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We have used the coherent potential approximation to calculate the electronic densities

of states for a model of hydrogenated amorphous silicon. The results demonstrate the
restoration and widening of the band gap with increasing hydrogen content. In the
valence band, excellent agreement with photoemission experiments is obtained. In the

conduction band Si-H antibonding states are predicted that can be inferred from photo-

conductivity measurements.

I. INTRODUCTION

Basic experimental facts

The current intensive investigation of hydro-
genated amorphous silicon originated in 1975 when

Spear and LeComber' succeeded to substitutionally

dope amorphous Si(a-Si), produced by decomposi-
tion of silane, through the incorporation of phos-
phorous and boron impurities. Soon after, it be-
came apparent, as a result of work by Paul et al.
who also presented similar doping results in a-Si
produced by sputtering in an Ar + H plasma, that
the origin of the doping efFects as well as other
good electronic properties of this material ' is the
H passivation of dangling bonds. It has been
shown recently, for example, that the density of
states in the middle of the gap can be reduced
through hydrogenation to values as low as 5 & 10'
cm eV '. However, the amounts of hydrogen in
these Si-H "alloys" were found to be as much as
100 times larger than the maximum number of
dangling bonds. Therefore hydrogen, in addition
to saturating the dangling bonds, introduces other
changes in the electronic structure of a-Si.

Hydrogenation not only eliminates the dangling-
bond states from the energy gap, but also widens
the gap as demonstrated by Freeman and Paul, by
Cody et al. , and by Goodman et al. using dif-
ferent experimental techniques.

Away from the gap, photoemission measure-
ments by von Roedern et al. revealed hydrogen
associated states well within the valence band. In

the conduction band the photoconductivity data of
Moustakas et al. ' suggest the formation of Si-H
antibonding states. The role of hydrogen in modi-

fying the network is investigated through a variety
of experimental techniques, such as infrared and
Raman spectroscopy, "' nuclear magnetic reso-
nance, ' small-angle x-ray scattering, ' H implanta-
tion in c-Si, ' and neutron scattering measure-
ments. ' For review of experimental work the
reader is referred to the articles by Spear, ' Mous-
takas, and Fritzsche.

Present physical understanding

Unhydrogenated a-Si is thought of as a random
network where the local tetrahedral arrangement,
with bond lengths almost identical to those of the
crystalline state, is retained to a high degree. An
idealization of this concept is the so-called "ideal
random network, "where the tetrahedral coordina-
tion is satisfied throughout with very small fluctua-
tions in the bond lengths and larger fluctuations in
other longer range geometrical aspects such as ring
sizes, dihedral angles, etc. This ideal random net-
work defines the concept of topological disorder.
In reality, there are important deviations from the
ideal network, such as vacancies and other strong
local distortions, which may even cluster together
to form voids, internal surfaces, etc. Associated
with this type of defect are dangling bonds (or,
more generally, weakly bonded states}. The
number of these states is considerably smaller than
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expected because the random lattice undergoes re-
laxation processes around a vacancy (or a cluster of
vacancies) which result in a substantial bond recon-
struction and, consequently, partial elimination of
dangling-bond states. This "healing" process can-
not be complete because of the high coordina-
tion' ' of Si which imposes severe geometrical re-
strictions on the reconstruction process.

Calculations for the ideal single-vacancy prob-
lem show that dangling bonds are associated
with local states whose eigenenergy lies in the gap
(about 0.75 eV above the valence-band edge). Al-
lowing the atoms around the ideal vacancy to relax
pushes these states toward the valence and the con-
duction band. On the basis of these calculations,
one can conclude that the dangling bonds, which
have survived reconstruction, create states in the
gap. These states are of the order of 10' —10
cm eV ' as electron-spin-resonance experiments
show. "' lt is generally believed that hydrogen
passivates the dangling-bond states by forming
Si—H bonds which are associated with states lying
well within the valence band. Furthermore, if the
material is grown in the presence of hydrogen,
much of the reconstruction is prevented as a result
of Si—H bond formation. This explains why the
highest amount of hydrogen in a-SiH„ is so much
larger than the number of dangling bonds (which
survived reconstruction) in the unhydrogenated
specimens. One may view the abundant presence
of hydrogen during the growth process as effective-
ly reducing the coordination of the resulting struc-
ture and thus allowing the growth of an un-
strained, chemically stable substance. The widen-
ing of the gap upon hydrogenation has been at-
tributed to the stronger Si—H bond as compared
with the Si—Si bond. Here, as well as in a prelim-
inary report ' of this work, we argue that an
equally important contribution comes from the ef-
fective reduction of the ppm. interaction upon hy-

drogenation.

Theoretical models

From the above discussion it follows that a com-
plete theory of hydrogenated a-Si has to deal with
the following aspects of the problem.

(a) Topological disorder Models inco. rporating
topological disorder (TD) using a continuous ran-
dom network, have been used ' in conjunction
with the orthogonalized-linear-combination-of-
atomic-orbitals method to perform calculations of
the electronic structure of a-Si:H. These calcula-

tions are consistent with photoemission experi-
ments, but they do not seem capable of obtaining
detailed information for the densities of states
(DOS) in the gap region and in the conduction
band. Recently, Cohen et al. argued that TD
widens the gap and creates a tail in the DOS
which enters the gap. Using small Si-H molecules
terminated by Si Bethe lattices, Allan and Joanno-
poulos have examined the question of ring statis-
tics and its influence on certain regions of the spec-
trum. %'e feel that increasing hydrogenation may
reduce the importance of ring statistics. Finally,
TD, introduced by allowing variation in the
dihedral angle, seems to effectively reduce the size
of the ppm interaction and thus contributes fur-
ther to the widening of the gap.

