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Theory of the mobility of electrons in a semiconducting-surface inversion layer
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{Received 22 May 1981)

The dc mobility for the lowest subband electrons in a Si(100) surface inversion layer
have been caluculated by the standard memory-function approach and also by the
Boltzmann equation. We show that the results obtained from these two methods do not

agree with each other when the temperature becomes finite. The scattering mechanisms

due to the oxide charges at the semiconductor-insulator interface and the surface rough-

ness are considered. Our numerical results seem to indicate that the dc resistivities

derived from both methods can be fitted to agree with experiments at low temperature if
the parameters involved are varied slightly.

It is well known that the memory-function ap-
proach' has been quite successful in its application
to calculate the resistivity of an ideal metal whose

Fermi surface is spherical. For example, the resis-

tivity formula obtained from the memory-function

approach agrees with that from the Boltzmann
equation at low temperature if the scattering
mechanism of electrons are due to impurities and

phonons. However, at higher temperature, especial-

ly when the temperature T is comparable to the
Fermi energy Ez of the system, the comparison be-

tween the results of these two methods has never

been made. In this article we shall show that the
dc mobility obtained from the memory function

approach is not unique and its expression is deter-

mined entirely by the method of expansion used

here. %e shall also show that the dc mobility ob-

tained from the standard high-frequency expansion
method used in the work of Gotze and Wolfle no

longer agrees with the result from the Boltzmann

equation whenever the temperature T becomes fin-

ite. The transport relaxation rates obtained from
these two approaches will be calculated numerical-

ly as a function of T for electrons in Si(100) surface
inversion layer. The scattering mechanisms due to
the oxide charges at the semiconductor-insulator
interface and the surface roughness will be con-

sidered. Our numerical results seem to indicate

that the dc resistivities derived from both methods

can be fitted to agree with experimental measure-

ments if the parameters involved are varied slight-

ly.

M(co) = g q„'
~

v (q)
~

'[s (q, co) —s (q,0)],
1Vmm

where X is the electron concentration, m and e are,
respectively, the effective mass and the charge of
an electron.

~
v(q)

~

is the scattering matrix
which contains both the mechanisms due to
charged impurities and surface roughness. Its ex-

pression will be given later. s (q, co) is the density-

density correlation function for conduction elec-
trons. , On the other hand, the Drude formula for
conductivity has the expression

o(co) = ice
m [co+i /r(co))

(3)

The relaxation time r(co) can be obtained by com-
paring Eq. (3) with Eq. (1). If M(co) is evaluated
to the lowest order in the scattering matrix, we
have I/r(co) =iM(co) In the follo.wing, what we
are interested in is the limit of co~0. From Eq.
(3) the dc conductivity can be written aso=¹ /m(1/r) ', here (1/r) '=I/r(0). If the

First let us briefly review the procedure to obtain
the dc mobility from the standard memory func-
tion approach. As it has been shown that the
dynamic conductivity derived from the current-
current correlation function can be written as
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with

density-density correlation function s (q, co) in Eq.
(2) is evaluated in the random-phase approxima-
tion (RPA) for electrons in a semiconducting sur-
face inversion layer, (1/r & =iM (0) can be shown
to have the form

(9)
m (vk} Bn(k)
N k ri, (0) BE(k)

I

Transforming the summation over k to an integra-
tion over E(k) =k /2m in the above equation, it is
straightforward to show that 1/rk(0) has the ex-
act expression as I/ (rE} [Eq. (5)] with E defined
as E=E(k). The dc conductivity obtained from
Eq. (8) can then be written as o =¹ /(m (r & ) and
(r&,

00

(r&= I dEr(E)
0

n (E) . (10)
8

where n(E) =[exp(E p, )/T+—I] ' is the Fermi
function and p, = T In[exp(Eir/ZmT) —1] is the
chemical potential. q=2K2mE sin(P/2) and
e(q, 0) is the static dielectric function in RPA (Ref.
6).

(q 0)=1+ "(q)— ~ ( ~l

The expression for pa in the above equation is
directly the consequence of the classical Drude
conductivity formula defined in Eq. (3). However,
according to the Boltzmann Eq. (2) the conductivi-
ty at finite co can be written as

(vk)
o(co)=ie.

Co+ i /'Pk (CLi)

Bn (k)
BE(k)

(8)

where ~k and vk are, respectively, the relaxation
time and the x-component velocity of the electron
with momentum k. If rk(co) is independent of k,
Eq. (8) reduces back to the Drude formula of con-
ductivity as defined in Eq. (3). The expression for
I/rk(c0) can also be obtained by comparing Eq. (8)
with Eq. (1); in the limit of co—+0 we have

where rj=q /2m', U=p/E+, gz EJ:/T, v, (q——) is
the effective electron-electron interaction,
m=0. 195mo is the effective mass for electrons in
the Si(100) surface, and mo is the free-electron
mass. The mobility pa can therefore be obtained
from the conductivity o, for example, po -=o/¹
and we have

The mobility formula p~ obtained by comparing
Eq. (1) with Eq. (8) is thus difFerent from that in
Eq. (7}:

ps=- —(r& .
fPl

This result has also been obtained by Stern, ' who
used a different method. It is easy to see that
pa ——p~ at T=O K. However, we shall show
below that the values of pa and pz will be dif-
ferent when T becomes finite.

