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Exciton-exciton (biexciton) pairing is considered in an insulating crystal consisting of a
simple cubic lattice. VA'th the use of a formalism similar to Gorkov s theory of supercon-

ductivity, it is shown that excitons may interact to form charge-transfer bound states.
The exciton spectrum is evaluated in the mean-field Hartree-Fock or random-phase ap-
proximation by means of a Hamiltonian describing the physical situation which is inter-

mediate between the %'annier and Frenkel models. The gap parameter function 5(l/')
which binds two excitons at the lattice sites Rt and Rt (l+l ) is produced by the direct

Coulomb interaction. The exchange Coulomb interaction (of finite range), on the other

hand, is responsible for binding electron-hole pairs to produce excitons. Thus in the ab-

sence of the direct Coulomb interaction, the excitons can travel in the crystal indepen-

dently. A set of coupled equations for the normal (exciton} and anomalous (biexciton}
Green's functions is derived. The excitation energies for the exciton and biexciton normal

modes are calculated to order k 2, k being the wave vector. The dispersion relations are
solved numerically and the results are discussed in detail.

I. INTRODUCTION

Two types of electronic transitions can occur in
pure semiconductors and insulators when light is
absorbed at the fundamental edge. If the incident
photon energies are greater than the energy gap,
the absorption of light corresponds to an electron
being transferred to the conduction band leaving a
hole in the valence band. At energies lower than
the band gap, absorption peaks have been observed
for which the conduction electron and valence hole
are bound to one another in states within the for-
bidden energy gap. The possibility of an electron
and a hole being bound together by the Coulomb
interaction to form an excited state, or exciton, was
first suggested by Frenkel and Peierls. '

Following the two distinct points of view of deal-

ing with the band motion of electrons in crystals,
the theory of excitons has been developed on the
basis of two extreme models. One is the fight-

binding model for Frenkel excitons in which the
excited electron and the hole hop from one lattice
site to the next simultaneously on account of over-

lapping wave functions. The other is the ueak-
binding model for %'annier excitons, originally for-
mulated by Wannier and Mott, in which the exci-
tation region for the electron-hole pair is spread
out over several lattice spacings. The tight-bjnding
method has been applied and found to be adequate

in cases where the atoms or molecules are weakly

interacting, such as molecular crystals. The weak-

binding approach describes quite well crystals with

a high dielectric constant and consequently weak

electron-hole interactions such as most inorganic

crystals, and particularly small-gap semiconduc-

tors. (For literature on excitons and their proper-

ties, see Refs. 3 —6.)

Neither the tight-binding nor weak-binding

model is adequate in several cases such as the
lowest exciton states of most insulators. Some
theoretical work has been done to find a convenient

approach which would be appropriate for the
intermediate-binding case. Altarelli and Bassani
have presented a method which makes use of first

quantization to calculate exciton states with inter-

mediate binding. Their integral equation method

which takes account of the band structure gives

good agreement between the theoretical and experi-

mental values for the whole excitonic series of the
solid rare gases. ' In the present paper a simple
model for a semiconducting crystal with intermedi-

ately bound excitons is presented. The model has

some of the qualitative features considered by Al-

tarelli and Bassani. In formulating our problem,
second quantization is used since this formalism

has proven to be elegant and convenient.
For simplicity we consider a two-band model

which is reasonable when the other bands are far
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away. For concreteness a simple cubic lattice will

be used and all considerations due to electron spin
will be ignored. On the lattice sites, there are
identical one-electron atoms whose thermal vibra-
tion will be neglected. The first step in defining
the band model is to assume that the electrons and
holes are tightly bound on the same lattice site. As
we have demonstrated, ' it is necessary to distin-

guish between the short-range (on-site) and the
long-range tern in the exchange interaction. The
nearest-neighbor exchange interaction is included
in the Hamiltonian because this part of the
Coulomb interaction causes the electron and the
hole to travel simultaneously from one lattice site
to its nearest neighbor. This term is therefore
essential for collective exciton modes. It is includ-
ed in the Hamiltonian for Frenkel excitons for
which the electron and the hole are bound to one
another within an atom or molecule.

