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Effects of a staircase on minigaps in Si inversion layers
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Effects of one-dimensional periodic staircases on minigaps are theoretically investigated. Various cases are

classified according to the step height. Observed positions of minigaps can be explained by a staircase model whose

step height is half a lattice constant. In this case (i) the minigaps are assigned from the lowest as E„E„3„E „
E„A„E „and so on, where E, stands for an intervalley minigap and A„ for an intravalley one; (ii) E„observed in

dc conduction are approximately given by E„=23(8/a )exp[ —(1/4)r' W'] si n( 2$)N,„(mev) for )r )rra8 & 1, where 8
and P are polar and azimuthal angles of tilting, a is a parameter expressing a step structure and of the order of one,
8'is a parameter specifying the disorder of staircase, and N,„=(N,„,+ 3N„p))/10" cm ', (iii)

A„=[(046/r. j'~ 83'(8/a —28')' X,„'"]'"exp[ —(1/4)r'W']$, „(mev); (iv) uniaxial stress along [110]or [110]

has an effect on E„.

I. INIODUCTION

Minigaps in Si inversion layers slightly tilted
from the (001) plane have been extensively studied
both experimentally and theoretically for the past
yeax's. ' Anomalous structures caused by minig3ps
are observed in several measurements such as
dc conduction in the absence of magnetic fields, "'
Shubnikov-de Haas oscillations, "optical reso-
nance, '""and photoconductivity measurements. '""

A conduction band of Si hes six valley minima
along 4 axes near X points. The two valleys along
the [001] axis give rise to the ground subbands in
vicinal planes of (001). Therefore, there are two
kinds of minigaps: intravalley ones and interval-
ley ones. Cole, I,akhani, and Stiles' proposed a.

mechanism whereby minigaps are opened by one-
dimensional superlattices, or staircase struc-
tures. Since their original model. considers only
intravalley minigaps, it is very difficult to explain
the position of the lowest minigaps in terms of a
periodicity of staircases.

Sham, Allen, Kamgar, and Tsuie proposed an
alternative explanation called a val, l.ey projection
model, which ean explain the observed positions
of the mlnigaps. They constructed R two-diIDen-
sional Brillouin zone by projecting a three-dimen-
slonRl one Rnd clRlID that IDlnigRps ax'e fox'med

at crossing points in such a two-dimensional band
structure. Their model includes intervalley mini-
gaps as well as intravalley ones.

Sham" investigated the valley projection model
moxe precisely. Volkov and Sandomirskii" also
investigated a staircase model which includes in-
texvalley minigaps as well as intravalley ones.
These two models are exactly the same as far as
the positions of minigaps are concerned.
The valley projection model by Sham, Allen,
Kaxngar, and Tsui is the simplest version of the
genexel one. On the basis of this resul. t, Volkov
and Sandomirskii cl.aimed that the minigaps,

other than those predicted by the simplest model,
should be observed in certain planes such as
(2223). However, the current experimental re-
sults seem to show that the minigaps predicted on-
ly by the general model are too smaB to be ob-
served.

The positions of the minigaps ean be obtained by
a geometrical discussion in the valley projection
model and/or the staircase model. If the stair-
case model is taken, the periodicity should be
a/(2 sin8) to explain the experiments; a is the lat-
tice constant of Si (a= 5.43 A). The theoretical
estimates for the magnitudes of minigaps have
been made so f3r in flat interfaces '5 xs Although
the lowest minigap can be partly explained by
these theories, "the higher minigaps cannot be
explained.

In the present paper, we study the effects of
periodic staircases on the minigaps. Since we
have at present some infox'mation about staircases
constructed on MOS (metal-oxide-semiconductor)
interfaces tilted slightly from (001),"'"it is of
interest to make models and to compare the
theoretical. results obtained in these models to
the experimental results. %e can determine by
that procedure what actual interfaces look l.ike.
This is the aim of the present paper, although
enough experimental data, are not available in the
present stage. A Hamiltonian is presented in
Sec. II. 'The Hamiltonian includes only the so-
called X-point coupling. Various staircase models
are discussed in Sec. III. The magnitudes of the
minigaps are evaluated in Sec. IV on the basis of
the staircase models discussed in Sec. III. Dis-
cussion is presented in See. V, and the results are
summarized in Sec. VI.