(b) Reconstruction Re.construction is probably
the most important aspect of unhydrogenated a-Si.
A qualitative lattice distortion model has been pro-

posed by Watkins. This model has been used as
the basis to address the problem of the single
reconstructed vacancy in Si using elaborate
Green's-function techniques. ' ' Also, %hite and
Ngai have discussed reconstructing states at the
Si-Si02 interface. However, it seems that the
amount of reconstruction, and therefore its impor-
tance, is reduced when hydrogen is present during
the growth process. Thus, depending on the
abundance of hydrogen, the method of preparation,
and other details of the growth process, the impor-
tance of reconstruction may vary from a dominant
role to an insignificant detail.

(c) Chemical nature and statistics of the hydrogen
incorporation. By chemical nature we mean wheth-
er the hydrogen is always bonded to one of the four

sp hybrids of Si, or may participate in other bond-

ing configurations. Even if hydrogen is only bond-
ed to Si one still has to know statistical informa-
tion such as the percentage of monohydrides versus

polyhydrides, whether or not there are some hydro-
gen clustering tendencies, etc. Obviously, these
questions affect the electronic structure of the ma-
terial.

%'ith the exception of the continuous-random-
network work, ' most attempts in the literature
to study the above three aspects are based on con-
sidering small Si-H molecules. These Si-H clusters
are either isolated or terminated by hydrogen or
by Si Bethe lattice to avoid unphysical boundary
effects. These approaches are very useful in re-
vealing certain qualitative and even semiquantita-
tive aspects of the subject; they are also necessary
in some cases (e.g., other hydrogen bonding config-
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urations) given the difficulty of the problem.
However, these approaches cannot be considered as
a substitute for calculations dealing with macro-
scopic size systems. We should not lose sight of
the fact that these calculations more properly ap-

ply to the study of Si-H molecules than to the Si-H
solid. In addition, the Bethe-lattice calculations
are based on a first-nearest-neighbor interaction
Hamiltonian which, as has been shown, ' is
inadequate to reproduce the correct gap or a
reasonable conduction band.

The work we report here is one of the first at-
tempts to deal with the problem at the actual mac-
roscopic scale which involves many particular local
configurations. We found it necessary to omit as-

pects related to topological disorder and recon-
struction, and concentrate our efforts on the third
aspect which is the role of hydrogen in the elec-
tronic structure of a-SiH„. We think that for fully

hydrogenated samples with high hydrogen content,
hydrogenation is the most important aspect and
that TD and reconstruction will change our results
only quantitatively. To treat the role of hydrogen,
we have used a particular model of hydrogen in-
corporation which assumes that all hydrogens are
bonded to Si. Although our model may not be
quite realistic, we think that it incorporates the im-
portant features (which are independent of particu-
lar models) such as bonding and antibonding states
made out of Sisp and hydrogen orbitals, a
stronger Si —H bond (as compared with Si—Si
bond) which afFects the states at the bottom of the
conduction band, and an effective reduction, with
hydrogenation, of the ppm. interaction which is very

important for the states at the top of the valence
band.

Thus we believe that the main conclusions of our
work have a much wider validity than the particu-
lar model from which they were derived. Recently,
a calculation complementary to ours was reported
by Pickett. Pickett has employed the self-con-
sistent pseudopotential method with a supercell
configuration to study the electronic states of the
hydrogen-saturated vacancy in Si. His approach
difFers from ours in that he is using a periodic ar-
ray of atoms, while we are using a random array.
The results of the two calculations, however, have
the same qualitative features. In the Appendix we
utilize his conclusion of a strong Si—H bond agd
his charge-density contours to estimate certain H-
Si matrix elements of our tight-binding Hamiltoni-
an. Finally, we refer to a calculation along similar
lines to ours reported by Divincenzo et al. This

calculation deals with a model defect which is an
isolated monovacancy in an otherwise perfect crys-
tal.

The rest of the paper is organized as follows.
Section II describes our model configuration of hy-
drogenated a-Si; Sec. III gives the theory of the
coherent-potential approximation as applied in the
present work; Sec. IV discusses the results and
compares with experiment, and the Appendix deals
with the estimation of the H-H and H-Si matrix
elements.

II. THE PRESENT MODEL

Our model describes hydrogenated Si by con-
structing an effective lattice whose sites may have
probability c of being vacant and probability 1-c of
having a Si atom. In addition, we have assumed
that hydrogen atoms may be located along the
lines connecting a vacant site with its nearest
neighbors, as shown in Fig. 1(b). Thus we have in-
cluded in our model, at random, Si sites, vacancy
sites, and sites that have one, two, three, or four
hydrogen atoms. Using this model of disorder, we
have used a tight-binding form of the coherent-
potential approximation ' (CPA) to perform de-

tailed calculations of the electronic DOS.
The starting point of the present calculations is

a Slater-Koster (SK) Hamiltonian H; the bases are
four Si orbitals (one ~s) and three ~p)) which
have been taken as orthonormal. The matrix ele-
ments in this basis have been chosen in such a
way as to reproduce the band structure of crystal-
line Si (both valence and conduction band) rather
accurately. Such an accuracy is necessary in or-
der to study dangling-bond states. As we have dis-
cussed in the Introduction, we have neglected the
TD except for the following point: Because the
dihedral angle (i.e., the angle which determines the
orientation of the three bonds which are attached
to one end of a given bond with respect to the oth-
er three bonds which are attached to the other end
of this given bond) varies in a disordered structure
in a range which starts from the eclipsed confi-
guration all the way to the staggered configuration,
the ppm interaction fluctuates. As we have men-
tioned before, the ppw interaction is very important
because it controls the position of the top of the
valence band. In the periodic case, the ppm in-

1 1

teraction is equal to the difference b, =E «( —,—, —, )

—Ex,x (~ 2 ~) =y6 ys where—y6 ——(6~H ~2)
and ys ——(6(H (3)=(6[H ~4) and (2), (3),
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ing of the gap from Eg ——1.0 eV in the crystalline
case to 1.05 in the "amorphous" state. We believe
that if TD were taken into account in a more
rigorous way, it would lead to a more substantial
widening of the gap and to a tailing of the states
into the gap.

