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The self-consistent-phonon (SCP) formalism has proved valuable in calculating the anharmonic contributions to
lattice-dynamic properties. It is a numerical iterative procedure for obtaining the equation of state and other
thermodynamic functions. Replacing the sums over frequencies in the SCP formalism by appropriate functions of
the average phonon frequencies yields simpler equations of state for solids. We refer to this method as the self-
consistent-average-phonon formalism (SCAP). The equation of state, specific heat, pressure, Gruneisen parameter,
bulk modulus, and thermal expansion coefficient are derived using the SCAP formalism. Using a Lennard-Jones
potential with parameters given by Klein, Chell, Goldman, and Horton, we make comparisons of the SCP and
SCAP formalism for neon and argon at low and high temperatures. Good agreement is obtained for the two
properties calculated by Klein et al. , the Griineisen parameter and the bulk modulus. This suggests that the SCAP
equation of state is a useful procedure for calculating the thermodynamic properties of solids.

I. INTRODUCTION

One of the most important effects of temperature
on the lattice dynamics of anharmonic solids is
to "renormalize" the phonon frequencies by giving
rise to temperature-dependent effective spring
constants. The self-consistent-phonon (SCP)
formalism' has proved quite valuable in estimating
the effect of such anharmonic contributions to de-
tailed lattice-dynamic properties such as the phon-
on spectrum. It is, however, a procedure which
requires extensive numerical calculations of the
characteristic frequencies for a given set of con-
ditions. With further calculation of properties such
as the equation of state and other thermodynamic
functions, the results are obtained in numerical
form after summing the contributions of all the
phonon modes. This numerical procedure must be
repeated for each temperature, pressure, or vol-
ume change.

In such a calculation of the thermodynamic prop-
erties many of the computed details of the effects
of temperature on the phonons are averaged out in
the summation process, suggesting that a simpler
self-consistent theory of average properties might
be effective with a considerable reduction in nu-
merical complexity. An alternative approach for
obtaining the equation of state is to replace the
sums of various functions of the characteristic
phonon frequencies by appropriate functions of
average phonon frequencies. Welch, Dienes, and
Paskin have used a classical version of the self-
consistent cell model (SCCM) to obtain approxi-
mate analytic forms of the equation of state for

solids." The SCCM has proved to be accurate at
high temperatures. With additional quantum mod-
ifications it has been used over the entire temper-
ature range. Because of the success of the quan-
tum-modified SCCM equation of state, it is of in-
terest to investigate the SCP formalism to see if
replacing the sums over frequencies by appropriate
functions of the average-phonon frequencies will
yield accurate but simple equations of state for
solids. We shall refer to this method as the self-
consistent-average-phonon formalism (SCAP). It
would have the advantage over the SCCM of being
a quantum formalism and thus be applicable at all
temperatures. It would have the advantage over
the SCP formalism of being simple to use to cal-
culate thermodynamic properties. It is in this
spirit that we shall develop the equation of state
and related thermodynamic equations using the
SCAP formalism. We then compare the SCAP and
SCP results for neon and argon to show the ac-
curacy of the SCAP formalism at low and high
temperatures.

II. SELF-CONSISTENT-A VERAGE-PHONON
(SCAP) FORMALISM

The procedure for developing the SCAP equa-
tions of state is quite straightforward. We follow
the basic SCP approach to obtain the temperature-
dependent phonon frequencies and the subsequent
thermodynamic properties, but we replace the
sums of functions of the phonon frequencies by ap-
propriate functions of an average-phonon fre-
quency. There are a number of SCP formulations
to choose from; our SCAP formalism follows the
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Gillis, Werthamer, and Koehler treatment. 4

We take the true vibrational Hamiltonian of a
monatomic solid for which cohesive forces are ap-
proximated by a sum of pairwise terms to be

2 /

H = —Q —V ', + -' Q v(R, , + u, —u,.), (1)
i t& j

where the indices i,j, ... label the various atoms,
H. , is the vector from the mean position of atom
i to that of atom j, u,. is the dynamic displacement
of atom i from its mean position, z)(z) is the energy
of interaction between a pair of atoms separated
by z (only central forces are assumed), and M is
the atomic mass.