Next, the kinetic-energy terms in the model
Hamiltonian give rise to individual movement of
the separate particles and therefore threaten to tear
the electron-hole pair apart. In the limiting case of
Frenkel excitons, the transfer integrals between lat-
tice sites are assumed to be sufficiently small so as
to be neglected. This condition is particularly well

satisfied in molecular crystals, where the overlap
between the molecular orbitals is small and where
the size of this overlap determines the magnitude
of the transfer integrals between lattice sites. In
the present study, as in Ref. 10, the individual
transfer is included so that the model allows each
particle to hop individually between sites and then
recombine to form an exciton. This establishes the
difference between the present model and that of
Frenkel and Peierls. It also differs from the model
of Mott and Wannier for which the exciton has a
large radius of several lattice spacings. In our pre-
vious study, ' the direct Coulomb interaction be-

tween an electron and a hole on different lattice
sites has been ignored. This term does not cause a
transfer between sites and, therefore, enhances the
attraction between an electron and a hole and
should thus be included for completeness. In the
present study, this term is included because it leads
to bound exciton pairs which form the collective
biexciton mode. Another mechanism which leads
to an attraction between two excitons is due to the
interaction of the excitons with a lattice. " This
latter effect will, however, be neglected in our
model.

The aim of this paper is to extend the formalism
of our earlier study' so as to analyze the bulk

biexciton spectrum in the intermediate-binding
model. Such complexes were first predicted by
Lampert' and Moskalenko' and, ever since, has
been one of the subjects of experimental and
theoretical interest in the spectroscopy of strongly
excited solids. ' ' Bose condensation of biexcitons
is another phenomenon which has been observed
experimentally using laser light of very high inten-

sity, but this is beyond the scope of the present
study.

A theory for biexcitons, formed from excitons of
the Wannier type, has been developed by Hanamu-
ra and co-workers. ' ' One of the authors ' has
presented a theory for biexcitons of the Frenkel
type. Because of the nature of our Hamiltonian, it
is anticipated that the biexciton states for the
model with intermediate binding should have dif-
ferent characteristics from those found in the two
extreme cases. Hanamura's theory is based on the
assumption that excitons and biexcitons are Bose
particles. We do not make this assumption in our
calculation although this is a reasonable one if the
number of excited electron-hole pairs is much less
than the total number of valence electrons. The
idea is that since an exciton consists of two fer-
mions, it should behave like a boson, under some
restricted conditions. But, it is well known that an
ideal Bose gas undergoes a phase transition—
Bose-Einstein condensation —at sufficiently low
temperatures. This led to the suggestion that at
sufficiently high light intensities incident on an in-
sulator in the exciton band, the crystal may exhibit
new properties which may be associated with a
Bose-Einstein condensation of the excitons. It is
necessary that the net covalent interaction between
two single excitons be attractive before an excitonic
molecule could be formed. Since excitonic
molecules satisfy the necessary conditions of Bose
condensation, the repulsive interaction between
molecules which arises from the direct Coulomb
interaction or Pauli effect must exceed the attrac-
tive interaction due to exchange and van der Waals
forces. Thus it is believed that molecular forma-
tion is a necessary condition for condensation to be
achieved.

In the present theory, we assume that biexcitons
are formed at concentrations such that changes in
the exciton spectrum are small compared with the
binding energy of two excitons. If the density is
too high, the overlap of the exciton wave functions
is considerable and the entire picture breaks down.
At very high densities, statistical effects due to the
Pauli exclusion principle become important and the



7260 G. GUMBS AND C. MAVROYANNIS 24

solid should be described in terms of an electron-
hole plasma.

The problem is formulated in Sec. II where we
establish two sets of integro-coupled equations for
the exciton and biexciton Green's functions, by us-

ing a decoupling procedure similar to Gorkov's
theory of superconductivity. By restricting our
discussion at zero temperature, the mathematical
Green's function which we introduce reduces to the
Green's function for excitons in the Hartree-Pock
(HF) approximation. However, the formalism is

general in that it applies at finite temperatures and
for crystals with a surface.

The 2&2 matrix Green's functions for excitons
and biexcitons is evaluated in Sec. III for crystals
in the absence of boundaries, at T =0. The poles
of the matrix as a function of frequency lie on the
real axis. It appears as though there are poles at
the energies of free excitons and at the zeros of the
denominator which arise in the solution of the set
of coupled equations. Analysis of the derived ex-

pressions shows that in the absence of the gap
function, there are poles corresponding to the ener-

gies of free excitons. However, when the gap
parameter is finite, the only poles of the Green's
function are given by the zeros of the denominator
which correspond to bound states of two excitons.
The excitation spectrum for biexcitons is examined
for a simple case.

II. THE GOVERNING EQUATIONS

In this section we shall formulate our model by
defining the Hamiltonian operator in algebraic
terms and by deriving the equations which we shall
use to determine the normal (exciton) and
anomalous (biexciton) Green's functions. The nor-
mal modes are obtained from the poles of the ma-
trix of which these Green's functions are elements.

