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Optical dielectric function for highly excited semiconductors in the moment-conserving
approximation
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We have calculated the complex optical dielectric function of an electron-hole plasma in highly excited direct-gap
semiconductors using the double-time Green's-function method. The equation of motion for an appropriate Green's

function is linearized in the moment-conserving and Hartree-Fock approximations. Their interrelationship and the

connection with earlier treatments of the electron-hole correlation is discussed. The electron-hole correlation yields

an enhancement of the free-particle response and reproduces the overall shape of the observed gain and absorption

spectra satisfactorily. The calculated changes in the refraction index with varying excitation energy exhibit a strong

dispersive nonlinearity which explains the occurrence of optical bistability.

I. INTRODUCTION

Recently, there has been considerable interest
both experimental' ' and theoretical ' in studying
the optical response of highly excited direct-gap
semiconductors. One creates a, system of an
electron-hole plasma. of variable temperature
and density inside a semiconductor crystal by ex-
citing it with a high-power laser beam. It is the
optica. l behavior of this plasma which is under in-
vestigation. Transmission experiments give the
absorption (gain) line shape from which informa-
tion about many properties of the system like the
electron and hole Fermi energies, their density,
and temperature can be inferred. Recent experi-
ments' have also shown the existence of optical
bistability in such systems. It results from
changes in the refractive index which are intensity
(and hence density) dependent. Theoretically, the
quantity of interest here is the optical dielectric
function. Its real and imaginary parts, respec-
tively, give the refractive index and the absorption
(gain) spectrum.

It is known that the line shape cannot be ac-
counted for within a noninteracting one-particle
model. The experiments show an appreciable en-
hancement over the free-particle results both in
the gain and the absorption region and a consider-
able influence of collision broadening especially
on the long-wavelength side of the gain region.
This effect can partly be simulated by the assump-
tion that the momentum is not conserved in the
optical transitions. This simple assumption, for
which there is, however, no first-principle justi-
fication improves the fit in the gain region. At
the same time, however, the fit deteriorates'
for larger energies, i.e., in the absorption region.
A better fit is obtained both in the gain and absorp-
tion regions if many-body effects such as single-

particle energy renormalization, collision broad-
ening, and electron-hole correlation are taken
into account. ' A common feature of the many-body
theories~ ' is to solve the Bethe-Salpeter equation
for an appropriate polarization function in varying
degrees of sophistication. In all these calculations,
only the imaginary part of the dielectric function
has been determined. Only recently attempts have
been made" to calculate the intensity-dependent
changes of the refraction index from the corre-
sponding changes in the absorption coefficient
close to the band gap.

In this paper, "we calculate the full complex
optical dielectric function of the system using the
double-time Green's function method. " We con-
cerkrate in the present paper on the treatment of
the electron-hole correlation, while we disregard
the influence of correlation energy and collision
broadening which have already been treated ex-
tensively in Ref. V. In Sec. II, we begin by formu-
lating the problem in terms of the transverse cur-
rent-density response function which is directly
related to the required dielectric function. The
equation of motion of an appropriate Qreen's
function is linearized in moment-conserving and
Hartree-Fock approximations. The frequency
moments are the exact coefficients in the short-
time expansion of the response function. There-
fore, this approximation shall amount to incorpor-
ating the correct high-frequency behavior. The
integral equation obtained after decoupling the
equation of motion in the Hartree-Fock approxi-
mation is solved in two different ways. In the
first method, the interaction potential is factorized
and we get an expression for the dielectric function
which is almost the same as those derived earlier
by Zimmerman' and Arya and Hanke. 6 The second
way is to solve this integral equation variational. ly.
This leads to the same result as obtained in the
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moment-conserving approximation. The results
of our numerical calculation are presented and
discussed in Sec. III for the direct-gap semicon-
ductor GaAs. xa-„'„(t)a-„,-, „,(t),

II. THEORETICAL FORMULATION

An optical probe directly couples to transverse
current excitations in a system. Therefore, the
response of the system to a space- and time-
dependent external light field can be described
through a transverse current-density response
function. It can be defined" in terms of retarded
Green's function as

x(q t}=
&&~ (q t} ~'(q 0})}

where 9(t) is a Heaviside unit step function and the
square bracket stands for a commutator. The an-
gular brackets denote a thermal average taken
with respect to a grand canonical ensemble defined
by the electron-hole plasma Hamiltonian& =&,
+Q +o being the single -parti cle part and
contains all the interparticle interaction terms
in dominant-term approximation. The Fourier
transform of the transverse particle-current-
density operator is given by

& (q t) = Q(e-—p )e"&" «&.

