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Final-state interaction and intersubband spectroscopy in silicon inversion layers
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%e have investigated the effect of "ladder-bubble" vertex correction on the polarizabili-

ty function for the transitions between the ground and excited subbands in a (100) Si-Si02
surface inversion layer. At all inversion layer concentrations we find a large cancellation
between the dynamical vertex* correction and the resonance screening effect. Calcula-
tions for the resonance energies are close to the subband separations thai include
exchange-correlation effects and agree well with the spectroscopic measurements.

I. INTRODUCTION

In a metal-oxide-semiconductor (MOS) system,
the presence of an electric field normal to the inter-
face confines the electrons and quantizes their
motion into electric subbands. There are two sets
of such quantized levels ln a (100) Sl-S10p surface
inversion layer; (1) a twofold-degenerate set

(0,1,2,. . .) associated with the heavier electron
mass ( =0.9) perpendicular to the plane of the
inversion layer, and (2) a fourfold-degenerate set
(0', 1',2', . . . ) associated with the lighter mass
(=0.2). ' Comparison with spectroscopic measure-
ments show that the Hartree calculation for the
subband structure is inadequate and that the ab-

sorption energies are quite'close to the differences
in the quasiparticle energies which include ex-
change and correlation. However, it is mislead-
ing to relate the energies of observed absorption
peaks to the subband separation because the spec-
tfoscopic measurements Rfc always accompanied
by two physical effects which must be included in
a calculation before comparing it with the experi-
ment. Onc of these cffccts, knowIl Rs thc fcso-
nance screening (depolarization shift), is caused by
the screening of the incident light by the inversion
layer electrons. ' ' CR1culation of depolarization
shift is straightforward, and it is found to increase
thc obscfvcd fcsonRncc Rbsofption cncfgics above
the subband separations.

The second effect, known as the vertex correc-
tion (final-state interaction or excitonlike shift), is
due to the interaction between an electron in an ex-
cited subband and the hole in the ground subband.
In this paper we investigate the effect of final-state
interaction on intersubband transition (given by the
peaks in the corresponding polarizability, or
equivalently, in the conductivity for the long wave-
length limit) by including vertex corrections in the
theory. This is done by including all the "ladder-
bubble" diagrams containing the repeated interac-
tion between the electron and the hole in the polar-
izability in an approximate fashion, in addition to
the lowest-order intersubband polarizability bubble.
The lowest™order polarizability has a pole at the
quasiparticlc energy difkrence between the two
subbands. But the vertex correction through the
ladder-bubble series shifts the pole to lower energy
so as to partially cancel the depolarization shift.
The cancellation occurs for Rll transitions
(0~1;0~2) and inversion layer concentrations
(Ã~„„——10"—3X10' cm ) that we have investi-
gated. The resonance energies including these two
effects are, therefore, close to the corresponding
quasiparticle energy differences and to the experi-
mental values. In Sec. II we discuss the theory ex-
p1aining the basis set used for the calculation, as
well as the approximation scheme in which the
dynamical ladder-bubble diagrams were included.
In Sec. III we discuss the results, comparing in
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particular with Ando's calculation' of final-state

interaction. %'e conclude in Sec. IV with a discus-

sion of what we believe to be the status of the field.

H. THEORY

We are interested in evaluating the polarizability

diagrams at zero temperature. However, we shall

first formulate the problem at finite temperature
and subsequently take the quantum limit. At a
finite temperature we approximate a quasiparticle

propagator by

2

G"(p z)=5" z —E + —pp
2m;

where p defines the particle momentum in the

plane of the inversion layer, p the chemical poten-

tial of the system, and z 8 complex frequency. In

Eq. (1) E,*, the energy associated with the bottom

of the ith subband, is a sum of the Hartree and the

exchange-correlation self-energy. ' ' %C take
$= l throughout.