In the following the mobilities pD and pg will be
studied numerically at finite temperature. The
scattering of electrons due to oxide charges and
surface roughness will be considered here; the
scattering amplitude

~

v (q)
~

that appeared in Eq.
(5) can then be written as

I
v(q)

I
'=nI

I
v (q) I

'+
I v-(q) I

'

where v;(q) and v„(q)are, respectively, correspond-
ing to the interaction of electrons with charged im-
purities and surface roughness. nr is the impurity
concentration. The derivation of v;(q} has been
showy in Ref. 6 and its explicit expression will not
not be given here. In our following numerical cal-
culation, the surface roughness potential v„(q)of
Matsumoto and Uemura will be used:

4 e nv„(q)= —+nd, ~ hdexp( —d q /8) . (13)

1

Here e, = —,(e, +6p} 6 = 11.8 and @0=3.8 are the
dielectric constants for silicon and oxide. nd, z is
the effective charge density in the depletion layer.
6 and d are, respectively, the mean-square height
and the lateral correlation length.

The results of our numerical calculation for
Si(100) surface inversion layer are shown in Fig. 1

for n=2.0)&10' cm and nd, p
——0.3X10' cm

There we have assumed that the charged impurity



7208 W. Y. LAI AND C. S. TING

l.5

310—

tU

E

i0

tXl
O

o 0.5—
Q
K
Q.

LU
K

I

Po
I

X

308—

& 306-
Cs

& 304-

I-
2 302-
V)
ILJ
K

300—

298—

I

20 40 80 I 2

T (K)
FIG. 1. Temperature dependence of the reciprocal

mobility for electrons in Si(100) surface inversion layer.
X o, d, =o. o, y= ~ X

cm, 6=6.0X10 cm, and d=1.3X10 cm. The
solid curves and the dashed curves are calculated,
respectively, according to Eqs. (7) and (11). p,„'(p,, ') is
the reciprocal mobility due to oxide charges {surface
roughness) alone. p ' is the reciprocal mobility due to
both the scattering mechanisms.

FIG. 2. Resistivity as a function of temperature. The
solid curve and the dashed curve are, respectively, ob-
tained from the memory function approach and the
Boltzmann equation. The electron density n=1.3X10'
cm . The small triangles indicate the experimental
data of Ref. 4 for sample R3L. All the other param-
eters used here are identical to those in Fig. 1 or in Ref.

concentration is ni ——1.0&(10"cm, and the
parameters associated with the surface roughness
are 6=6.0&(10 cm and d=1.3)& 10 cm. The
solid lines are calculated according to Eqs. (4) and

(7) which is obtained from the Drude formula [Eq.
(3)j. The dashed curves are calculated according to
Eqs. (10) and (11) which is obtained from the con-
ductivity by solving the Boltzmann equation [Eq.
(8)]. Both of these results show a linear T depen-
dent term in the inverse of the nobilities p ' at
low temperatures. But the slopes of them are dif-

ferent. It seems that the temperature dependence
in p

' from the Drude formula is stronger than
that from the Boltzmann equation. In Fig. 1, p,„'
is entirely due to the scattering of electrons with
oxide charges and p,, ' is solely from the surface
roughness. p

' is the reciprocal mobility due to
both of the scattering mechanisms. In order to
compare with the recent experimental measure-
ments, we also calculated the resistivity for elec-
trons in the (100) surface of Si inversion layer as a
function of T for n=1.3)&10' cm . This is
shown in Fig. 2. The small triangles there indicate
the experimental data of Ref. 4 for sample R3I..
The solid curve is calculated according to the
Drude formula or the memory function. The
dashed curve is calculated according to the formula
obtained from the Boltzmann equation. If we pick

the concentration of the oxide charge,

ni ——1.0&(10» cm
—2 The parameters 5 and d are

the same as those in Fig. 1. The values of these
par~meters have also been used in Refs. 4 and 8.
Both of the calculated results show that the resis-

tivity has a linear T dependent term for T & 2.5 K.
This is in agreement with experimental measure-
ments. For T &.

.2.5 K, the linear T disappears
and a T term shows up in the resistivity curves.
With the parameters mentioned above, although
both of the calculated curves are able to explain the
qualitative feature of the experimental data, it
seems that the dashed curve obtained from the
Boltzmann equation agrees better with measure-
ments. But if the impurity concentration nr is in-

creased slightly while the surface roughness param-
eters 6 and d are decreased; for example, the
values of ni, 6, and d used in Fig. 2 are varied
from 1.0&&10" cm, 6.0~10 cm, and
1.3)&10 cm to 1.05&&10"cm, 5.4 X10 cm,
and 1.25&10 cm, respectively; the slopes of
those curves in Fig. 2 will be lowered. The result
(solid curve) obtained from the Drude formula will

agree better with the experimental data. This is
shown in Fig. 3. We can conclude that it is rather
difficult to make a decisive comparison between
these two approaches with experimental measure-
ments unless the parameters involved with the
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FIG. 3. The resistivity as a funtion of temperature
for nl ——1.05)&10" cm ', 5=5.4X10 ' cm, and
1=1.25& 10 7 cm. All other parameters and the
representations for notations are identical to those in

Fig. 2.

present problem can be determined to high degrees
of accuracy.

At this stage it may be interesting to note the
reason why the solid curve is always larger than
the dashed curve T+0. This phenomenon can be

1 «ST 1 Br(E)
rs(E) ()E

(14)
If the same set of parameters are used for both
methods, the above result shows that the resistivity
calculated from the Drude formula is always larger
than that from the Boltzmann equation. The
difFerence between (1/r) and (r) ' at finite tem-

perature for a noninteraction electron gas was pre-
viously pointed out by Humberman and Chester.
It is believed that the Boltzmann equation gives
the right result because of the Kubo-Greenwood
theorem. ' However, in the present paper, we have
studied the mobility of an interacting electron gas.
Not only the difFerence between (1/r) and (r)
has been shown to exist in the present case, the ac-
tual size of those differences as function of T has
also been computed numerically for electrons in Si
surface inversion layers.
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