent di-
mers x turns out to be identical to the expansion
coef5cient of the exact result for a dimer, i.e.,

1~= ~. For Uf@' 1, where 8'=4 t0 is the
bandwidth, more than 80%%uo of the correlation ener-

gy is obtained.
For the total energy we make use of the

parametrization used by Harris and Falicov, " in
order to compare our results with their SDW
ground-state energy. The resonance integrals are
now assumed to have an exponential dependence

T=toexp(y},

t=toexp( —y) .
(5.4)

The distortion coordinate y, which enters here as
an independent variable, can be related to the
change d of the bond length via the Coulson-
Golebiewski' rule:

For U=8 eV the condensation energy is larger by
a factor of about 40 compared with that of un-
correlated electrons. The distortion is found to be

y=d/0. 3727 A .

The resonance integral t0 ——1.597 eV is smaller
than the now accepted value of about 2.5 eV.
The elastic energy per carbon atom is assumed to
be E,I ——4.282y eV. This para» =trization corre-
sponds to a =3.7 eVlA and K =35 eVlA in Eq.
(2.1). These values are close to those given by
Kakitani; however, his value for t0 is 2.95 eV.

The total energy for the Hubbard model is
shown in Fig. 4. The topmost curve, i.e., the U=O
curve, includes kinetic and elastic energies only.
There is a weak minimum for finite distortion

y =0.06, where the total energy is lowered by 0.002
eV with respect to the undimerized case. The
U+0 curves are lowered by the correlation energy
with respect to the U=O curve. The correlation
energy not only reduces the total energy it also
yields an increase of condensation energy of the
dimerized state

E o d =Etot(0}—Etot(&) ~
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much larger when correlations are taken into ac-
count and the screened spring constant Er (Ref.
35) is also modified. A comparison with the SDW
state of Harris and Falicov is given in Fig. 5. The
correlated ground states with and without distor-
tion are found to have a much lower energy than

the SDW state.
We should mention here that although we start

out from a paramagnetic ground state (3.12) the
pair-correlation function of the correlated ground
state (4.1) has antiferromagnetic short-range order.

These results change the picture for the Peierls
instability substantially. For the Hubbard interac-
tion it is found that bond alternation is stabilized

by the gain of correlation energy, while the gain of
kinetic energy due to the opening of a gap at the
Fermi level, is an order of magnitude smaller.
Hence one may conclude that the gain of correla-
tion energy is the principle driving mechanism of
the Peierls instability in the present model.

B. Long-range interaction

2 2 ~1d= 2ttp= ti /a= 0. 3 5 A
v' 3 3 tp

(5.7)

according to Eq. (2.2). Here we used a =8.0
eV/A (Ref. 35) and tp=2. 43 eV (Ref. 19).

First we will consider the mean-field approxima-
tion for the interatomic interaction Hamiltonian

Her:

The interaction energy V„„oftwo electrons at
sites n and n', respectively, is parametrized accord-
ing to the Mataga-Nishimoto formula (2.3). The
intra-atomic interaction U is assumed to be in-

dependent on the dimerization, while the nearest-
neighbor interaction within double or single bonds
increases or decreases, respectively, due to the
changes in the bond length. The bond length
changes by an amount of d

H,'„=-,' X'
m, n;cr, o'

v „I (n )n„+n (n„)—(n )(n„)

1 mnnna+ 2 g 1mn (5.8)

Since (n ) = —, (3.13a), the first line in the above

expression is exactly canceled by the last two
terms, i.e., by the electron-ion and ion-ion interac-
tion. Making use of the definition of the density
matrix P „(3.11), we obtain for H,'„

m, na

+g'V „P'„.
m, n

(5.9)

Here the first term on the rhs has exactly the same
from as the kinetic energy in Hp (2.1) if we neglect
hopping terms beyond nearest neighbors. It is na-

-2.0— -2.0—

O
-2.2

-2.4

UJ

28 I I I t I I I

0 G.l 0.2 0.3 Q4

DISTORTION y
FIG. 4. Total energies for the Hubbard interaction

model are given as function of the distortion coordinate

y for various values of U. The U=2-, 4-, and 8-eV
curves are lowered with respect to the U=O curve by
the amount of correlation energy. The mean-field con-
tribution of the. interaction (3.17) has been subtracted
out.