Here, e is a unit vector perpendicular to q; r& and

p, are the position and momentum coordinates of
Bn ith particle, respectively. Using Bloch waves
as the basis, we write Eq. (2) in the second quan-
tized form as

where g and pg' run over different valence and
conduction bands. M„„,(k, k+q) is the transition
matrix element

x
i

—
i Zr„-;, „,(r),

tv&
(4)

U& „(r) being the cell periodic part of the usual
Bloch wave function. Further, a &„(ag„) is a parti-
cle creation (annihilation) operator in band n In.
Eq. (3) and thereafter, particle spin is considered
to be included in its wave-vector index and 5 is
taken to be equal to unity.

In order to simplify expression (3), we make
use of the familiar two-band approximation, i.e. ,
all the valence electrons in a nonexcited crystal
are assumed to be in the topmost valence band
which on excitation can jump to the lowest conduc-
tion band. Also the photon wave vector q can be
safely neglected in comparison to the linear dimen-
sions of a Brillouin zone. Making use of these ap-
proximations in Eq. (3) and confining only to the
interband current, we obtain

J', (q, t) =J(t) =K[M„,(k}b &(t)a&(t)
k

+M„*,(~)a&(t)b &, (t)], (5)

where g k and bk now refer to electron and hole
operators, respectively.

In view of Eq. (5), expression (1) for the current-
density response function becomes

X(t) —= 2 ((['liI„,(k, )b &,(t)ag (t)+M„,(k, )a& (t)b & (t)];[M„*,(k, )a& (0}b & (0)+M„,(ft,)b „(0}a&,(0)])) . (6)
kj, k 2

If an equation of motion is written for the full Qreen's function as such, then it is not possible even to sep-
arate the free-particle part (i.e., corresponding to&, part of the Hamiltonian). We rewrite Eq. (6) in two

parts as

X(t}= Z [M„,(k, ) &(b &, , (t)a&, ,(t);M„*,(kg)a~b -„+My/@2}b &, a&, ))
k~, k2

+M„*,(k, ) ((a& (t)b
&

(t); M„*,(k,}a& b j +M„(k,}b &,a&„))].
1

(7)

As the correlation of electron or hole operators
in the same space (i.e. , either creation or annihi-
lation) is zero, Eq. (7) simplifies to

I
where

X,(t) = g M„,(k, )M„*,(%,) ((b &„(t)a-„,(t);ay b
&

))
Kg, k2

x(t) =x (t}+x.(t}. (sa) (sb)



7306 H. B. SINGH, S. SCHMITT-RINK, AND H. HAUG

g, (t) = Z m„*,(k,)M„,(k,)((a'k, (t)5'=k, (t);5'-k ~„-,&&.

ky, k2

(8c)

where g, (k, ) and n„(k,) are the electron and the
hole Fermi distribution functions, respectively.
The Fourier transform of the Green's function
as obtained from Eq. (11) is given by

4we~
~ x(~» (9)

where & is the high-frequency optical dielectric
constant of the crystal.

In order to calculate g(&u}, we introduce appro-
priate Green's functions through

}(,(t) = Z ~„,(k,)~„*.(k,)G,(k„k„t),
ky, k2

(10a)

The optical dielectric function, which contains all
the information about the optical properties of the
system is given by

n, (k, ) +n„(k, ) —1
5T, ,T

&u
—[e,(k, ) + e„(k,)] +iq

(([5 k(t}ag,(t),H']; a k,b»»
& —[e,(k,}+e„(k,)] +i q (12)

where z, (k, )[ek(k,}] is the band energy of an elec-
tron (hole) and q is a positive infinitesimal quanti-
ty. In a similar manner, we write the expression
for the Fourier transform of Green's function

G2(%~, k2, t) as

G,(k„%., t) =(&5=„(t)a-k,(t); a-„P -„,)), (10b) n, (k, ) +n„(k, ) -1
~+[a, (k, ) +e„(k,)]+i'

X2(t) = ~ ~.(ki)M (k2)G2(k~ k2 t)
kgk2

(10c)

(10d)

i G„(k~, k2, t) = —5(t)5k k [n, (k, ) +n„(k,}—1]

+«[5 k, &«k-, (t» II'] sk, 5'-k, )),

G,(k„&„t)= «~'-k, (t)5"k, (t); 5'k, ~ k, &&
.