Our model also omits reconstruction; this is a
very serious omission in the cases where the dan-

gling bonds have not been passivated by hydrogen.
For those cases, our results should not be taken
seriously except to say that if all these dangling
bonds were present there would be substantial DOS
in the gap. On the other hand, in the fully hydro-
genated cases we expect that reconstruction is
minimal and thus its omission in our model is not
a serious shortcoming.

The way hydrogen is incorporated in our model
is shown in Fig. 1(b), where an ideal vacancy has
been created, resulting in four sp Si dangling
bonds. Such vacancies can accommodate up to
four hydrogen atoms as shown in Fig. 1(b). The
result of replacing a Si by four hydrogens as shown
in Fig. 1(b) is to replace the Si-Si matrix elements

1 1 1

[given in Table I of Ref. 22 with E„~(—, —,—,) and
1 1 1E„„(—,—,—, ) changed as discussed above] by H-H

or H-Si matrix elements. In the Appendix we ex-

plicitly estimate the effective matrix elements asso-
ciated with the configuration of Fig. 1(b). They
are the following:

FIG. 1. (a) Two-dimensional view of the atom confi-

guration for Si showing the sp orbitals. (b) Two-
dimensional view of the atom configuration for Si-H
showing the replacement of one Si atom by four H
atoms.

~
4), and

~
6) are the sp3 hybrids shown in Fig.

1(a). In the random structure (6
~

H
~
3)Q

(6
~

H
~
4) so that, in general, there are three dif-

ferent matrix elements ( 6
(
H

~
2), (6

~

H
(
3 ), and

(6
~
H

~

4). We have found how these matrix ele-
ments vary with the dihedral angle and we have
taken, as a measure of the ppm interaction, the
average of the maximum of the three differences of
one of them from the mean value of the other two.
To perform the average, we have assumed that the
dihedral angle has a uniform (constant) probability
distribution. The effect of this is to change the

1 1 1 1 1 1

matrix elements E„„(—, —, —, ) and E„„(—,—,—, ) from
their crystalline values 1.407 and 0.276 eV,
respectively, to the values 1.39 and 0.31 eV. This
reduces the ppm interaction 5 from the value 1.131
eV to the value 1.08 eV. This leads to a recession
of the top of the valence band and, hence, a widen-

E,', (000)= —8.72 eV, E„'„(000)=—1.6 eV,

1 1 1

E,', ( —,——)= —3.05 eV.2 2

Eg~( —,—,—,) =1.96 eV,
1 1 1

1 1 1

E„'y( —,—,—)=0.98 eV .

Actually, the second- and third-nearest-neighbor
matrix elements will be affected by the replacement
of a Si by four hydrogens. We assumed that this
additional modification is much less significant
than the diagonal and first-nearest-neighbor
changes and thus we have omitted it. It must be
pointed out that the E'(000)'s given above are
matrix elements between fictitious s and p orbitals
associated with the four hydrogens shown in Fig.
1(b) (they are the same linear combinations of the
hydrogen orbitals

~

1'), ~2'),
~

3'), and ~4') as
the actual Si, s, and p are of the corresponding
four sp hybrids; see Appendix) and the
E'(

2 —, —, )'s are matrix elements between the
fictitious four hydrogen s and p's and'the s and p's
of the nearest Si's.
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III. COHERENT-POTENTIAL APPROXIMATION

As we have mentioned in the previous section,
we have used the tight-binding (TB) CPA (Refs. 37
and 38) to obtain the DOS. Since, in addition to
the configuration shown in Fig. 1(b), we have also

considered cases where one or more of the hydro-

gens shown are missing, we had to generalize the
TB-CPA to handle these additional configurations.
The CPA condition of zero scattering on the aver-

age leads, .in our case to the following equation:

4
2

6

(1—c)Usi(1 —GeUsi) +xuUu(l —GeUu) + g Ui;(1 —G, Ui;) '+ Q Uz;(1 —GeUz )
i=1 i=1

4

+ g U3;(1 —G, U3;) '+x4U4(1 —G, U4) '=0
i=1

(1)

Us=
ep —Xp

Pp
—Xp

(2)

where G, is an effective Green's function obtained
from the corresponding crystalline Si Green's func-

tion G by replacing e, and e& with the CPA self-

energies X, and Xz, respectively. From Ref. 22 we

have that e, —:E„(000)= —3.953 eV and

ez =E„„(000)= 1.512 eV. G(E) is a 4X4 diagonal
matrix with matrix elements G11,G22„G22, G22, and
where G» ——(Os

~

(E H) '
~

Os—) and

Gzz ——(Ox ~(E H) 'IOx—), where ~Os) and ~Ox)
are the s and p„Si orbitals at the site 0, and where

Us;, the Si scattering matrix, is

0

gp —Xp

Y2 Yl

U21
——S 0 0 p

S—X, (5)

0 0 0 oo

and similarly for U22, U23, U24, U25, and U26.
The matrix element y2 ———1.78 eV is estimated in
the Appendix. U3; is a matrix corresponding to
the four equivalent configurations where three hy-
drogen atoms are present with probability x3/4,

y1 y2 y2

value for silane (Appendix). The matrix —X is a
diagonal niatrix like (2) but without the e, and e~