II. HAMILTOMAN

First, we define a coordinate system used
here. Let us consider the (lmn) plane, where n
is much larger than I and m. Crystal axes [100],
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[010], and [001]are denoted by x, y, and z axes,
respectively. The axis [lmn] is normal to the
interface, and is defined as the g axis. The other
two axes [bzmzz P--m'j, and [-mf ol are p»allel
to the interface, and are denoted by the $ and z)

axes, respectively. Tilting of the (I m n) plane

from (001) is expressed in terms of a polar angle
8=cos '[n/(P+ m'+n')'k] and an azimuthal one
Q = cos ' fl/(P+ m')'~'j.

Our starting Hamlltonlan ls 3n X-point k 'p
Hamiltonian obtained by Hensel, Hasegama, and
Nakayama, "

(k„'+ k,')+ (k, +Z)'
Pl

I' I k„k„+ "e„„
&tB

where k zs measured from the X point and fz = 0.15(21T/g): wave vectors k are to be interpreted as opez
a«» (-z8/»~); mt = 0 1905 m, m~ = 0 916& m, L - 8.5&, e„, is a shear strain component, and:- js its de-
formation potential; V(f) is an inversion layer potential. This Hamiltonian includes only the ~-point zntez
valley coupling. In an exact (001) plane, the I'-point coupling plays a major zoic as dzscussed by Ohkawa
and Uemura, "and Sham and Nakayama. " However, it plays a minor role in tilted planes. It is assumed
in the present investigation that a polar angle 8 of tilting is much less than one in radians, but not so
small that the X coupling might be a major contribution.

The boundary condition is that wave functions vanish at the interface f= A($, q). Because this boundary
condition is very difficult to treat, me take the folio@ring unitary transformation similar to that used in the
treatment of the surface roughness scatterings, '4

8
exp 4,g —exp jEcosa/ef

9 7

exp 4,g —exp -iEcoseft

rvhich is a product of a translation in the momentum space and a translation in the real space. 'The Hamil-
tonian to be solved is UjjYJ"'. Because of a translation in the real space, the boundary condition turns out
to be very simple; a&ave functions, should vanish at f= O.

%'hen the effects of higher subbands are neglected, the Hamiltonian becomes much simpler,

where P is a projection operator to the Hilbext space of the ground subbands,

t'ea ' t'ea '
k = [(k —8Ã)'+ k']+Eh+ 7

i
—+ i-j 1 2~ f q

I, 8$ l8z)

I'2 (&I ~ 93
k„=2 [(k,+ex)'+k„']+I ~+r

~

—+-
0

I'2I 86)2 83 ')t2

k =-e e'~~S + e'r~ —'sin2$ (k'-k')8+ e-—~g ——~g,12 gg 0 2 3 z q o

+cos2$ k kg —~8-——gtl 0
I 8) sq 2
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I'2 4 ( 9 2

dL P~ i-
2m~ 0 ( 8$

dg &tÃty(g) t.
~

&ltl'y(g)
8$)

Wave function P(f) belongs to the ground subband,
which satisfies the following Schrodinger equation:

ja
4p

FIG. 1. A staircase model in (Emn) plane. Axis z
is I'00lj and g is gmn'j. Angle 6) is a polar angle of tilt-
ing and a is the lattice constant of Si (5.43 A}.

In the present paper, a. nearly self-consistent
wave function P is used. " Here it should be noted
that 9~ ls ldeQt1CRlly zel o.

Our Harniltonian is of a 2x 2 form. 'The fix'st
component, which expresses a valley in positive
k&, is defined as plus (+) valley, and the second
component. as minus (-) valley; we assume with-
out loss of generality that 8 is positive.