Ol

-2.5

I

O

UJ

-3.0

1 5 )0
U (eV)

FIG. 5. Total energies for the Hubbard interaction in

comparison with the spin-density wave ground state of
Ref. 11 (open circles). Solid curve: ground-state energy
without bond alternations; dashed curve: ground-state
with dimerization.
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V~„=V „/ep, (5.11)

while the intra-atomic interaction U remains un-

xlO 2
r e y r

tural in the spirit of the parametrized PPP-
Hamiltonian to assume that this term is incor-
porated in H0 in terms of an effective resonance in-

tegral

eA'

tn+1, n tn+1, n+ 2 "n+1,n~n+1, n

The second term on the rhs of Eq. (5.9) changes
proportionally to u 0 when the structure undergoes
a dimerization, therefore it can be absorbed in Hp
via a renormalized force constant E' . Thus
within the mean-field approximation we can start
again from the ground-state solution found for H0.

In the case of the Mataga-Nishimoto interaction
(2.3) long-range correlations play a much more im-

portant role than for the Hubbard interaction. As
can be seen from Fig. 6(a) the n-electron system
can gain additional correlation energy due to long-
range correlations in the region where the system is
weakly dimerized, i.e., for small t1. Whereas in the
region where the system separates into almost in-

dependent dimers, there is clearly no additional
gain of ground-state energy arising from long-range
correlations. Therefore, in contrast to our findings
for the Hubbard interaction where correlation ef-

fects strongly favor the dimerized structure, in the
long-range interaction case the undimerized struc-
ture is stabilized.

The situation changes again when the Mataga-
Nishimoto interaction is screened by a static dielec-
tric constant e0, i.e.,

screened. In the case of (CH)„ the static dielectric
constant e0 is assumed to arise from the polariza-
bility of the o electrons, which are not included in
the m-electron Hamiltonian (2.1). It turns out that
even a rather small screening of about e0——2 of the
interatomic interaction is sufficient to recover re-
sults for E„[se eFig. (6b)] similar to those found
for the Hubbard interaction.

Here we want to comment on our treatment of
long-range correlations in the limit of vanishingly
small dimerization, i.e., when the single-particle

gap approaches zero. From the three-dimensional
homogeneous electron gas it is known that pertur-
bation theory diverges in the q —+0 limit; however,
for the present approach it was found earlier that
even the second-order functional in rl (4.4) used
here together with (4.2) removes this divergence.
The results obtained are close to the RPA result
for small q. The same can be shown to be the case
here. In momentum representation the correlation
energy can be written as

d —1
Ecorr = dq q Eq ~

0
(5.12)

VI. SUMMARY AND CONCLUSIONS

In the one-dimensional case, i.e., d =1, the Fourier
transform of the iMataga-Nishimoto interaction
(2.3) has a singular behavior like Inq, whereas

Ez ~ qlnq is nondivergent for small q. Therefore,
the computation of the correlation energy in the
long-range limit poses no problems. Actually the
minimum of the correlation energy at t1 ——0 in Fig.
6(a) is not a particular feature due to the long-
range nature of the Mataga-Nishimoto interaction
(2.3). It is also present when the interaction is
truncated at nearest or next nearest neighbors,
respectively, provided that the nearest-neighbor in-
teraction is large enough compared to U.

-0.4—
C4

-0.9

-1.0,

I a ~ s I ~ a ~

a.00.1 0.5

t)/tp
FIG. 6. Correlation energies for a iong-range interac-

tion as function of t I/to. (a) Mataga-Nishimoto interac-
tion, (b) same as (a) but screened by eo ——3. Dashed
curves: single-site operator (4.2a) only: solid curves:
includes long-range correlation (4.2b).

%'e have studied the influence of the electronic
interaction on the bond alternation. in polyace-
tylene. The above calculations were done within a
Pariser-Parr-Pople tight-binding model for the z
electrons. The ground state of the dimerized
trans-polyacetylene has been studied using a recent-
ly developed variational approach to the computa-
tion of electronic correlation energies.