E; is calculated in thc icccntly dcvclopcd

many-body —density-functional technique. ' In

this new method the Hartree potential is modi-

fied by adding to it a term V„,which approxi-

mates the effect of exchange and correlation Rnd

contains a parameter 8. The variational solutions

of the modified Schrodinger equation (including

V„,) provide the basis set for the calculation of
subband self-energies. The contribution of the ad-

dit1onal tcfID 1S SUbt1actcd from thc clcctron-

electron interaction to give 0', the perturbation

used in evaluating the self-energies. The parameter
I

8 is varied until the self-energy of t4e ground sub-

band vanishes. With the new perturbation, the

self-energy of an excited subband is found to be

much smaller than the corresponding Hartrce ener-

gy. In a (100) silicon inversion layer the energy

separation between the ground and the first excited

subband is found to be very close to the value re-

ported 1n car11cr pcrtu1bat1on calcUlations.

Furthermore, the parameter 8 in the exchange-

corrclation potential is found to be essentially in-

dependent of the inversion layer concentration.

One advantage of this new technique is that the

one-electron basis set j g;(z) J so obtained includes

some effects of electron-electron interaction in the

sense of density-functional method. 'I For details

of this many-body —density-functional technique

we refer to Ref. 15.
From the form of the propagator, it is apparent

that the quasiparticles are assumed to be extremely

long lived. The reason for neglecting the lifetime

cfFccts is 8 pI'actical onc» fof thc calcUlation of po"
larizability becomes extremely dificult with finite

lifetime effects. In Eq. (1) we have also assumed

that thc quasipart1clc cnc1gy d1spcision 1s thc saIIlc

as that for the free particles. This is quite a
reasonable approximation, because in the calcula-

tion of polarizability, most of the contribution
comes from k & 2kF (where kz is the 2D Fermi

wave vmtor) and in this range the self-energies are

almost independent of wave vector k. ' Finally,
the particle propagator in Eq. (1) is taken to be di-

agonal in the subband indices. The reason for the

diagonal approximation will be explained later.
%'ith quasiparticle propagators, the lowest-order

contribution to the polarizability function can be
written"

&,z(q;Iv~) =—$g G;;(k q;iso, —iv—~)GJJ(k;iro„),lj & IN p II t Il Nl JJ 0 N

where p= I/k&7; ~„=(2II+ I)Ir/p, v =2IIIIr/p (m aIld PI a1'c Intcgcl's), aIld tllc suIIlnlat1011 over k 111-

eludes the spin and valley degeneracies.

By substituting Eq. (1) into Eq. (2) and performing the frequency sum over co„'we fInd that in the quan-

tum limit the vertical transition (q =0) between the ground (i =0) and an excited subband is described by

II&&'(0;iv =0)= (3)
(0 Ej'())—

where EJ*O ——E& —Eo, and X& is the inversion layer density. For the vertical transition the contribution to

the polarizability from the first-order vertex term can be written'

�

II{1~(01v )— —g g G.(q+ q '/2;iaI„—Iv )G;(q —q /2'™jj» ps
+

»I' &

X UJ(q';vI)GJ(q q'/2;ice„i I)—Gv(q+ Jq
—'/2;i'„),
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where G; =—G;; and Uj is the screened Coulomb in-

teraction. In fact U~J. stands for U(JJ. According
to Dyson's equation, U,JI is proportional to

Vil —the sum of the bare Coulomb and the image
interactions. ' Explicit calculations' reveal that

Vii~ an" consequently Uvl~ are sma 1 unless i

and I =m. Under these conditions, the self-

energies and the Green's functions [Eq. (1)] become

diagonal in the subband indices within the lowest-

order screening approximation. ' We make the

plasmon-pole approximation' for the screened in-

teraction in Eq. (4). The usefulness of the

plasmon-pole approximation has been stressed in

the 30 electron gas' ' and it has also been suc-

cessful in explaining the quasiparticle properties in

inversion layers. ' Performing the frequency sums

over (o„and v( in Eq. (4) and then going over to
the quantum limit we find (in the reduced units},