In the ground state of the semiconducting crys-
tal, the valence band is full of electrons, while the
conduction band is empty. The Green's functions
are used to study the collective modes when some
electrons are removed from the valence band,
where holes are formed, and transferred to the con-
duction band. The Hamiltonian for the system of
N electrons is given by

H= g T (ll')at, at QTtt(ll')—PtPt+Eagatat E&QPt1—3t+uo+PtAatat
(11'} (ll'} I I I

—g u (ll')Pt ata, , Pt, + g v(11')at at Pt, Pt, ,
&II } &II }

(2.1)

where a~, aI are the creation and destruction
p ~

operators for electrons at the lattice site RI in the
conduction band, and Pt, Pt are the corresponding
operators for electrons in the valence band. E,
Ep denote the on-site energy of the electron in the
conduction and valence bands, respectively, and
(ll') denotes that the sum is to be done over

~p ~p
nearest-neighbor pairs RI and RI, . T and Tp are

the hopping energies for electrons in the respective

bands, up is the on-site Coulomb interaction, and

u(ll'), v(ll') are the exchange and direct Coulomb

interactions between electrons on neighboring lat-

tice sites. The last term of Eq. (2.1) was, ignored in

Ref. 10, for reasons we discussed in the preceding
section.

Where the exciton consists of an electron and a
hole on the same lattice site, we showed' that the
surface and bulk excitons are given by the poles of
the normal Green's function ( ( bt(t);bt, (0) ) ).
Here bt =Pt at is the exciton operator in the Wan-
nier representation and ( (; ) ) denotes the retarded
Green's functions. In deriving the equation for
( (bt(t);bt, (0) ) ), we now assume that the system

differs from the normal state by the presence of

where
(2.2)

X, (t)= [bt (t) bt(t)]— (2.3)

I

bound pairs of excitons. But the equation of
motion for ( (bt(t);bt, (0)) ) involves a two-particle

Green's function ((btbt„, bt„,bt, ) ). Therefore, in

describing pairing corrdations between excitons on
different lattice sites, we follow Gorkov and Nam-

bu in their formalism for the theory of supercon-
ductivity and generalize the linearization in Ref. 10
to include terms involving Hartree-type functions

((bt(t);bt, (0))) and ((bt(t);b, , (0))). These
Green's functions which we shall refer to as
anomalons Green's functions, in analogy to the
Gorkov F function used in the theory of supercon-
ductivity, are thus coupled to the normal Green's
functions. Therefore, it is convenient to consider
the equation of motion of the matrix

G(ll', t ) = ( (X,(t);X,, (0) ) )

( (b, (t);b, , (0) ) ) ( (b, (t);b, , (0) ) )

((bt (t);b, , (0)) ) ((bt (t);b, , (0)) )
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(2.4)

(2.&)

{2.6)

(2.7)

}(PlP(«a(' ' P( P(1 & a(«a( a( }+gu (11 }(P(a(P(~ & P(» a(' ' ap & Pl a( )

Clearly, G(ll';t) in Eq. (2.2) is obtained as a special case of the function

G(l(121314',t}= ( (X(,(,(t);X(,(, (0) ) ),

by setting li ——12
——I and 13 ——14——I', where X( ( {t) is defined by

X(,(,(t):[p—(,(t)a(, (t) a( (t)p( (t}] .

Using the well-known commutation relations for the creation and destruction operators of electrons in the
valence and conduction bands, we have

(b(,b( ) =(b(,b(, ) =0,

(b(,b(') =(p,p, a,a, —)~„,.

Also, commuting b( with the Hamiltonian in Eq. (2.1), we obtain

(I((,~) = yT (ll"}p('a, , +yTp(11"}p„a(+(E +E(()b(
Il I II I

(2.9)

which is the randoin-phase approximation (RPA) or mean-field approximation. In the term involving the
direct interaction u(ll") w'e set

P P,"P," ,","P-=b&P,"P,"& P," &P(P-,„& I(&,„,-)
+p(a(" (a,"a(&+(bp(" &b," (2.

Therefore, in addition to the Hartree and Fock terms of Eq. (2.9), there is a term which is related to
exciton-state pairing and is expressed by the average (b(I((„). The off-di'agonal elements of the matrix in

Eq. (2.2) thus give rise to a spatially dependent parameter

and the uo term does not contribute as has been emphasized in Ref. 10. In Eq. (2.8), we now make the fol-
lowing approximations. In the sum involving the exchange interaction u(ll') we set

p(p(" ("p( p("a(. '-(a(=b(" & p(p() p«(" & p-(" p(& I("&a(«-&+p("«&u(a(" &,

b(ll') =u(11')(b(b(, ) {2.11)

and its complex conjugate which have to be self-consistently determined.
Taking the time derivative of Eq. (2.2), and using Eqs. (2.6)—(2.11), we obtain (A' will be set equal to 1)