U2; is a matrix corresponding to the six equivalent
configurations where two hydrogen atoms are
present with probability x2/6,

yi y2

U„, the vacancy scattering matrix is

0 0 0

Y2 Y1

U31 ——S
y2 y2

y2
S—X,

y1

0 oo 0 0
Up: p p 0 e (3)

0 0 0 oo

0 0 0 oo

U1; is a matrix corresponding to the four
equivalent configurations where only one hydrogen
atom is present with probability of occurrence
X1/4,

Y1 y2 y2 y2

and similarly for U32 U33 and U34 U4 is a ma-
trix corresponding to the case of four hydrogen
atoms present with probability x4..

y1 0 0 0 U4 ——S
y2

yl Y2 y2
S—X .

'Y2 'Y1 y2
(7)

0
U11 ——S

ao 0 0
0 0 (4) y2 'Y2 y2

0 0 0 oo

and, similarly, for U12, U13, and U14. S is the
matrix which accomplished the orbital trans-
formation (Appendix). The hydrogen matrix
element y1 is taken equal to —3.38 eV which is its

The probability of occurrence of the configuration
shown in Fig. 1(a) is denoted by 1 —c; the probabil-
ity of the configuration of Fig. 1(b) is denoted by
x4. Obviously,

C =XP+X1+X2+X3+X4 .
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In the case where there is no statistical correlation
among hydrogens the probabilities x; (i =0, . . . , 4}
can be expressed in terms of the quantity x, which
is the ratio of the total number of hydrogens over
the total number of lattice sites, and the quantity c:

4! x'(4c —x )

(4—1)!1! 4c 4

The case x =4c represents the fully hydrogenated
case where x4 ——c and x~ ——0, l =0, . . . , 3; this is
the case where the reconstruction effects are ex-

pected to be minimal and, consequently, our model
to be more realistic.

Since the Green's function 6, is a function of
the self-energy X, the CPA condition [Eq. (1)] is
very complicated to solve, even numerically. For
this reason we have solved Eq. (1) for the limiting
cases x =0 (no hydrogen) and x =4c (all vacancies
saturated by hydrogen). For x =0, Eq. (1) com-
bined with Eq. (3) reduces to

(1—c)Us;(1 —G, Us;) ' cG, —=0. (10)

Utilizing symmetry Eq. (10) results in the fol-

lowing two scalar equations:

X, =eg c/6) I (E,X„Xp—),

Xp ep c IGzz(E, X——„—Xp ) .

Equations (11}are solved simultaneously for X,
and X& using a Newton-Raphson iterative pro-
cedure. The Brillouin-zone summation necessary
in evaluating 611 622 was done for 240 k points in
the irreducible zone.

For x =4c, Eq. (1) reduces to the following ex-

pressions:

6&t X,'+(I —&,6)) —e,'6)) )X,—c (e,' e—, )

~s+~s&s 611—0 &

(12)

GzzXz+(1 —e Gzz —e~Gzz)X~ c(—ez —e~)

+Ep Ep 622 =0,
where e,

' =E,', (000)= —8.72 eV and

e& ——E„' „(000)= —1.6 eV are the effective H-H ma-

trix elements (Appendix). Equations (12) are also
solved for X, and X& by iteration. Since both sets
of Eqs. (11) and (12) are complex, we found it com-

putationally efficient to separate them into their
real and imaginary parts and do the computer code
in real arithmetic.

For the intermediate values of x, we have em-

ployed an average t-matrix approximation (ATA)
instead of the CPA. We have done this to simplify
the computational effort since the additional errors
are small, and because the cases with x &4c are not
very realistic due to the reconstruction that takes
place. The ATA-like approximation used for
0&x &4c is the following. We define X;(E:x)
i =s,p by the relation

X.(E x)= 1 — X;(E;0)+ X;(E;4c)—,
4c

(13)
(

where X;(E;0) and X;(E;4c) have been obtained
from the CPA described above.

Having determined X, and Xz [using the CPA
condition (1) for the cases x =0,4c and Eq. (13) for
x+0,4c] we can obtian 6,(E); then in all cases the
DOS is given from the following expressions:

[ —Im Tr[(1—6,U„)-'6,][,
4 x
g I

—Im Tr[(1—G, U&;} 6,]I+ Q I
—Im Tr[(1—G, U;) G, ]I

i=1 i=1
4

+—g {—Im Tr[(1—G, U;) 6,]]+ j —ImTr[(1 —6 U~) '6, 1]
7T

(14)

T

1X„=——Im Tr (X—Ã„)
'IT

1 6e
&sl —&H

where the notation is the same as that of Eq. (1).
In the special case of the fully saturated vacancy,

i.e., x =4e, x4-——c, and x1 ——x2 ——x3 ——x, =0, the
above Eqs. (14) become These equations can be further reduced to give the

s- and p-like components of the DOS. The total
DOS is of course the sum of Ns; and NH. The
CPA, as described above, treats the diagonal disor-
der. The inclusion of oA'-diagonal disorder in the
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TB-CPA is computationally very complicated and
at present there is no established "best" technique.