The general approach taken is to approximate
the true Hamiltonian by an effective trial Hamil-
tonian of the harmonic oscillator form, in which
the spring constants linking the atoms are taken
to be variational parameters to be determined by

minimizing the trial free energy. A trial Ham-
iltonian of the harmonic form is

H, = — v'.
harmonic

1

+~ u, -u, 4t, ~ u. —u, ,
4 ~ rf

(2)

D, ,= ((u,. —u,.)—(u,. —u,.)) (3)

(where the brackets denote a thermal average),
and performing variations on the Helmholtz free
energy written as a functional of both 4.j and D.&,

one obtains the fundamental equations to be solved
self-consistently':

where the effective force-constant matrices 4,
are to be determined variationally. By introducing
the displacement-displacement correlation func-
tion

oF» -—M ' P [1 —exp(-zk R, &}]q» (V'(7z)(R &+u& .—u.)) ~ e»,
j

D.,=EN 'g [1 —exp(-zk %„.)]e»q»(Mar») 'coth —P(d» i,j

(4)

(5)

(v(R, , +u,. —u,.))=fd'uv()( rvu) fr) q(qrr) 'erqr[-(iq uv-'r) rr,. r q)], (8)

( ~u) ( ~2)r(/2 (7)

As shown explicitly in Appendix A, upon assuming
that the three modes X a.ssociated with each wave
vector k are purely longitudinal and transverse
(i.e., a continuum approximation) and summing
the contributions of all modes kA, the mean-
squared frequency obtained from Eq. (4) is

where co» and &» are, respectively, the frequency
and polarization vector of a phonon with wave vec-
tor k and polarization X, N is the number of atoms
in the crystal, and P =- (k~ T) ', where k~ is Boltz-
mann's constant.

Equations (4)—(8) are the essence of the self-
consistent-phonon (SCP) approximation; to obtain
the SCAP approximation, we write them in terms
of an average-phonon frequency. Examination of
Eq. (4) shows that by summing it over all phonon
modes kX we arrive at a temperature-dependent
average of the frequency squared. We shall sub-
sequently assume that

l
the mean-squared displacement

(zz') = — »&, coth$,
3I'

where $=- ' Ph(uF)"'
We perform thermal averages of various proper-

ties approximately by Taylor-expanding in pow-
ers of atomic displacements x., y, , z, , etc. and
relating averages of higher powers of x, , y, , z„... to (x',.) by Gaussian averages: e.g. , (x4)
= 3(x',}', (x,') = 15(x',.)', etc. Furthermore, we ig-
nore correlations between motions of different
atoms, so that (x,. x,".) =(x,. )(x",.) when iqz j, and we
evaluate properties to order (x',)'. (To evaluate:
properties which are the derivatives of the free
energy, such as pressure, compressibility, etc. ,
to order (x',.)2 requires that we expand the free en-
ergy itself to order (x',.}', however. ) With these
approximations, the mean-squared frequency given
by Eq. (8}becomes

( ~r')= QV'v()q„vu)),
1

(8)

where the index l denotes atoms neighboring a
given origin atom, denoted by the subscript zero,
and u=—u, —u,. Combining Eqs. (7) and (8), as
shown in Appendix A, leads to an expression for

+(3)4( (V } z)

S4 , ~ S,
3M ' (3)2! (3)4 ( (10)
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where the derivatives are evaluated at the mean
interatomic separation. Explicit expressions for
the lattice sums of derivatives of the potential 8„
are listed in Appendix B.

The basic self-consistency equations of SCAP
are Eqs. (9) and (10), which are solved simultan-
eously at a given temperature and atomic volume
to yieM &&u'& and &u'). Given the values of these
parameters, the thermodynamic properties are
evaluated from the Helmholtz free energy and its
derivatives. Explicit expressions for various
properties, all evaluated to order &u'&2 (except the
free energy itself, as discussed above), are listed
below. In Sec. II we will compare the numerical
results obtained with these formulas to values com-
puted with the full SCP theory.

In the SCP approximation, the Helmholtz free en-
ergy per atom F, of the anharmonic crystal, is
given by4

F =(Np) ' +fin[2 sinh(-', pro»)] —&ur»coth( —,
' p()»)j

f

+ — 5 R. .+ ug —u-
t' j

The SCAP approximation to the Helmholtz free
energy is obtained by making the average-fre-
quency approxima. tion [Eq. (A7), Appendix A] and
Taylor-expanding &v&:

38F =- ln(2 sinhf) ——&ur &'~' coth$
scAp p 4

where f —= -', Ph&to'&')' and S„S„.. . are listed in
Appendix B. The SCAP expressions for pressure,
bulk modulus, internal energy, and specific heat
are obtained by taking appropriate derivatives of
this equation.

The pressure P is obtained by differentiating
Eq. (12) with respect to the volume at constant
temperature

sF 1 dS, &u'& dS, &u 2&' dS4

(13)

where R, is the first-neighbor separation; explicit
expressions for the lattice-sum derivatives
R,dS„/dR, are listed in Appendix B.