(2) C~(Q)
11„(0;n)=—

(0—EJ*()) (e a')
where the length is measured in units of
a*=A' /m()e (m(( is the electron mass in the
plane of the inversion layer) and the energy in units

of e /2a*. The expression for C~(Q) can be writ-

ten

(x)

CJ(A)= 3 f d q'V o(jq') S(oq')
L

+ "q ~ q ~o~ q Si q' +S2 q ~E~o —S2 q', 0

The quantities So, S&, and Sz are given by

Sp(q') = —, f d q H ( —p)() ( q + q '/2) )H ( —p)() ( q —q '/2) },
S,(q')= ——, f d'qH( —(po(q+q /2»H( —p)o(q —q /2))[p)(q') —2q. q']

and

S2(q';0) = —, f d q H( —p)o(q+ q'/2))[ 0+—EJ'o+co(q') 2q —q ']

where

cop(q) =Ep —(((, +q (10)

In these equations H(x) denotes a Heaviside func-
tion and V(q)=qV(q)/e a . The integrals in

Eqs. (7) —(9) are evaluated analytically, whereas
those in Eq. (6) are performed numerically. The
functions co(q) and roj. (q) are, respectively, the ef-
fective plasma frequency and the interaction
strength in the plasmon-pole approximation. '

These are determined by using the f sum rule and
Kramers-Kronig relations as explained in detail in

Ref. 14.
The second-order polarixability IIoj' (0;0) turns

out to be of the same order of magnitude as the
lowest-order diagram IIoj' (0;0). This makes it
imperative that the whole ladder-bubble series is

taken into account in obtaining the intersubband

transition frequencies. Inclusion of the whole

ladder-bubble series in the polarizability is also
consistent with our use of the self-consistent
random-phase approximation (RPA) energies and

wave functions to describe the quasiparticles in the
subbands. An exact evaluation of all the ladder-

I

bubble diagrams is of course impossible in the sys-

tem under consideration. So we have used the fol-

lowing approximate formula' for the irreducible

polarizability containing the lowest-order bubble

(IIpj') and the whole ladder-bubble series:

II (0)=11"'(0,0)/[ I —II,' '(0;0)/II"'(0;0)] . (11)

Equation (11) is known' to reproduce the first
three diagrams in the ladder-bubble series exactly.
In addition Eq. (11) is exact for a short-range
delta-function interaction. It is expected to yield

reasonably good results even in the presence of
dynamically screened vertex correction since the

interaction is of sufficiently short spatial range.
Note that Eq. (11) indicates that the pole of the
polarizability shifts from Q=EJO to 0 Ej()—CJ(O)/X, due to vertex correction. This result
would not come out of any finite-order perturba-
tion expansion. The irreducible polarizability

IIpj(0) given by Eq. (1 1) is used to form the total
or the reducible response function Xoj(Q), which
can be written as
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XOJ(Q)=[IIOJ(Q)+IIOJ( —Q)]/I 1 —Vojoj[IIOJ(Q)+Iloj( —Q)] j .

In Eq. (12), VOJ&J stands for
r

Vo, o,
— I dz J dz'go(z')g, (z')

S

~here ~, is the semiconductor dielectric constant,
and go, gz are the wave functions (including

exchange-correlation effects)' of the ground and

cxcitcd subbands.
.The peaks of Img give the resonance absorption

energies including the depolarization shift and the

vertex correction. Neglecting vertex correction

(i.e., CJ =0), ImXOJ(Q) has a delta-function peak at

Q=[EJ'0(EJ'o+2VOJCJN, )]'~, which is the depol-

arization shifted result.
We investigate the peaks in ImXOJ. (Q) for j= 1,2

numerically in the range of inversion layer density

Sg = 1 g 10 —1.5+ 10 cm . Results aic given

in the next section.