Bt
G(II;I)=S(t)—((p,'p, & (a,'a, & )S„,a,—+a,S I G }++M(II-)G(I-I; t),

where M{ll') is an off-diagonal matrix which is defined as

0 5(ll')
M(ll') = ~,(II, )

(2.12)

(2.13)

and S is a functional of 6:
SI GI = (E +E(()G(ll', t)+gT (II")G(ll"I'I';t)+QT(({II")G(l"Il'I',t)

I'' I''

—yu(II")((p p() —(a(a() )G(I"I';t)+@u(II")((p( p, ) —(a, a,. ) )G(11';t)

gu (ll" jp(a;11")G—(1"ll'I'; t)+ gu (ll" )p(p; I"I)G(ll "I'I';t )

gu(ll")p(p;ll")G(1—"11'I';t)+gu(ll")p(a;I "l)G(ll "I'I', t),
Il I Il I

(2.14)
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p(a; ll'}—:

r

(at'at. )

(att, at) ' (2.15)

r

and a similar definition for p(P;II'} with a,a replaced by P, P, respectively. &, in Eq. (2.12) is the Dirac
matrix with eigenvalues + 1.

In the Hartree-Fock (HF) approximation, the pairing matrix M(ll') in Eq. (2.13) is ignored. Therefore,
denoting the mean-field solution of Eq. (2.12) by 6 ", we then find from Eq. (2.12) that 6 "satisfies the

equation

Bt
GH"(ll';t) 5(t)(—(13tlat}—(atat))5tt, &, &,SI—6 "J=0.

Let us now introduce a function K(ll;t), which is defined as the solution of the equation

(2.16)

K(—II', t) &,S—[Kj =&,5tt 5(t)
Bt

This equation together with Eq. (2.16) permits us to write 6(ll';t) of Eq. (2.12) as the solution of a set of
coupled equations which are given by

G(ll';t) =GH"(/I';t)+ g &,J dt &K(II";t t, )M(/ "I—"')G(l"'I'; t, ).
~l I It I I

(2.18)

—60(//', I) = 5(t)((pt pt ) —/, at at ) )5„ tr,

We emphasize that the function K{ll;t) is primarily introduced for mathematical convenience. Of course, a
solution of Eq. (2.18) would require an explicit expression for this function. However, before we make a fur-

ther study of this function, let us first consider the HF solution 6
Define the noninteracting Green s function Go as the solution of the equation

+&, (E +Ep)GO(II';t)+QT (II")60(II"I'/';t)+QTp(I/")Gp(I"I/'I', t}

—gu ( II")p (a;II")60(I"//'/'; t) +gu ( I/")p (P;/ "I)60( I/ "I'/'; t) (2.19)

Tlus together with Eq. (2.16) gives

6""(ll';t)= GD(ll', t) &,f dt)—g Go(II";t t))u(/"/"')6""—(I"'/', t))

+&,J dt's g Go(l"I"';t t~) (/U"'llG —"(//', ti).
)I I It I I

(2.20)

The noninteracting Green s-function matrix Go is diagonal. %ith an effective Hamiltonian defined by

HHF ——g[T~(ll') u(l/')(PI, Pt )]at, at, ——g[Tp(//')+u(II')(at, at ) ]Pt Pt,
lE' /l'

+E pat at Ep+AW, —

it is straightforward to show that Eq. (2.19) is satisfied by a diagonal matrix with

60"'(/& 12/3/4, t) = —i6)(t) [ —(at, (0)at, (t) ) ( [pt, (t),pt, (0)]+)

+ (Pt, (t)Pt, (0) ) ( [at, (0),at, (t)]+ }J

in the first row and first column, and

(2.21)

{2.22)
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Go '(1, 1~1314 t) = i—8(t) I (at, (t)at, (0) ) ( [pt, (0),pt, (t) ]~ )

—(pt, (0)p, , (t) ) ( [at,(t),at, (0)]+) ] (2.23)

in the second row and second column. The averages in Eqs. (2.21)—(2.23) are to be taken with respect to
HHF. Defining the spectral density functions p (1'1;co) and pp(ll';co) by the equations

(at, (0)at(t)) =f dcoe '"'p (1'l.co),

(pt (t)pt, (0))=f dcoe'"'pp(ll' co),.