The isothermal bulk modulus B~ is obtained by
differentiating the pressure [Eq. (13)]with respect
to volume,

,d'So dS, (u'&, d S, dS,9VB~ — R, 2
—2R,

1 1

&I'&,d 'S4 dS4
]44 1 dR2 ldR

1 8&&, & R dsq &B & dS4
12 'eR, 'yR 6

where the lattice-sum derivatives R2d'S„/dR2 are
listed in Appendix B. The derivative R, s&gx )/s R,

~

is essentially of order &u'& and is obtained from
Eqs. (9) and (10) as follows. From Eq. (9) we find

s&n'& s&(d '&
R~

— = -AR,
8 (16)

where A is a function essentially of order &u'&,

A=-, (u )+ (aottt ( —t)), (18)

with (-=~PA&(u'&"'.
An average of the Gruneisen parameter y„,-=-Sin~»/SinV~~ is immediately obtained by com-

bining Eqs. (10) and (17):

1 sin&re'& 1 s&~'&

2 sin V () 6&(o') ' sR, ()

dS, &u'& dS4 &n & ds,

6 AS, As, &u ) &u'& &n'&

(19)

This expression was obtained by combining ex-
pressions for &&u'& and R, S&(d'&/SR, ~~ which are
each correct to order &u.'& (recognizing that A is
essentially of order &n'& ).

The internal energy per atom U and the specific
heat capacity at constant volume are obtained by
differentiating the free energy with respect to
P(= 1/nT) (Ref. 6):-

while differentiating Eq. (10) consistently with Eq.
(16) yields

1 dS, &u2& dS, &iP&' dS,
s&(t) & 3 'dR, 18 'dR 108 'dR

18M 108M
(17)

ol

aP
B~———t/'

8

(14) &F
P —F+ P

V

or, from Eqs. (9) and (12),

(20)
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U = -'M (u )(47 )+~ +~(u )
S 5

4 2 12
1 BU

Cv=-7P,
P

144 2592 (21) = ——p —(u') +—(~'& -

I (22)
1 M 2 B((o~) M 8(u2)

T 4 BP 2 BP )'
where we have retained the term of order (u')' to
yieM t to essentially order (u2)'. C„ is found by
further differentiation:

The derivatives of (&s') and (u') with respect to P
are obtained from Eqs. (9) and (10):

s(u') (u'& s((o ') 31' „, 1 P B((o ')
(23)

and

35 ~S S6
s(& 2) 2M2 16'106(" ~&

(

1 —2M,(,&„, ~~ +10' (u'& [&(1-coth'$} —coth&]
(24)

where $
—= —,

'(~')'~'O'P .
Finally, the linear coefficient of thermal expansion at zero pressure e is obtained by recognizing that

the zero-pressure near-neighbor distance is obtained by setting the pressure [Eq. (13)]to zero and solving
for R„ thus differentiating Eq. (13) with respect to temperature yields

1 dR

R~ dT
1 P S(u') dS, (u') dS, (u~)' dS,

dSo, d2So~ dS4 ~d2S4 (u ) dS8 ~d S6 (u ) ~R 9(u2) t dS, (u') dS4&
'dR, 'dR') 'dR 'dR' 'd, 'dR 6 R, 'dR 6 'dR )

(25)

where ( S)u/R, ( 8 and B(u')/BP („are obtained from
Eqs. (16), (17), (23), and (24), and (u'), (&u'), as
well as the various lattice coefficients are evalu-
ated at the appropriate zero-pressure volume.

III. NUMERICAL RESULTS: COMPARISON
OF SCAP AND SCP

Klein, Chell, Goldman, and Horton' have cal-
culated the average GrGneisen parameter y and
isotherma1 bulk modulus B~ for solid argon and
neon by solving the SCP equation of state numeri-
cally. They calculate y and B~ at l.ow and high
temperatures at two different volumes. These re-
sults can be used to estimate the. accuracy of the
SCAP formalism.

Klein et al. have considered only interactions
between nearest neighbors and used an interatomic
potential of the form

where e/k~ =171.1 and 52.2 K, and R, =3.707
and 3.032 A for Ar and Ne, respectively. The lat-
tice constants used in the calculations for Ar were
5.4642 A at 80 K and 5.3077 A for 0 K, while for
Ne values of 4.5291 A for 23 K and 4.4648& for
0 K were used. These correspond to the zero-
pressure volumes of the improved self-consistent-
phonon scheme (Goldman et al. '}. Although we use
these parameters for comparison purposes, they
do not correspond to the zero-pressure lattice
constants for the SCAP formalism. Thus, the
compar'isons are not for quite the same physical
conditions. It is not clear how to estimate the er-
ror from these differences. No attempt was made,
for example, to compare SCAP calculations at
zero pressure and given temperatures to SCP cal-
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TABLE I. Comparison of results for the Griineisen
constant p and isothermal bulk modulus B~ calculated
with the full numerical self-consistent-phonon approxi-
mation 4'SCP) and the self-consistent-average-phonon
approximation (SCAP). The SCP results are from Klein
et al. (Ref. 6).

'y B~ (kbar)
SCP SCAP % dev. SCP SCAP % dev.