In our calculations, the off'-diagonal disorder was
treated within the virtual crystal approximation
(VCA), i.e., the nearest-neighbor matrix elements
were replaced by their averaged values:

Z (---)= l ——Z (---)+—E,
1 1 1 X Sj-Sj 1 1 1 + Si-8 1 1 1

&J 2 2 2 2 ~j 2 2 2 2 ~j

I',j=S,X,y, Z . (16)

The VCA is a good approximation if the differ-

ence between the Si-Si and the Si-H matrix ele-
ments is small in comparison to their average
value. This condition is not satisfied for all matrix
elements and so there is a need here for improving
our present calculational techniques. Given, how-
ever, the complexity of introducing off-diagonal
disorder in the CPA and that there are already
other uncertainties in our model, we decided in the
present stage to work with the VCA for the off'-

diagonal disorder. We have used the simple CPA
(no cluster extensions) and have assumed that there
is no statistical correlation among the various con-
figurations discussed before. At this point we must
note that it has been proposed that vacancies [see
Fig. 1(b)] tend to cluster together as to form micro-
voids and internal surfaces. ' ' We have found that
this clustering effect effectively reduces the value of
c and tends to create some internal surface states
which make a small contribution to the total DOS.
Thus the vacancy clustering eff'ects can easily be
incorporated in our model by appropriately reduc-
ing the value of c. I.et us add that in the presence
of adequate hydrogen during the growth process
this clustering effect may not occur.
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FIG. 2. CPA densities of states in the gap region for
the Si vacancy case for different vacancy concentrations.

sion of the effects of reconstruction, we certainly
overestimate the number of these states and, there-
fore, we don't attempt any quantitative comparison
with experiment.

Figure 3 deals with the restoration of the band

gap upon hydrogenation. Figure 3 corresponds to
c =0.05 and 0&x &4c. It is evident that by in-

IV. RESULTS AND DISCUSSION
hl+ O

W (

In Fig. 2 we show the DOS in the gap region for
the configuration Si and vacancies with no hydro-

gen introduced yet. We note the appearance of
dangling-bond states in the gap. The density of
these states increases with vacancy concentration c.
Also the gap becomes smaller with increasing c un-

til it is completely filled. It is also interesting to
note that the gap states have as their center of
gravity the position of the bound state (0.75 eV) of
the ideal single vacancy. It should be stressed

here that the results of Fig. 2 are useful in demon-

strating qualitatively the existence of dangling-
bond states in the gap. However, due to the omis-

QO,
yO
lJ

I- o
M
(I7
4JI- o

ii)

LL

Q 0)
O
O

(/) Og 0
-0.5 a.a

ENERGY(eV)

FIG. 3. Densities of states of SiH„ in the gap region
for different hydrogen concentrations x (c =0.05).
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creasing the hydrogen content x, the states in the
gap are reduced until they are completely eliminat-
ed for the fully hydrogen-saturated-vacancy case
(x =0.20}. This is, of course, what the experimen-
tal situation is and the reason why a-Si:H has
semiconducting properties similar to those of crys-
talline Si.

In Fig. 4 we show the DOS of Si-H (with
c =0.05 and x =0.20) for the whole spectrum, in-

cluding both the valence and conduction bands.
We note first a band gap Eg ——1.4 eV that is wider

by 0.4 eV than the corresponding Eg ——1.0 eV
which our tight-binding Hamiltonian gives for the
nonhydrogenated case. This widening of the gap is
due to a narrowing of the third DOS peak at the
top of the valence band. We have identified this to
be the result of a decrease of the difference:

1 1 1 1 1 1

E„~(—, —,—, ) —E„~(—, —, —, ), which is a measure of
the ppm interaction. This recession of the valence
band by 0.4 eV is in excellent agreement with the
photoemission experiments of von Roedern et al.
Figure 4 also shows the DOS decomposed by site.
The hydrogen-site DOS shows pronounced peaks
at 5.2, 7.6, and 13.5 eV below the Fermi level.
Comparison with photoemission data is more ap-
propriately done after smoothing the H-site DOS

Si H X=0. 20 C=O. 05

1.0

0.5
?'.

1-
Z

CC

LLl-
IXI
K

I-
V)
Z
ILII-

Si-H Expt,

EF

ENERGY {eV)

FIG. 5. Broadened H-site density of states. The ar-
rows indicate the peak positions from the photoemission
measurements (Ref. 9).

by applying a Lorentzian broadening. This is plot-
ted in Fig. 5 which shows that the 5.2 and 7.6 eV
peaks are predicted in almost exactly the same po-
sition found in the measurements. The 13.5 eV
peak is not seen experimentally for reasons we do
not understand.

The widening of the band gap'has been demon-
strated experimentally by a variety of experimental
techniques. To compare with these experi-
ments, we have performed a calculation of the joint
DOS N (E). The calculated [N (E))'~ is assumed
to be proportional to the measured quantity
(aE)', where a is the absorption coefficient A.
comparison with the measurements of Cody et al.
is shown in Fig. 6, where [N (E)]'~ has been nor-
malized to the value of (aE}'~ at E=4 eV. The
experimental graph was obtained at approximately

I I I I I I I I I I I I I I I I I I I I I I I I

-13-12-11-10-9-8 -7 -6 -5 -4 -3 -2 -1 Q 1 ? 3 4 5 6 7 8 9
ENERGY (eV)

a
1. 0

0.5 ' C)
0

0. 1

n
LA

n

2.0

ENERGY(eV)
4. Q

FIG. 4. Total and site-decomposed densities of states
for SiH„with x =0.2. Note that the Si and H DOS are
multipled by (1—c) and c, respectively (c =0.05). The
Fermi level is located in the middle of the gap.

FIG. 6. Plot of the square root of the joint density of
states versus energy. The line joining the open circles
represents the measured quantity (aE)' (Ref. 7).
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1
G»(E) =

E,', (000)—E„(000)

1
Gp2(E) =

E~ (000)—E~(000)

(17a)

(17b)

The graphical solution of Eq. (17a) is shown in

Fig. 8. As we see from Fig. 8, there is no real

Sig X&.20 ~05

1.0

0.5

16%%uo hydrogen content, while the theoretical graph
corresponds to 20%%uo. Despite this and the fact that
the theory predicts a smaller gap the overall agree-
ment is rather good.