The equation of motion for the Green's function

G,(k„k„t) is given by

(([a k, (t)5 k, (t),tf']; 5 k,s k, )&

(y+[g, (k, ) +e„(k,)]+jrt

It is seen from Eqs. (12) and (13) that the nonre-
sonant term G,(k„k„e) is much smaller than the
resonant term G, (k„k„&o). Therefore, we neglect

y, (&u) in comparison to lt, (&u) in the calculation of
the full response function It(&g).

The Eq. (12) for the two-particle Green's junc
tion contains a three-particle Green's function.
We shall decouple Eq. (12) using approximations
described below.

A. Moment conserving decoupling approximation

In this section we shall linearize Eq. (12}making moment-conserving approximations. It amounts to in-

corporating the high-frequency behavior of the response function correctly as frequency moments are its
expansion coefficients in the corresponding limit. Using Eqs. (8), (10}, and (12}, we first write the expres-
sion for the interband current response function in the form

}(((o)=It, ((o)+ + - Q M„,(k,)M„*,(k,)(([5=„,(t)a-„,(t), H'];at-„b~-„&&
ki (d e~(kj) +e~(k~} + j'g k

Here

n, (k,) +pg„(k, ) —1
)(0((a)) 2 I 'If„(~z)l

[ (g ) (k )]ky

gives the response of the noninteracting electrons and holes.

(14)

1. Conserving first rnornent

We write the higher-order Green s function in Eq. (14) in terms of lower order one by making use of an
ansatz"

3f„, , 'g„*, k, b k, tak, t, H';ak b k2 =A-k &„,k, M„*, k, b k tak, t;ak b k» 16
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where for simplicity, the coefficient 4-„, is considered to be frequency independent. Equations (14) and

(16) together give

}t.(~}
X(+)=1 F( ) ~

F((u) = Z
k, ~ -[~.(ki)+e.(&i)]+in

(18)

takes into account the effect of electron-hole correlations in the system. The coefficient Aky ls determin
by equating the first frequency moment of both sides in Eq. (16). It leads to

where

, E~„,(k, )M„*,(k,)&[[[f=„,a-„,,a'], ff],a'-„P'-„,]&,
k2

(19a)

&~'& = g V.,(k,)u„*,(k,)&[[t =„,at;„a],ajP'=„, ]&, (19b)
kg, k2

is the first frequency moment of y, (u). The commutators involved in Eqs. (19a and (19b) are solved in a
straightforward manner. The expressions still involve averages of the product of four (fermion) operators
which are decoupled using the familiar Hartree-Fock approximation, which for a typical term may be writ-
ten as

&"-, ~'-, .;p;,& =-&"-,.x,&&~'-, ~;,&ky -k2 k3 "k4 k2 ky

Finally, we get the following expression for the local field term:

s.(r,) +~,(k, }—1
Z(~)= —,Z V(k, -k, )M„,(k, )

and the first moment

x{M*„,(k,)[c,(k,) + e„(k,)][n,(k,) +$„(k,) —1]

-~„,(k, )[e,(k, ) + e„(k,)][&,(k,) +&„(k,}]],

{rid'& = —g / M„(k,) /'[e, (k;) +E„(%,)][pz,(k, ) +s„(k,) —1]
ky

yk, -k, M„, k, g, k, +g, k, —1

x {m„*,(k,)[~,(k,) +s„(%,) —1] —M„*.(%,}[&,(k,}+~,(k,)] ] .

2. Generalization ofapproximation (16)

It is possible to generalize the decoupling approximation (16) by making the proportionality coefficient
frequency dependent, "i.e.,

g~„,(k, )M„*,(k,)&&[t =„,(t)a-„,(t), a']; a'-„P'-„,&&

k2
=A-„,(ro)y, ((o) .

To calculate A.„,(&a), we write the above equation as

f de( k )the(~ i+)vt

&t;,(~) =

f dt~ (t)yI w+Iv)t

where

If'(k„t) = -ie(t) QM„, (k )~„(k )([P -«, (t)a g, (t),ff'], a-„&-u, ]&.
kp

(as)
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EvRluR'tloI1 of Ag (c0) lllvolves tile ca1culatlon of Rvel'ages of 'tile colllnlll'tR'tol'8 of tile type [H(i)~ C{0)]. To
calculate them, we first get equal time commutators using the familiar expansion of a time-dependent Hei-
senberg operator

(28)

Then in order to get manageable expressions, H is replaced by iso in such expansions [however the effect
of interactions in Ag (&o) is there to first order through ff' which appears explicitly in its numerator]. 8tilj.