(2.24)

(2.25)

we have shown that for li ——12
——1 and 13 ——14 ——1', the Fourier transform of Eqs. (2.22) and (2.23) is given by

ap& /T co2/T

Gp(ll'co) =f dco, f dco,
' '

pp(ll';co2)p (1'1;coi ),—00 00 N —Ni —Q)2
(2.26)

(2.28)

The result is

where T is the temperature and we have set kq ——1. We now express the spectral density functions p~ and p&
in terms of the Fourier transform of the single-particle Green's functions g and gp defined by

g (1'1;t)= —i&(t)( [a,, (0),at(t)]4. ), (2.27)

gp(ll';t}= —i8(t)([Pt (t),Pt, (0)]4.).

p (1'1;co)= . ~T [g~(l'1; coi 0) —g~(l'—1;co+i0)],1 1

2&l 1+e

1
pp(ll';co) = [gp(ll', co i—0) —gp(ll—', co+i—0)j2m 1+e~/T

(2.29)

(2.30)

We have therefore established the set of coupled
equations which have to be solved in order to
study the dynamical motion of biexcitons in an in-

sulating crystal. These are given by Eq. (2.18)
where GH"'(ll';t} in that equation is defined as the
solution of Eq. (2.20). But the solution of Eq.
(2.18) entails the knowledge of the auxiliary
Green's function K(ll';t) defined by Eq. (2.17). In
this regard, let us recall the assumption that the
valence band is full and the conduction band is

empty. In addition, we shall ignore virtual transi-
tions between the valence and conduction bands.
This means that

(2.31)

(at at, ) =0 and (Pt Pt, ) =0, 1+1' (2.32)

Making use of Eq. (2.31), it is clear that the
equation for G "(I!',t) [Eq. (2.16)j is the same as
that for Ic. (11',t) [Eq. (2.17)] and therefore these
two functions are equal. 6 " and E are, however,
separate functions in general.

Finally, it is straightforward to show, using the
results in Eqs. (2.24) and (2.25) together with Eqs.
(2.29) and (2.30), that at T =0

However, at finite temperatures, these averages are
nonzero and have to be determined self-consistent-

ly.

III. DISPERSION RELATION FOR EXCITONS
AND BIEXCITONS

In this section we shall solve Eq. (2.18) for a
simple cubic lattice of spacing a0. The first step is
to solve for the single-particle Green's functions g~
and gp in Eqs. (2.27) and (2.28), respectively. For
the bulk crystal, with the usual periodic boundary
conditions, these are functions of l —l' only and
are given by'

g~(l —1';co)=—g1

k

p ~pi k.(RI —Ri, )
e

co —E (k)
(3.1)

g p(l —1',co) =—gp
k

p ~
Qik (Ri —RI, )

e
0

co Ep Ep( k)——(3.2)

Here X is the total number of atoms in the crystal,
the sums over k are to be taken over the first Bril-
louin zone, .and the energy levels E (k) and Ep(k)
are given by
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E (k)=6T —2T (cosk ao+cosk„ao+cosk, ao),

E~( k ) =6T~ 2T—p(cask„a 0+coskza 0+cosk, ao ),

(3.3)

(3.4)

where T~ ~(ll') = —T tt for nearest-neighbor atoms. We have chosen Et3 EI——+6Tp and E =6T . Mak-
ing use of the results of Eqs. (3.1) and (3.2) in Eqs. (2.29) and (2.30) and then substituting the results for the
spectral density functions into Eq. (2.26), we obtain the noninteracting Green s function for the bulk

~0 ~0
1(q —qI ) ~ (R& —R )

I

Go(l —I';co) =-
E —,co Et3 —E(q—') Fp(q—)

From Eq. (3.5) we deduce that the Fourier transform Go (k,co) defined by

Go(l —l';co) =—ge ' ' Go(k, co)
k

(3.6)

is given by

Go ( k, co)=—g&
q

co Ett E—(q —k) —Ep—(q)
(3.7)

Since for the bulk G "(ll';t) depends on I —1' only, we may Fourier transform Eq. (2.20) with respect to
time and I —/'. We obtain

Gs ( k, co) =Go ( k, co) —crgGO ( k, co)u( k)Gs (k,co)+ &qGO ( k =O,co)U(k =0)Gs ( k, co), (3.8)

where u( k ) and U(k) are the Fourier transforms of the nearest-neighbor exchange and direct Coulomb in-

teractions, respectively. We have

(3.9)u ( k ) =2u (cosk„ao+ coskzao+ cosk, a 0)

and a similar expression for U(k) with u on the right-hand side of Eq. (3.9) replaced by U, where u and U are
the strengths of the exchange and direct interactions for nearest neighbors. Rearranging the terms of Eq.
(3.8) and solving for Gs "(k,co) we obtain

Gs "(k, co) =
e+ '( k, co) 0

BGo(k co» (3.10)

where

e+(k, co) = I+[u(k)GO(k, co) —U(k =0)GO(k =O, co)]. (3.1 1)

In the absence of boundaries, G(ll';t) also depends on 1 —l' only. Therefore, Fourier transforming Eq. (2.18)
with respect to time and the variable l —l', we find after rearranging the terms that the Fourier transform
G (k, co) is given by