Ar, 0 K 2.853 2.925 + 2.5 26.4 26.55 + 0.6
Ar, 80 K 2.083 2.167 +4.0 12.86 14.1 + 9.4

APPENDIX A: SELF-CONSISTENCY EQUATIONS
IN THE SCAP APPROXIMATION

First we require an expression for calculating
the temperature-dependent average squared fre-
quency. We begin with the SCP expression for the
temperature-dependent squared frequency of a
phonon of wave vector k and polarization ~, Eq.
(4):

(u', „=M ' Q [1—exp(-ik 5,,) ]

Ne, 0 K 2.465 2.459 —0.2 10.0 9.95 -0.5 x e~i ' ( tt VV(A. ) + u. ))) ' t~i. (A1)

Ne, 23 K 2.086 2.079 —0.3 6.62 6.95 + 5.0

culations at zero pressure, the same temperatures
but different lattice parameters.

Klein et al. calculated y and B~ with the full SCP
equations. The results of Klein et al. as well as
the present results using the SCAP equations to
nearest neighbor are listed in Table I. Values of
the Gruneisen constant. calculated with SCAP agree
at low temperatures with the SCP results to within
3%%uo and at high temperatures within 4%%uo. The val-
ues of the bulk modulus at low temperatures agree
within 1'%%uo and at high temperatures are within 10)0.
Some of this disagreement arises because SCAP
calculations were not performed using the lattice
constants which yield zero pressure with the SCAP

I

procedure. Extensive calculations for the rare-
gas solids show that the agreement with SCP,
particularly in the low to moderate temperature
range, is even better when performed at lattice
parameters consistent with zero pressure. '

If we make the "continuum" approximation that all
phonons are either pure transverse or pure longi-
tudinal, then we can write for each wave vector
k and the polarization vectors e» as

&kgb
= ~ie, + ~2ey

k, 2
= -l2e~+ l~

(A3)

(A4)

where e„, etc. are Cartesian unit vectors and l,
and 1, are direction cosines. Thus for each wave
vector k,

kX
V'V'V ~kX= r7'5 (A5)

Utilizing this relation, we obtain the mean-squared
frequency by summing Eq. (Al) over all modes
QA, ;

((u') -=—Q uP„= QQ [1—exp(ik ~ R,,) ](V'v)
3N ), 3NM

(A6)

IV. CONCLUSIONS

We conclude that the SCAP formalism is the
practical way to obtain the thermodynamic prop-
erties of solids. It is relatively simple to use.
Once the equations have been transcribed to the
computer a complete set, as a function of temper-
ature, of the Gruneisen constants, specific heat,
bulk modulus, and coefficient of volume expansion
and a complete set of pressure-versus-tempera-
ture data (at constant volume) are obtained in a
few minutes. These properties are in excellent
agreement with those obtained using the more
cumbersome SCP calculations.
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The essence of the SCAP approximation is to use
the square root of this average as the characteris-
tic frequency of the material in question and to
approximate averages over functions of (d» Qy

functions of the average frequency, i.e. ,

~&a„)g(k 5,.), &,„)=-f((uP)'") Q g(k R,.„a„,) .

(AV)
We now use this approximation aqd the displace-

ment-displacement correlation function [Eq. (5)]
to obtain an expression for the mean-squared dis-
placement (u') —=(

~
u,. —u&

~

'). The exact expression
18

(u ) =e, D,&e, e„D,&
.e„+e, D,, e,

1 —exp -ik R„
G=x'g$ g z k)t

x (M „) 'eet)t( —t)te„)(e, e„)'.
(A8)
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Making the approximation of Eq. (A'f) leads to the
desired expression

(u') =
( ~~, &2 coth(~Ph(uP)'") . (A9)

Equations (A6) and (A9) must be solved self-con-
sistently, i.e., they are the self-consistency equa-
tions of the BCAP approximation. Values of (~)
and (u') obtained from this solution are then used
to evaluate the thermodynamic properties of inter-
est.

derivatives of the potential are with respect to its
argument and are evaluated at the mean interneigh-
bor spacing.

For n=0, 2, 4, 6,

dv nd
S„=—g(V')""v(R, ) =g dR" R dR ~~»

2

dS„~ d'~"v d"v n d' "v
1 dR M dR(ted+1) dRn R dR(n-1)

1

APPENDIX B: EXPLICT EXPRESSIONS FOR LATTICE
SUMS OF DERIVATIVES OF THE INTERACTOMIC

POTENTIAL WHICH APPEAR IN THE SCAP
EQUATIONS

In the following expressions the sums are over
neighbors labeled l to a given origin atom. The

d'S d'""'v d'""v
R2 -~ ~ R~ — + R

1 g

d"v 2n d("-"v
dRn R dR(n-1 )

l
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