III. STAIRCASE MODEL

The staircase model by Volkov and Sandomir-
skii" can predict the shortest possible periodicity
that is commensurate to an Si lattice, and it is
exactly the same as that predicted by the valley
projection model by Sham. " However, their
staircase model still has an ambiguity about a step
struetux'e: How high are steps'P What staircase
structures are xealized in actual samples depends
on the sample preparation. Therefore, various
possible eases are discussed in the present paper.

The shortest possible height of steps is a quar-
ter-lattice constant (a/4), because a Si lattice is
of a diamond type. Therefore, we assume tenta-
tively that almost all steps are ja/4 where j is a
non-negative integer; the case of j= 0 means that
an interface is fl,at. A periodicity in the real
space is (ja)/(4 sin8). Because a periodicity
should be commensurate to an S1 lRttlee, Rs pojQt-
ed out by Volkov and Sandomirskii, this model
should be modified a little as discussed latex'.

Although there is a, problem of whether staircase
structures are one dimensional or two dimension-
al, , we take a one-dimensional model for the sake

of simplicity. The sth step is located in the neigh-
borhood of $~= (sjtt)/(4 sln8), because 'the interface
should be'macroscopically flat. 'The probability
of finding the sth step at $ is assumed to be

Here ( ) means the ensemble average,

.
( )q jg sin(Kv8Q) t„gg)a)va'- ' ' 8g Fred (14)

although the actual distribution should be a dis-
crete one because of a lattice structure; this is
the first approximation to include the disorder.

An interface location [L = h(g)] is a function of
$ and is defined as in Fig. 1. Because the step
structure is not well known, oux staixease model.
1Ilehldes R pRFRmetel + OF X which ls shown 1Q

Fig. l.
In the pxesent paper, the randomness is treated

by ensemble averages. For example, the following
quantities are necessary in the present investiga-
tions;

(a a )) Qbexp (=i (),
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where W= (4v8)4$/a and n = sin(8+ A)/cosA.
Because a periodic staircase structure plays a

role in the intervalley couplings as well as intra-
valley ones, a one-dimensional Brillouin zone as
shown in Fig. 2 can be constructed. 'The size of
the first mini-Briliouin zone is 2Q /j with Q
=4&8la. There are two types of minigaps: inter-
valley minigaps and intravalley minigaps. Inter-
valley ones are denoted by E„and intravalley ones
by A„, where x means that the xth Fourier compo-
nent in Eq. (12) or (13) is responsible for E„and
A„. In the extended-zone scheme, the valley mini-
ma are located at ki=+0.15(Q/2), E„at ki=
arQ/j, andA, at ki =+[(0.15/2)+(r/j)]Q and

a[(0.15/2) —(r/j)]Q . Therefore, the lowest mini-
gap is E„as long as j is less than or equal. to 6,
i.e. , as long as step heights are less than or equal
to (6/4)a. Otherwise the lowest one is E, . When
j= 0, that is, when the interface is flat, only 8,
is finite in our Hamiltonian.

So far, we have assumed that a periodicity in

the real space is commensurate to the lattice
structure. However, it is not generally the case.
For example, let us consider the (118) plane with

step height a/2 (j= 2). As the valley projection
model, or Volkov and Sandomirskii's staircase
model shows, a commensurate periodicity is not
a/(2 sin8), but a/sin8. Therefore, the fundamen-
tal Fourier component of periodic staircases is
2v sin8/a. However, this component is very

IV. MINIGAPS

Intervalley minigaps open at ki = (x/j) Q with

Q =4v8/a, as shown in Fig. 2. In the present
paper the first-order effects with respect to the
off-diagonal term h» are evaluated.