G (k,co)=[I—o,Gs (k,co)~(k)] 'Gs "(k,co). (3.12)

Substituting the result for Gz (k,co) of Eq. (3.10) into Eq. (3.12), we obtain

Go (k,co)e+'(k, co)
G (kco=

Ds(k, co) —&~'(k, co)e '(k, co')6* (k)[Go(k, co)]'

e+'(k, co)e '(k, co) b, (k)[GO(k, co)]

G()(k, co)e '(k, co)

(3.13)

where

D (k,co):I+a+'(k, co)e '(k, co)
~

b(k—)
~

[Go(k,co)], (3.14)
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and

(3.15)

D (k,co)=0 (3.16)
and these correspond to bound states (biexcitons)

b,(k) =—gu(k —k')(b-„, b -„, ).
ks

h(k ) is the coupling parameter for a biexciton of
momentum k which is a good quantum number.
There is a sum over k' in Eq. (3.15}since the two
excitons forming the biexciton may be scattered by
one another into all possible states. Also since the
two excitons are bound by the direct Coulomb in-

teraction, we have u(k —k') appearing as a coeffi-
cient in the sum of Eq. (3.15).

The singularities of G (k,co) in Eq. (3.13) are lo-
cated at the solutions of

provided the roots of Eq. (3.13) are separated from
the solutions of e+(k, co}=0, which determine the
frequencies of the exciton band. If we set A(k) =0
in Eg. (3.13), the off-diagonal elements vanish and
Gs(k, co) has singularities only at the frequencies
where the denominators e+(k, co) of the diagonal
elements vanish. In Eq. (3.14), we see that the ex-
citon dispersion relations e+(k, co) are coupled by
the parameter b,(k), clearly displaying the role this
parameter plays in producing a biexciton bound
state from two separate exciton states.

To further understand the exciton and biexciton
bound states, let us evaluate their normal-mode fre-
quencies in the long-wavelength limit. For fre-
quencies below the elementary excitation spectrum,
we may rewrite Gp (k, co) of Eq. (3.7) as'

Gp(k, co) = —I ds e P ' P P(2y~s)P(2y~s)P(2y, s),

where (i =x,y, z)

(3.17}

P(2y;s) = dq;exp[2y;scos(8; —q; )],
2m

(3.18)

with

cos8; =(T cosk;ap+—Tp)ly;,

sin8;:—( T~sink;ap)/y;,

y;:(T +2T T—pcosk;ap+Tp)'~.

In the long-wavelength limit, we have to order k

Gp(k, co)= — I ds e ' +"'[Ip(s)—(kap) Ip(s)X(s)],
2(T~+ Tp)

where the function X(s) is defined to be

(3.19a)

(3.19b)

(3.19c)

(3.20)

$T~ $T~
X(s)= Ii(s)— [Ip(s) —Iz(s)]

2 (g+Tp ~+ p
(3.21)

(3.22}

Substituting the power series expansion for Gp(k, co) into e+(k, co) defined in Eq. (3.11), we obtain the fre-

quency of the bulk exciton mode for long wavelengths,

with I„(s) the modified Bessel function of the first kind of order n For conveni. ence, we have introduced the
variable co in Eq. (3.20). This is defined by the equation

0Ep —co

2(T~+ Tp)

co k
—cop+Dk 2

Here mp is its value at k =0 and is given by

cop ——co;„(k=0)—2cop(T + Tp),

where

(3.23)

(3.24)
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(3.25)co;„(k=0)—=Eg

is the value at k =0 of the wave-vector-dependent lower bound for the particle-hole excitations and co0 in

Eq. (3.24) is the solution of

3(u —v) f ds e Ip(s)=(T +T($).

The stiffness constant D of Eq. (3.23) depends on all the parameters of our Hamiltonian and is given by

2

D: — (T yTp) f dse Io(s)
u —v Y(gp) 0

(3.26)

+ 3T.f dsse 'Ip($) I&($)— [Io(s)—I2($)]
0 2(T +Tp)

(3.27)

where Y(co) is an integral involving the Bessel
function of order zero,

Y(co)—=3f dsse ' +"'Io(s). (3.28)
0

Substituting the result of Eq. (3.20) into the
dispersion relation of Eq. (3.16), one easily obtains
at zero wave vector the frequency 00 of the bulk
biexciton mode that lies below the particle-hole ex-
citation spectrum. %e have

Qp ——co;„(k=0) 2Qp(—T +Tp),

where cp,„(k=0) is defined in Eq. (3.25), Qp is de-

fined as the solution of

(3.29)

1 —[9(u —v) ——,
I
ho

I
]a (Ilo) =0, (3.30)

with ho=6, (k =0), and the function a(cp) is given

by

(b-„b -„)=2f fp(co)im((b -„;b-„)).