Our calculations can also be used to compare
with Auger and soft-x-ray-emission measure-
ments. We present in Fig. 7 a decomposition of
the Si-site DOS of SiH in its s and p components.
The s-like and p-like DOS are proportional to the
K and L spectra, respectively.

We now turn to a discussion of hydrogen-
induced antibonding states at the bottom of the
conduction band. Let us first examine the case of
a single configuration of the kind shown in Fig.
1(b) embedded in a Si lattice.

The bound states around this four-hydrogen
cluster will be given by

solution of Eq. (17a) because the intersection of
ReG with 1/E' E—occurs within the band where
ImG+0. On the other hand, this intersection
occurs near the bottom of the conduction band
(CB). The physical meaning of no real intersection
is that there are no true bound states associated
with the four-hydrogen cluster embedded in a Si
lattice. The fact that the intersection occurs near
the bottom of the CB where ImG is very small
means, physically, that the four-hydrogen cluster
creates resonance s states i.e., states where the wave
function has a peak around the cluster. These
resonance states can be viewed as a hybridization
of the Si-H s-antibonding states with the regular Si
states at the bottom of the conduction band. Such
resonance states are associated with a lower than
the regular CB mobility (because the electron is
almost trapped around the hydrogen). Evaluation
of Eq. (17b) showed neither bound states of p
character nor any resonance states below 3 eV.

The suggestion of Moustakas et al. ,
' born out

of their photoconductivity measurements that Si-H
antibonding states form at the bottom of the con-
duction band, is strongly supported by the present
calculations. This is shown in Fig. 9 where we
have plotted the ratio NH/N, as a function of E.
Indeed, this graph, in addition to the peaks in the
valence band that we have already discussed, shows
a pronounced maximum at the bottom of the CB
indicating strong H participation in the formation
of these states.

Finally, we will discuss the variation of the gap
size Eg with hydrogen content x. We define the
Fermi level E~ (E, +E„)I——2 where E„ is the top
of the valence band and E, the bottom of the con-

I I I I I I I I I I I I I I I I & t I I I t I I
-l$-12-1l-i0-9 -8 -7 -6 -5 -4 -9 4 -l 0 l 2 3 I 5 6 1 8 9
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I -l.O O.O l..o 2.0 3.0
ENERGY (eVj

FIG. 7. Si-site density of states and its s- and p-like
components.

FIG. 8. The real part of the s-like Green's function
plotted as a function of energy for the case of the single
impurity that consists of four hydrogen atoms. The dot-
ted line indicates the value of the right-hand side of Eq.
(17a).
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-]C.D -10.0 -6.0 -2.0 2.0 6.0 10.0
ENERGY(eV)

FIG. 9. Ratio of H-site density of states NH to the
total density of states N, for SiH (x =0.2).

duction band. The variation of E„,E„and Ez
with x is shown in Fig. 10, where in all cases we
are dealing with vacancies fully saturated by hy-

drogen, i.e., x =4c. We note first that E, is essen-

tially constant. This is due to a cancellation of the
effects of disorder (tends to push E, down) by the
effect of a stronger Si —H bond (tends to push E,
up) as manifested by the larger value of the param-
eter y3 (see Appendix) in SiH„. E„depends mainly

on the Inatrix element difference y6 —y5 or
1 1 1 1 1 1

equivalently E„z(—,—,—, ) E„„(—,—, z ) wh—ich is a

measure of the pp~ interaction. Hydrogen de-

creases y6 —y5 and so pushes E„down and widens

the gap. As a result E~ is also pushed down.

Our work shows that the size of the gap depends

essentially on two parameters: the bond strength y3
and the ppn. interaction y6 —y5. Hydrogen incor-

poration effectively increases y3 and decreases

y6 —y5 thus producing a wider gap. This effect of

hydrogenation on y3 and y6 —y5, being essentially a
local chemical effect, is expected to transcend the
validity of our present model and thus constitutes a
general feature of hydrogen incorporation in a Si
tetrahedral structure.

In conclusion many important properties of fully
hydrogenated a-Si (such as widening of the gap,
Si-H bonding states, Si-H antibonding resonance
states) depend mainly on the local chemical en-
vironment. Thus these properties are largely in-
dependent of the particular model, provided that it
satisfactorily treats the limiting case of nonhydro-
genated Si. Our present model satisfies these re-
quirements (with the exception of the omission of
topological disorder) and as a result we expect our
main conclusions to have a much wider validity
than the model itself.
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APPENDIX: ESTIMATE OF HYDROGEN-
HYDROGEN AND HYDROGEN-SILICON

MATRIX ELEMENTS

~ ro
O

00

b2

52

I

CS
i I I

0.0 0,1 0.2 0.3
HYDROGEN CONTENT

FIG. 10. Variation of the bottom of the conduction
band E, of the Fermi level E~ and the top of the
valence band E„versus hydrogen content for fully hy-
drogenated samples.

f
2) ix)

i4& iz&

(A 1)

is& i1)
ix) i2&

iy&

14&

(A2)

For each Si we have the four orbitals
i
s ),

i
x ),

i y ), i
z ) or equivalently the four sp' hybridized

orbitals shown in Fig. 1(a). The transformations
from the one set to the other are the following:
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for the Si at A. For the Si at B assuming that AB
is along the 111 direction, we have

I
s)

ix)
y-&

»=&I iH i2&,

»=&5iHi»,
(A14)