1
averages of the products of four operators are involved which are evaluated using Eq. (20). After this is
done, the result obtained for {[B(f),Q(0)]) is in the form of geometric series which can be easily summed
up. The result obtained is

K(k„ f) = ie(f) Q V(k )~„,(k, )[II,(k,)+II„(k,) —1]

&& (M„*,(k, + k,)[II,(k, +k,}+ II„(k,+ k,) —1]exp ( —i[q, (k, + k, ) + s„(k,+k, ) ]&]

-M„*,(k,)[II,(%, +k,) +II„(k,+k,)] exP(-i[a, (k, ) +~,(k,)]f]),

}t,(t) =ie(t) g IM, (k,)I [n, (k )+n„(k ) —1]exp(-i[6, (k )+6„(k )]f].
k2

Using Eqs. (27) and (28) in Eq. (24), we obtain

A-„(4y) = — g V(k, —k, ) iaaf„, (k,)[B,(k, ) +g„{k,) —1]

(28)

II (k )+II„(k ) —1 „II(k )+pl(k )
(29' ~ —[e,(k,)+e„(k,)]+jI}

"' '
Ill —[ e(k, ) +e(k,)]+i I}3

The corresponding expression for the generalized local-field factor as obtained from Eqs. (18) and (29) is
given by

n, (k,)+n„(k,) -1
V(k, —k, ) ~„,(k, )

Xo(&) p „p, (g —[c,(k,) + e„(k,)] +jII

(
~,(k,) +s„(k,) —1

x m„*,(k,)'
&o —[e,(k,) e~+(k,)] iI}+

II,(&,) +II,(&,)

ol -[e,(k, ) +e„(k,)]+jI} i

(31)

and retain"' terms proportional to f only in Eqs. (27) and (28). It gives

It is in'terestlllg to See lf oIle cR11 reproduce tile I'esult (21) obtRllled by collsel'villg tile first, Blonlell't SUIB

rule from the present approximation. For that, we define a frequency-independent coefficient

Z(k„i)
kl ~ (i)

g V(k, -k, )I}f„,(k, )[II,(k„)+B„(k,) —1]
&}o k2

x (M„*,(k,)[e,(k,}+ e1(k,)][II,(k,) +n1(k,}—1]

-~„*.(k, )[ .(k,}+,(k, )][ .(k.)+ .(k,}l], (32)

where {&g'}ois the first moment evaluated in the
free-particle approximation, i.e. , the one given by
only the first term in Eq. (22). When Eq. (32) is
used in Eq. (18), we get R, result for P(ol) which is
not the same as given by Eq. (21). Rather it in-
volves {~'}owhile it is the exact first moment

I
which appears in Eq. (21). This is in contrast to
what has been found in the study of density" and
spin density" correlations in interacting electron
gas. There, two such results coincided as the
contribution of the interaction term in the Hamil-
tonian to the first moment of the density and the
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spin-density response functions is zero. It is not
so in the present case as we are dealing with cur-
rent correlations.

B. Hartree-Pock approximation

n, (k,}+n„(k,}—1

~ —[g, (k, ) +e,(k„)]+fq

Another simple approximation to linearize Eq.
(12) is to use directly Eq. (20} for decoupling the

averages of the products of four electron-hole op-
erators in its last term. This leads to an integral
equation

Q, (k„%„&u)= G,'(k„(a)

X QI k p 3 ky Qj k3p k2 Qp p

k~

(33)

Here, e, (k, ) and j~(k, ) are the single electron and
hole energies, respectively, including the effect
of exchange self-energy, i.e. ,

Now, we shall discuss briefly the solution of Eq.
(33} in two different approximations.

/. By factorizaiion of inieraeiion poieniiaI

In this subsection, we shall assume that the Coulomb potential in Eq. (33) is statically screened. Then
it is very easy to solve this integral equation by factorizing" the interaction potential as

Here, y(k„k, ) is the angular average of P'(k, —k, ) and k* is defined by

(g -[e,(k*}+e„(k*)]=0.