Because 4 is assumed not to depend on g, k„ in
the Hamiltonian can be regarded as c numbers.
The matrix element of k» between [ki= (r/j)Q, + ]
and [ki = —(x/j)Q, -] has to be evaluated:

~,= 2((./j)Q 1(k,.) I
-(./j)Q &

2:.e„,+ k„' [5~+ i2Kb„(1 —5~)]S,
O'I- 2 (16)

+ -SpK'C„—. + S,C„(8)

small because of the fol.lowing two reasons:
(i) As far as all the step heights are a/2, the
2jj sin8/a component is much smaller than the
4w sin8/a component, and (ii) the disorder makes
the 2v sin8/a component much smaller than the
4v sin8/a component. Very small minigaps can
be expected at the positions predicted by the
Fourier component 2msin8/a. As far as the major
minigaps are concerned, the commensurability of
the period does not have to be taken into account.

So far it is assumed that almost all steps have
the same height, that is ja/4. If various steps are
mixed up, the sample can be regarded as one with
the highest steps that are realized in a significant
number, and with a lot of disorder.

where 6~ is the Kronecker delta, b„and C„are de-
fined in Eqs. (14) and (15). Use is made of a rela-
tion

86 2
g2 d -$2r Q g/j+ fKh.

~jK 8$
(17)

E)
I

A)
I

1—Q
l

Ep

kg
2

l

FIG. 2. Surface band structure in the extended-zone
scheme. Because an X-point k .p Hamiltonian is used,
the center of the mini-Brillouin zone corresponds to

Intervalley minigaps are denoted by E„(-~&x & ~),
and intravalley ones by A„(r )1). The size of the first
mini-Brillouin zone is {2/j)q with Q =47|'6/a, when step
heights are ja/4. In an incommensurate case, very
small new minigaps are expected as well as those shown

here.

and of an approximation exp(i2KA) = 1 in evaluating
the terms proportional to (ji —86/8$)'. Since
2K161 is less than 0.15 in the case of j= 2, the
approximation gives only an error of about 15%
at most. Actually the error is much smaller than
15'%%up in the case of j= 2. In the other terms,
exp(i2Kb, ) is approximated by 1+ i2KA. These ap-
proximations become poor when j becomes large.
However, the case of smaller j(js 4) seems to be
of interest. Therefore, we take these approxi-
mations. 'The magnitudes of the rth intervalley
minigaps are given by the absolute values of M„.

At low concentrations (N„,s 2), the imaginary
part of 8, is much larger than its rea1. part, and"

8,= —s1.4x j.0-'N„, ,
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01

h21
S2~' r eff

So (i o'}
-15-

in units of meVcm', with

N„,= (N~„+y}V~, ,)/10" cm ',
where N,.„„and N„p, are areal concentrations in the
inversion layer and depletion layer, respectively;
y is very close to 3. The density dependence of
S, is shown in Fig. 3. 'The real part of S, is very
small: In the range of 0&%„-f&10, the imaginary
part of S, is 15 times or more as large as its real
part. Therefore, the real part of S, can be neglec-
ted,

O'I
S, =i 10K ff 8 10

in units of meV.
'The magnitude of the xth intervalley minigap is

evaluated as

FIG. 3. Overlap integral &0 as a function ofN, ff,
here +e f (+IIIv +3+depl~i 10 CIxl is Rn effective
charge concentration b1 Rn Inversion lager.

E = 2.8x 10'=e 8 /(1 meV)+sin2$ 1.4x10"—8 +23—+0(8') e '"~~' N»lg 8, t sin(x«en) „2 2

xy r a
~

~«en
La ~Ik

(22)

in units of meV, for N,«62 where

1 (y= 0),
0.15(j/5 ) (~u 0),

(23)

I

ted as

a„=2~Z5„+ rC„(0)
~

= [(0.23j/~)'+ (63)'(ei~ 28')9r„, —'"]'~ (26-)

and sin(g)/~ is defined to be 1 at x=0. Here and
in the following, k„ is in units of cm '. An expres-
sion is slightly changed for higher concentrations
(N,«R 2), because the real part of S, becomes
larger than its imaginary part, as shown in Fig. 3.
For example, the formula for E, is changed as
follows;

23(8/n) sin2QIV, «meV (N,«& 2)

16(8/u) sin2QIV, «meV (N„„& 6)
(24)

2.6x 10 ':-e„„/(1 mev)

-i3 ~'
+xix24(1.4x 1D"~+ 108' N„, (25)

in units of meV.
Intravalley minigaps open at k~= (0.15/2+rlj)Q

for (+) valleys, and at 0&=
(-0.15/2+~/j)Q f»

(-) valleys (r~ 1). Their magnitudes are calcula-

for stress-free samples and k„= 0. 'The coefficient
becomes smaller for higher N,«.