(A15)

(A16)

(A17)

(A4)

1 1 1 1

is&
y-)

ig)

where S is the transposed matrix of S. The 4&(4
matrices S and S are given by

yi ——
4 [E„(000)+3E„„(000)],

y2 = , [E„(0—00)—E„„(000)],
1 1 1 1 1 1 1

y5= 4 [Ess( 2 2 2 ) 6Esx( 2

(A19)

(A20)

ys= «
I
H

I
»

where the orbitals
i
6) and

i
2) are along an-

tiparallel directions.
Using Eqs. (Al) and (A2) one easily expresses

the y's in terms of the E's and vice versa. We have

1 1 —1 —1

1 —1 1 —1

1 —1 —1 1

1 —1 —1 —1

—1 1 1
S=—

1 1 —1 1

1 1 1 —1

(A5)

(A6)

—3E„„(2
—,—, ) 6Ex y( —,——, —,)], (A21)

1 1 1 1 1 I

1 1 1 1 1 1 1

y4= 4 [Es,s( 2 2 2 ) 2Es,x( 2

+E„„(—2 —
2

—2)+2E„s(—,—, —, )], (A22)
1 1 1 1 1 1

1 1 1 1 1 1 1

y5=4[Ess(2 2 2)+ Esx(2 2 2)

+E„„(—, —,—, ) —2E„(.—, —, —,)], (A23)
1 1 1 1 1 1

Following the SK notation, the diagonal and
nearest-neighbor matrix elements of the Hamiltoni-
an in the

i
s ), i

x ), i y ), i
z ) representation are

denoted as follows: E„(000)=yi+ 3y2, (A25)

1 1 1 1 1 1 1

y =-, [E...(-, —,—, )+2E...(-, —, —, )

—3E...(-, —, —, )+2E.,(-, —,—,)], (A24)

E, ,(000)= (s
i
H

i
s ),

E„„(OOO)=(x iH ix)

(A7)
E„„(000)=yi —y2 ~

E„(—, —, —, ) = —,(15+6y4+6y5+3ys),

(A26)

(A27)

E„(—, —, —,)=(s iH is),
E, ( —, —,—, )=(x iH is)= —(s iH ix)

=(y iH is)=

(A9)

(A 10)

Es,x( 2 2 2 ) 4 ( y3 2y4+2y5+y6) '

E„,„(—,—, —, ) = —,( —yg+2y4+2y5 —3y6), (A29)

E„„(—, —, —, )=(x iH ix) =(y iH iy)

=(z iH iz),
E„(—, —,—,)=(x iH iy)=(x iH iz)

=(y iH ix)=(y iH iz)=

(Al 1)

(A12)

yi ——(1 iH i 1), (A13)

Hirabayashi ' has written the matrix elements of H
in the hybrid representation as follows:

E„2,( —,—, —,) = —
( —yq+ 2y4 —2y5+ y6) . (A30)

In Fig. 1(b) the Si at A has been removed and
four hydrogens have been placed as shown, in or-
der to passivate the Si dangling bonds. Charge-
density contours resulting from the pseudopotential
supercell calculation of Pickett involving the con-
figuration shown in Fig. 1(b), demonstrate that
there are hydrogen p and even d components in the
eigenfunction. Furthermore, these charge-density
contours strongly suggest that this multiple I hy-
drogen state can be approximated by an s-only or-
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bital which is displaced towards the Si site by
about 20% as shown in Fig. 1(b). If Oi, 02, 03,
and 04 are the positions of the centers of the dis-
placed hydrogen s orbitals

I
1'),

I
2'),

I
3'), and

I
4'), respectively, the distances are as follows:

BO) ——2.30 a.u., B02 ——5. 18 a.u. , 0) 02 ——3.50 a.u.
Comparing Figs. 1(a) and 1(b) we can see that

the role of thefoursp hybrids
I
1) to I4) is

played by the four orbitals
I
1') to

I
4'). The re-

sult of this replacement is to change the
I / ~

V1 Y2 . . 76 «Xi. X6 g»en by

7( =&I'IH Il'&

y2 = &
1'

i
H

i
2'),

)', =&5 IH I
1'),

)'4(i)=&6IH I

1'&

7'4(2) = & 5
I
H

I

2'
&

y5 ——&6iH
i
3'),

y6 ——&6
I
H

I

2') .

(A31)

(A32)

(A33)

(A34)

(A35)

(A36)

(A37}

X4(1)+X4(2)
74 2

(A38)

Before we proceed with the estimation of the values

of the y"s we mention that we can introduce ficti-

tious s and p orbitals
I
s'),

I
x'),

I
y'),

I
z') associ-

ated with four hydrogens of Fig. 1(b) through the
relation

is'&

ix')
, )

=S

I

z')
I

4')

(A39)

These orbitals allow us to define hydrogen
associated E"s by replacing in Eqs. (A7}—(A12)

Because the transformation in Eq. (A39) is
identical to that in Eq. (A2), it follows that the
E"s are given in terms of y"s as in Eqs. (A25) and

(A30). Thus the removal of a Si and the
placement of four hydrogens as shown in Fig. 1(b)
is equivalent to changing the six matrix elements

A complication associated with the configuration
of Fig. 1(b) is that y4(i~ and y4(ii are not necessarily

equal as in the configuration of Fig. 1(a). Howev-

er, as we shall see below the difference between

y4~i) and ye&2) turns out to be small, thus we can

replace these matrix elements by their mean value,

i.e.,

E's to the new values E"s. Actually, the second-
and third-nearest-neighbor matrix elements should
be modified as well. These modifications are
difficult to estimate and are not expected to be as
important as the changes in the diagonal and
nearest-neighbor matrix elements. For these
reasons we have omitted these modifications.