(3.32)

Here, fp(rp):—(e" —1) ', where units with kz ——1

are used and ((b -„;b-„)) is given by one of the
off-diagonal elements of Eq. (3.13). For a simple
cubic lattice, with nearest-neighbor Coulomb in-
teractions, we have 6( k )

1= —, (cosk„ao+cosk~ap+cosk, ap)kp where the

a(m) = f ds e " +"'Ip(s). (3.31)
(T~+ Tp)

The coupling parameter b, (k ) is determined by a
nonlinear integral equation. To obtain this equa-
tion, the first step is to determine the statistical
average (bkb z ) in Eq. (3.15). This average is

calculated by taking the difference of the Green's
function ((b k;b& ) ) across the branch cut along

the real axis,

0&~0&EP0 {3.33)

is satisfied. The role of the direct Coulomb in-

teraction is to reduce the effect which the exchange
interaction has in splitting ofF the exciton state.

phase is chosen so that h(k) is real. Substituting
Eq. (3.32) into Eq. (3.15) we obtain the equation
which determines b,p and, therefore, b,(k). For the
present, we choose A0 independent of the other
parameters.

It is straightforward to find the correction of A0
for long wavelengths. The lowest-order correction
is of order k and the coefficient of this term can
be obtained by means of a calculation similar to
that used in calculating the result in Eq. (3.23) for
excitons. These results are similar to those derived
in connection with the magnon and two-magnon
bound state problem for a Heisenberg Hamiltoni-
an. Using the tight-binding Frenkel Hamiltonian
for excitons in a molecular crystal, Mavroyannis '

has also shown that the frequency for a biexciton
in the long-wavelength region is quadratic in the
wave vector. These similarities are not surprising
because of the similarity of our problem with spin
systems and also because the Frenkel Hamiltonian is
a special case of our Hamiltonian in Eq. (2.1).

Some properties of the collective excjtations have
been obtained without a detailed numerical calcula-
tion. These are now pointed out. The effect of the
nearest-neighbor Coulomb interaction is to shift the
energy levels of the single-particle electron-hole
states forming a continuum, and, in addition to
split off discrete states from the continuum for
each value of the wave vector. But if the Coulomb
interaction is too weak compared to the hopping
integrals, no exciton states may be formed. %e
must therefore choose our parameters so that the
condition
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This is clear from the appearance of the (u —u)

factor in Eq. (3.26). Furthermore, if u & u, there is
no exciton bound state below the elementary exci-
tation spectrum.

Equations (3.26) and (3.30) which determine cop

and Qo, the frequency of the exciton and biexciton
bound states at zero wave vector, respectively, only
differ by the appearance of the coupling parameter
in Eq. (3.30). Provided there are exciton states and
the coupling parameter satisfies

l.6

l.4

l.2

0

0.8

0.6
hp & 6(u —u), (3.34)

04
Eq. (3.30) has a solution with Qp & cop. We also re-

quire that Qo lies outside the continuum of elemen-

tary excitations, for, otherwise, it would be too
short lived to be a well-defined collective mode.

We have thus established the conditions which
have to be satisfied for the formation of excitons
and biexcitons in an insulating crystal with inter-
mediate binding. These conditions depend on the
band structure unlike those derived in connection
with the biexciton mode in a molecular crystal. '

For a pure undamped normal excitation, the
spectral function is proportional to a 5 function.
However, if the spectral function has the almost 5
function form

0.2—

1.8—
(b)

p
= l. 5 eV

l.6

l.4

l.2

I I I I I I I

0 O. l 0.2 0.3 0.4 0.5 0.6 0.7
k~ao/w

(3.35)

the mode of frequency co =ask is damped, with

damping constant I (cok). For the individual exci-
tons, Eq. (3.34) is obtained in the neighborhood of
a solution of the dispersion relation Re@+(k,co) =0
provided we define its weight to be

. —1

Z(cok) = a
Re@+(k, co) (3.36a)

We also define the weight of a biexciton excitation
of frequency 0-„as

Z(Qk)= Res+(k, rp)e (k,co)D (k, co)
BN co=Q~k

(3.36b)

We have solved the dispersion relations for the
exciton [Re@+(k,co) =0] and biexciton
[ReD (k, co) =0] modes. We have also evaluated
the weight function Z, given by Eq. (3.36). The
results are plotted in Figs. 1 and 2 for two dif-
ferent values of the energy gap E13 between the
valence and conduction bands at zero wave vector.
The bandwidth of the conduction band (12T~) and