In flat planes (j= 0), only 8, is finite and its
magnitude ls

x
sin(t'Ten )

ymca
e

again in units of meV, where use is made of

In flat planes (j= 0), intravalley minigaps vanish.
Intravalley minigaps have a weak 8 dependence as
long as 8 is small (~r ~«en « I), and their magni-
tudes are of the same order as the intervalley
minigaps. %hen there exists a staircase struc-
ture, many properties are modified such as an
image potential, polarization of an insulator, and
a semiconductor and the electron distribution. "
If such effects are included, the coefficient 0.23
in Eq. (26) wiB have a small change.

V. MSCUSSION

So far, the lowest four minigaps have been ob-
served in the (Ill) planes. ' Their positions can
be well explained by a model where step heights
are of a half-lattice constant («/2). This model
is the most probabl. e one from a physical point of
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view. The following are very physical assump-
tions: (i) an interface should be macroscopically
flat and be the (Imn) plane, and (ii) step heights
should be as short as possible, because shorter
step heights give flatter interfaces. Because an
Si la,ttice is an fcc one, it is the most probable
that almost all step heights are of half a lattice
constant; special preparations should be required
to obtain step heights with a/4. In fact, normally
treated free surfaces have step height with half a
lattice constant. "

In this physical. model, the lowest minigap is
Eo. 'The next ones are E„A„ E „E„A„ E 2,
E„and so on in this order. Our result can ex-
plain well the observed magnitude of the l.owest
one, E,. Sesselmann and Kotthaus" fitted their
data in a form predicted by a flat interface model.
An agreement between experiment and theory is
not so good in a flat interface model. Figure 4
shows a replotting of their data, and

E = 0.9x10"—"+7.78K meV0 ~ ] 111V (28)

4

1.0
II

UJ

0.5

0.&

sin g

0.2

FIG. 4. Experimental data for the Iowest minigay
Eo at A

&
=0 by Sessej.mann and Kotthaus {Ref.11). The

data can be fitted by 7.7 sino', «meV.

ls obtained, where k„zs ln units of cm '. Kamgar,
Sturge, and Tsui obtained"

E,= (1.4 x 10 "Ã~,+ 7.58)N „meV . (29)

In Eels. (28) and (29), N,„,is in units of 10"cm '.
In order to explain their data, we have to take
a = sin(8+ X)/cosh = tank. = 3.1. This is not unrea-
sonable, because the geometricaI consideration
shows that tank is about v 2 for (lln) planes.

The interface location h($, ri) discussed here
should be considered to be an effective one. The
approximation used here can be expressed in a

simpler form than the wave function of the ground
subband is assumed to be:

exp[i(+%8+ k, )$+ ik„q jQ[g —h($, g)]. (3o)

This means that 4 shows how the wave function is
distorted by a, staircase. Our model includes a
parameter 0, or X, which expresses the structure
of steps. The step length (~o.'a in Fig. 1) is about
3.5 A, if a geometrical pl, ane is taken. However,
it is very short compared to the width of inversion
layers (about 30 A), and it is very difficult for
electrons to follow such a Iapid distortion of inter-
faces. Our analysis sI1ows that &G+ ls about
8.5 A, and this scale is a very reasonable one for
electrons to follow a distortion. One can conclude
that 4 discussed here is an effective location of
interfaces. One can also explain by this discussion
that o. is nearly independent of 8. It should be not-
ed that the above discussion is only valid as far
as o.g is much less than ~.