Using Eq. (36) ln Eq. (33) and further using the Fourier transforms of Eqs. (8a) and (10a), we obtain for
the interband current response function

In Eq. (38) where the enhancement function is

)
1+1(ro) —J ((o)

&+I (o))
(41)

describes the response of the noninteracting sys-
tem except that the single-particle energies are
renormalized by Hartree-Fock self-energies. The
effect of electron-hole correlations are explicitly
contained in the second term of Eq. (38). In order
to make connection with earlier work, we take the
transition matrix elements to be constant for the
moment. Then using Eq. (38) in Eq. (9), the ex-
pl esslon obtained fol the 1maglnary part of the d1-
electric function, which directly gives the absorp-
tion (gain) spectrum of the system, can be put in
the form

(42b)

It is easily seen that the result (40) is the same
as that earlier obtained by Zimmerman' and Arya
and Hanke" except for a difference in self-ener-
gies. This difference amounts to having a differ-
ently renormalized band gap and does not affect
the line shapes.
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2. By u vuriutionpl method

It is possible to solve integral equation (33}using a variational method already used by Rajagopal" and
Langreth. " For that we introduce a vertex function through

e, (k, ) +n„(k,) —1

so that

n, (k,) +pg„(k, ) —1
X(~}=-ZI~..(k,)l' ' '- " '- —. I'(k„~).

(y —e, (k,) + i„(k, +iq

Also using Eq. (43) in Eq. (33), we obtain

(44)

(45)

)((~) =g,(~) — g I'(k, -k, )iuS„,(k,)m„*,(k,)
kg, k~

n, (k, ) +n„(k, ) —1 ~ ~, (k,) +&„(k,) —1

(v -[e,(k, ) +e„(k,)] +i)I i (d -[e,(k,) +e„(k,

)]+ipse

One can easily construct a Lagrangian of I'(k„,&} and find that the simplest variational solution is the one
where the vertex function is independent of k. Then we get from Eqs. (44) and (45)

F((d) =
1 F ( )

)(,((o)
){(()))) 1 & ( )

)
g V(k., -k, )M„,(k„)M„*,(k,)

T((,k q

( n. (k,)+n„(k,) -1 ( ..(k,)+.„(k,) -1
( -[,(k,)+,(k, )]+ „) ) -[,(k,)+-„(k,)]+ „)

(48

Insight about the relation between the results which have been obtained by the variational method and by
the moment-conserving approximation (30) can be obtained by using a slightly modified formulation of the
variational method. For that we rewrite Eq. (33) by writing the self-energy terms explicitly, i.e. ,

G, (k„k„~)= G,'(t„~) (()-„,i, Z v(&. -k, )G,(k„k„ro) )

k3

g, (k,) +pg„(k, )
(49)

Solving this equation again for a constant vertex
function, "we recover exactly the result (17),
where the local-field correction is given by Eq.
(30). Thus, one sees that the second version of
the variational method and the moment-conserving
approximation yield identical results. 2' Comparing
the two var iational solutions given by Eqs. (30) and

(48), we see that the second term in the large
parentheses of Eq. (30) is due to the self-energy
corrections of the single-particle energies. Since
it is known from experiments, that band-gap re-
normalizations are very. important, one has to

take a formulation in which renormalized single-
particle energies are used [as it is done in Eq.
(48)].

For the following numericaj. evaluations we shaD
use the result (21), which has been derived by
conserving the first moment. A comparison be-
tween these equations and Eq. (30) shows that the
second terms in the curly brackets of Eqs. (21)
and (22), respectively, are a.gain due to self-ener-
gy corrections. These terms have to be left out if
renormalized single-particle energies are to be
used.
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spectrum for two close plasma densities which
can be obtained, e.g. , using slightly different ex-
citation intensities, is shown in Fig. 2, where
n(&o) is plotted for plasma densities of 5x 10"
and 6x10" cm '. The density dependence of the
renormalized band gap g' is taken into account
according to Ref. 1. The corresponding change
of the refraction index for the smaIl change in
plasma density is also plotted. It shows a strong
frequency dependence in the neighborhood of the
quasichemical potential. This large dispersive
nonlinearity causes the occurrence of optical bi-
stability. ' The resulting spectrum of b, g'(u) is
similar to that obtained by a Kramers-Kronig

transformation of the corresponding changes
An(a&), where the absorption spectra have been
calculated in the effective-mass approximation.
Detailed measurements of the excitation intensity-
dependent spectrum of the refraction index are
not yet available.
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