0.8

0.6

04

0.2

0 I

0 O. l 0.2 0.5 0.4 0.5 0 6 0.7

FIG. 1. (a) Excitation spectra in the [100] direction
for excitons (solid line) and biexcitons (broken line) on a
simple cubic lattice with periodic boundary conditions.
The particle-hole excitation region corresponds to the
hatched area. The band gap at zero wave vector is

Ep ——1.5 eV. (b) Plot of the weight function, defined in
Eq. (3.36), for the exciton and biexciton modes. The
band gap at zero wave vector is Ep ——1.5 eV.

that of the valence band (12TI1) are chosen as 0.06
eV. The nearest-neighbor exchange interaction (u)
and the nearest-neighbor direct interaction (u) are
set equal 0.4 and 0.1 eV, respectively. Two dif-
ferent values of the gap parameter 50 were used in
our computer runs. As expected, for a given wave
vector Z has a smaller amplitude for the biexciton
mode than the exciton mode since its magnitude is
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2.2

2.0

l.8

l.6

l 4

l.2
O

l.O

0.8

0.6—

0.4—

0.2—
E&= 2,0 ev

I I I I I I

0 O. l 0.2 0.5 0.4 0.5 0.6 0.7

k„o.i~

I.8—
(b)

E&= 2.0ev

l.6

l.4

1.2

3 l.o

0.8

0.6

a measure of the probability for a mode. Compar-

ing Figs. 1(a) and 2(a), it is seen that the exciton
energies increase with band gap.

IV. CONCLUDING REMARKS

A model has been presented for excitons and
biexcitons in insulating crystals with intermediate
binding energies for the electron-hole pairs. A

I I I

0 0.I 0.2 0.3 0.4 0.5 0.6 0.7

k~a, /~

FIG. 2. (a) Same as Fig. 1(a), but with Ep——2.0 eV.
(b) Same as Fig. 1(b), but with Ep ——2.0 eV.

two-band model is used for a simple cubic lattice
structure. The exciton and biexciton Green's func-
tions are given as solutions of a set of coupled
equations. The problem is simplified at zero tem-

perature and the excitation energies are computed
numerically in this case. The electron and the hole
are assumed to be tightly bound on the same lattice
site but the formulation may be generalized to the
case even when they are in different unit cells.

The results obtained in Sec. III are, as we have
emphasized, a special case of the more general
results derived in Sec. II. However, the formula-
tion leading to the tnain equations (2.18) and (2.20)
is general and may be applied to systems where
the translational symmetry has been destroyed by
the presence of a surface, for example. The effects
of a surface on the excitation spectra of excitons
and biexcitons will be presented elsewhere. To our
knowledge the method of Altarelli and Bassani to
deal with excitons with intermediate binding has
not been used to study biexcitons or surface effects
on the spectroscopic properties of insulating crys-
tals. The present model is equivalent to the one-

site approximation introduced by Andreoni et al.
which is obtained by assuming in their calculation
that the electron and the hole are in the same unit
cell.

The numerical results in Figs. I and 2 show that
the biexciton spectrum lies above that for excitons.
This is in contrast to the experimental results re-

ported in the literature for semiconducting crystals
such as Ge, CuC1, and CuBr. However, there
are so far no results for the biexciton spectrum
formed from the lowest exciton states of the rare-

gas solids for which our model is relevant. Thus
our results present a new challenge to investigate
these states experimentally. The way we interpret
the results is to say that the exciton states are the
lowest electronic excited states of the crystal.
%hen the density of the excitons is increased to the
extent that exciton-exciton interaction becomes im-

portant but such that changes in the exciton spec-
trum are small compared with the binding energy
of two excitons, new elementary excitations of
higher energy per electron-hole pair appear. This
new collective state has infinite lifetime outside the
electron-hole continuum. However, when the gap
parameter becomes too large because of strong
exciton-exciton interactions, the biexciton modes
would lie in the electron-hole continuum. As a
result, the modes become short-lived and the solid
is best described in terms of an electron-hole plas-
ma.
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Recently, Schwentner et a/. have reviewed the
experimental and theoretical results for bulk and
surface excitons. %e refer to their article where
extensive reference is given for spectroscopic and
band-structure results for the condensed rare gases.
But we now make a brief comment as a final re-
mark. Electron energy-loss experiments have been
used to excite electrons from the valence band to

an excited state. Either a free electron-hole pair or
an exciton, i.e., a bound electron-hole pair will be
created. In the case of large band gaps, energy
losses will be of the order of several electron volts.
In view of the large band gaps and the pronounced
excitonic structure, an insulator whose electronic
structure is well described by a two-band model
would be ideal to test our results.
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