Kamgar et al."also reported the magnitude of
the second minigap; E, = (2.75+ 0.3) meV at N „
= 3.1x 10" cm ' and 8= 3.3x 10 ' (1.9'). This is a
l.ittle larger than a theoretical one (=1 meV). Our
theory gives the magnitudes of E„at 0„=0 as

8 .
2~

slI1(t'7(80) (~())2p2
n ym go.

with E„ in units of meV. It is very interesting to
check this dependence in higher intervalley mini-
gaps. If 8' is determined experimentally, it gives
information about the staircase structures. The
factor W is a kind of Debye-%aDer factor which
specifies the disorder of the staircase structures.
It is also interesting to check Eq. (26) for intra-
valley minigaps.

If no disorder exists at the interfaces, the de-
pendence of E„and A„on g is not a smooth func-
tion because of the commensurability. However, a
disol"der makes the 8 dependence smooth in actual
samples.

Intervalley minigaps have a sin2$ dependence;
they should vanish in (Oln) planes. Current exper-
imental data for E, show a sample dependence on
(Oln) planes. '~" In some samples, rather large
minigaps are observed, while very small ones
are observed in the other sa.rnples. A built-in
shear strain is one possible explanation for this
sample dependence. Strain contrlbutlon ls estlma
ted as 2.8x 10 ':"e„N,« for E,. Since = is several
eV, shear strain as large as 2- 5 x 16 ' is neces-
sa,ry. 'This magnitude of strain is not unreasona-
ble. Qn the othel hand, it ls of interest to investi-
gate the shear strain dependence of the interval. ley
minigaps. 'The shear strain e„„can be obtained by
a uniaxial stress along [110]or [110]. A uniaxial
compression along [110]has the same effect as a
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uniaxial tension along [110],but a different. effect
to a uniaxial compression along [110]or to a uni-
axial tension along [110]. The effect is large on

the lowest intervalley minigap, but smaller on the
higher ones.

The so-called X' coupling is neglected here.
When this coupling is included, the intervalley
minigap at 0&= 2v8/a in Fig. 2 is slightly modified
and becomes a little larger. This contribution in-
cludes a term independent of e. Therefore, the
1" coupling becomes a major contribution to the
minigap at 0»= 2m8/a for very small 8. This con-
tribution does not change, even if the staircase
structure is taken into account.

IntravaH. ey minigaps do not have an explicit Q
dependence. If the staircase structure depends on

P, then the intravalley minigaps also depend on

Q; an implicit Q dependence is possible. For a
very small. 8, the period is very long, (ja/48).
this length is longer than the mean free path of
electrons, electrons cannot, "feel" the periodic po-
tential. Therefore, our result cannot be applied
to the case with very small. 8. Neither can our
result be applied to the case where 5'j'Q'/2m, is
less than A„, because the first-order treatment
breaks down then.

Ando discussed the dc conductivity in tilted
planes, and claimed that there should be signifi-
cant intervalley scatterings in order to explain the
observed line shape of dc conductivity. " It is very

reasonable to conc'lude from Eq. (6) in the present
paper that the surface roughness contributes to
intervalley scattering as much as intravalley ones.

VI. SUMMARY

A one-dimensional staircase model is investiga-
ted. It is a straightforward idea that a periodic
staircase gives rise to intravalley minigaps. The
present investigation shows that a staircase has
also a large effect on interval, ley minigaps, Our
analysis of experimental data shows that step
heights are of half a lattice constant, and that the
period is a/(2 sin8) where a is the lattice constant.
The positions of minigaps given by this staircase
model are exactly the same as the val. ley projec-
tion model by Sham et al. '

The magnitudes of minigaps are given by Eqs.
(22) and (26). Our theory can explain the magni-
tude of the lowest minigap measured by Sessel-
mann and Kotthaus, " and Kamgar et a/. " A pos-
sible determination of a precise staircase struc-
ture by comparing the present theoretical results
to the experimental result is suggested.
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