We now proceed to estimate the y"s. The quan-
tity y'i is taken equal to its value in the SiH4
molecule

y)
———3.38 eV . (A40)

To estimate y2 we need to obtain the oA'-diagonal

matrix element between the orthogonalized hydro-
genic wave functions associated with the configura-
tion shown in Fig. 1(b). Mattheiss has examined
this problem in detail for a system of six hydrogens
placed in the corners of a canonical hexagon. We
think that the nearest-neighbor matrix elements do
not depend so sensitively on the geometry and con-
sequently Mattheiss's results can be used to obtain
a fair estimate of y. We have fitted Mattheiss's
results for separations R =2, 3, 5 a.u. with a qua-
dratic function times the exponential function

[exp( —R)]. We found from this fitting that

yi ———27.07(1.491 —0.072R +0.077R )e

(A41)

in units of eV which for R =3.5 a.u. gives

yz
———1.78 eV . (A42)

To obtain y3 we shall write it by employing Eq.
(A3} as follows:

ys= —,(&s iH i
1') —3&x iH i

1')) . (A43)

&s
I
H

I
1') = — 27.07(1.491—0.072R

~H-H

+0.077R )e

where

(A44)

Chadi has found that the nonorthogonalized orbi-

tal
I
s„) to which

I
s ) reduces as the overlap goes

goes to zero is proportional to Rexp( —1.04R).
The fact that this s Si decays almost exactly like a
hydrogen s orbital suggests that Eq. (A41) may be

used to obtain &s
I
H

I
1'). However, the extra

factor of R in
I
s„) would cause the matrix

element to decay more slowly than the right-hand

side of Eq. (A41). To take this into account we

write, in eV
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I si-H (v 3/4+ 1~3)(1+R)

R+ (2+R/4) exp( —R)
3 3

&x IH
I

1'&= —«.&S IH Il') (A45)

where R„ is the x component of the vector 0) B,
and the constant c can be determined from the
known values of (x

I

H
I

1') and (s I H
I

1') for
the SiH4 molecule. We found c = 3. Substi-

tuting in Eqs. (A44) and (A45) the values

R =0]8=2.3 a.u. and R„=1.33 a.u. , we obtain
(s

I

H
I

1'& = —4.85 eV and (x
I

H
I

1') =2.15 eV.
Thus,

is the off-diagonal matrix element between

exp( —R) and R exp( —R) and

Vtt u = —(1.5+1.5R+ R /6)exp( —R)

is the same matrix element between two hydrogen-
ic wave functions. To check the accuracy of Eq.
(A44) we substitute for R the Si —H distance in

SiH&(R =2.8 a.u. ) and we obtain —3.58 eV. This
is in surprisingly good agreement with the esta-
blished value of —3.57 eV. To obtain
(x IH I

1') we take into account that the
nonorthogonalized

I x„) is proportional to x
I
s„).

Hence it is plausible to write

(s IH
I

2')= —0.42 eV . (A51)

The other matrix elements entering Eqs.
(A48) —(A50) can be estimated by employing Eq.
(A45) and the fact that the vector 2'B and 3'B are
(1.327, 3.799, 3.799) and (3.799, 1.327, 3.799),
respectively. We obtain thus

(A52)

&x IH
I

3'&=&z IH
I
3'&=&y IH I2'&

which give

= (z
I

H
I
2') =0.53 ev, (A53)

by using Eqs. (A44) and (A45). However, Eq.
(A44) will overestimate the size of the ((s

I
H

I

2') )

matrix element because of the presence of the hy-
drogen at 1' which represents an effective repulsive
potential. In Mattheiss's calculation this reduc-
tion of the next-nearest-neighbor transfer matrix
element is so large that the matrix element be-
comes almost zero (actually it changes sign and is
positive). In the present case, due to the fact that
the hydrogen 1' is closer to Si and that there is the
extra R factor in the Si wave function, one expects
a smaller reduction of about 50 Jo assuming that
only half the space, i.e., the region around the hy-
drogen at 2' would contribute to the integral. This
crude reasoning suggests that (s

I

H
I

2') is rough-
ly half the value given by Eq. (A44), i.e.,

y3 ———5.65 eV . (A46)

The quantity y4~&~ can be written, by employing
Eq. (A3), as

7'4()) =-(&S IH I
1'&+ &x IH I

I'&)

y4& p) = —0.84 eV,

y5 ———0. 11 eV,

y6
——0.23 eV .

(A54)

(A55)

(A56)

= —1.35 eV . (A47) Using Eq. (A38) we obtain for y4

By employing Eq. (A3) we can rewrite the rest of
the y"s as follows:

y&(z)
———,

'
( & s

I
H

I

2'
&
—

& x
I
H

I

2'
&

«48)

y5= —,((s
I
H

I

3') —(x
I
H

I

3')

+ &y IH I
3'&+ &z IH I

3'&)

y4
———1.10 eV . (A57)

The corresponding E"s are obtained from Eqs.
(A25) —(A30),

E,', (000)= —8.72 eV,

E„'„(000)= —1.60 eV,
1 1 1

E,', ( —, —,—, )= —3.05 eV,

y' = —,((s IH
I

2') —(x IH
I

2')

+ &~ IH
I

2'&+ &z IH I
2'&) . (A50)

1 1 1

E,'„(———,)=1.96 eV,2 2

1 1 1E„'„(—,—, —,)=0.64 eV,

One may attempt to calculate the matrix ele-
ments in the right-hand side of Eqs. (A48) —(A50)

1 1 1E' (---)=0.98 eV .2 2 2
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