For the Hubbard type of interaction it was
found that there is a gain of correlation energy
when the chain undergoes a dimerization. The
gain of correlation energy is approximately a linear
function of the dimerization coordinate y, therefore
correlations strongly favor bond alternation. This
has to be seen in contrast to the lowering of the ki-
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netic energy, being proportional to y lny, which is
considered as the driving force for the Peierls tran-
sition in the independent particle picture. The gain
of correlation energy can be much larger than the
gain of kinetic energy depending on the values of
the parameters U jto and cz /%to. These results
imply a significant change in the accepted picture
of a Peierls transition and it clearly shows that
electronic correlation effects have to be taken fully
into account.

There have been recent investigations ' along
the steps of Harris and Falicov" using the unre-
stricted Hartree-Fock approximation. The bond-
alternation ground state is found to be stable for U
smaller than 4.66 eV, when using the parameters of
Su et al., while above this threshold the SD%'

ground state is found to be more stable. These
results imply a complete suppression of bond alter-
nation above U =4.66 eV. Our results, however,

imply an increase of bond alternation with increas-

ing U and predict the bond-alternation ground
state to be more stable than the SD% ground state
(Fig. 5) in the range where our approximations are
valid, i.e., Ulto &4. However, if U is increased
further we are in the regime of the spin-Peierls
transition, ' ' ' there the dimerization should per-
sist but its magnitude should decrease again.

These results are strongly modified if we consid-
er a slowly decreasing long-range interaction. In
this case long-range corrdation effects turn out to
stabilize the undimerized structure. However, a
rather small static screening of the interatomic in-

teraction, turns out to be su6icient to recover the
results found for the Hubbard interaction. In the
case of polyacetylene the static screening is argued
to be due to the polarizability of the 0. electrons.
This finding should be of particular importance for
those quasi-one-dimensional systems in which the
chains are formed by large molecules and where

these complex molecules can have a rather high

polarizabllity.
An extension of this work to excited states is

planned. Further work should be undertaken to
bridge the gap between the two extreme theoretical
models, i.e., the interacting electron gas model and
the tight-binding model used in this work.

ignore odded iii proof. After this pape«PC had

been completed direct experimental evidence of di-

merization in trans-(CH)„ from x-ray scattering

has been reported by C. Pincher, C. E. Chen, A. J.
Heeger, and A. G. MacDiarmid at the Internation-

al Conference on Low-Dimensional Conductors,
Boulder, 1981.
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APPENMX: COMPUTATIONS OF THE
EXPECTATION VALUES (SH')„

(SHnS )„AND (SH'S ),

The operator S (4.2) is defined in terms of the

density-density operator 0„„,
S= g rjnn'Onn' ~

(Al)

ann'= g "nniin n'
PO

I'mn =(cmncnn) ~

Q „=(c c„)=5„P„. —
(A3)

(A4)

The only contribution arising from the kinetic en-

ergy Ho up to second order is given by

where

—a„a„(2Q„Q.
—Q. Q. )1

Gn'm'= g Qin rij Qjm' (A6)

IIn m
= g j'n r num .

i,j
In order to compute the expectation values for a
general two-particle interaction V&kl we introduce

the following four auxiliary matrices:

., = g I'J. Q; I'k. Qi'I'ski
Ijkl

~mm'nn' =

~mm'nn' =

Qkn Qin I'~jki
ijkl

g Qjm Qim'Qkn Qin'Vijki
ij kl

(AS)

I'mm nn = QPj I' I'kn~in ~i,ki
ijkl

Note that this definition of O„„also applies to the

operator Si in (4.2a), since all terms with o =o'
exactly cancel for this case. The expectation values

with respect to 0«can be decomposed by using
%'icks theorem and expressed in terms of the ma-

trices
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Note in our case (2.3) Vtjkt =5,J5kt Vik. Finally one obtains

(O„„H'),=2(2U„„„„—U„„„„), (A9)

(O„„H'0 ),=4[4P„Q„(2U„—JV„„)—2P„Q„(2U „„—JV„„„)

+Pn mP'nm (2~'n mnm'~'n'm'mn )+Qn'mQnm'(2Pn'mnm' Pn'm'nm )] (A10)

In order to present the above formulas in compact form we have tabulated them here without translational in-
variance being taken into account. Further matrix elements including spin-density operators can be found in
Ref. 21.
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