dependent —local-density approach in calculating
dynamical response. Ando also uses the static
exchange-correlation potential corresponding to the

ground state of the system to study the dynamic
response. Because the energies of the excited states
are considerably larger than the Fermi energy of
the system, there is no reason to expect the static
exchange-correlation potential to give quanti. 'tative-

ly accurate results. %hen wc use a statically
screened vertex in our theory [i.e., we use the static
screening in the interaction UJ in Eq. (4)], we get a
result which is formally the same as Ando's. In
the presence of dynamic screening, however, it is
not possible to extract any such formal similarity

analytically. For the sake of comparison we show

the results of Ando's vertex correction in Fig. 1

(curve 3) as against the dynamical vertex correction
(curve 4) carried out in this work. We have used

the same wave functions I g;(z) j and energies

[ E;" j (calculated according to Ref. 15) to obtain
both of tllcsc curves. To obtatn curve 3 wc usc t11c

III. RESULTS

In Fig. 1 we display the resonance energies for

the 0~1 transition as a function of inversion layer

concentration, as given by the peaks of ImX. The
quasiparticle energies and wave functions are those

obtained by the many-body —density-functional

technique. %'e find that the vertex correction

tends to cancel a large part of thc dcpolanzation

shift. The final resonance absorption energies

(curve 4) are thus close to the corresponding quasi-

particle energy differences (curve 1). This large de-

gree of cancellation holds for transitions between

0—+1 and 0~2 subbands at all concentrations.
Ando has earlier investigated' the eflect of ver-

tex correction on the subband structure by calculat-

ing the excitonlike shift using the density-func-

tional method. His results agree well with experi-

mental measurements. His final results are very

similar to ours (compare curves 3 and 4 in Fig. 1),
but the objection of using a static theory like the
density-functional technique to study dynamic

response of rather high frequencies makes his

theory somewhat unjustifiable from fundamental

principle. %e would like to add, however, that the

time-dependent —local-density approach used by

Ando has been quite successful in atomic physics. '

The fact that our result is quite close to Ando's

lends some fundamental justification to the time-

$0—
Nd =].0x j0"c~'

20—

IO
0

I

8

S, (]0 (m I

FIG. 1. Density (X, ) dependence of energy separa-
tion (Eio) between the ground subband 0 and the first
excited subband 1 in a (100) Si-Si02 inversion layer.
Curve 1 shows the quasiparticle energy difference be-

tween 0 and 1; curve 2 includes the depolarization shift;
curve 3 takes into account the depolarization shift and

the final-state interaction effect calculated by Ando's

method, whereas curve 4 includes the depolarization
shift and the dynamically screened final-state interaction
eAect. A calculation of vertex correction using the stati-

cally screened interaction (Refs. 4 and 20) would give a
curve very close ( & 1 meV below) to curve 2. Xd,p has

been taken to be 1.0&(10" cm
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prescription given by Ando in Ref. 12, whereas
curve 4 is obtained by the method outlined in Sec.
III. The point to note here is that the result (curve
4) with the dynamical vertex correction is even
closer to the original quasiparticle energy difference
(curve 1) than the result with Ando's density-
functional-perturbational —final-state interaction.
Thus the cancellation between depolarization shift
and final-state interaction is even more complete
when dynamically screened vertex correction is em-

ployed in the theory. Both Ando's and our results
are close to experimental values of intersubband
absorption energies. Also shown in the figure is
the result with depolarization shift alone (curve 2)
without any vertex correction.

IV. CONCLUSION

In conclusion, we have used many-body pertur-
bation theory to evaluate the resonance position as
observed in the infrared absorption measurements
in Si(100)/Si02 inversion layers. The calculation
includes self-energy, depolarization shift, and a
dynamically screened vertex correction in a con-
sistent fashion and is in good agreement with the
experiment. We would like to emphasize the im-
portance of dynamic screening in vertex correc-
tion —a fact that is not appreciated in the previous
calculations. Since the self-energies are evaluated
with dynamical screening, it is only consistent to
treat the vertex correction in the same fashion.

It is, however, appropriate to insert a word of
caution at this stage. There have essentially been
three different calculations of final-state interaction
effect in silicon inversion layers, namely the
present calculation involving dynamical vertex
correction through the ladder-bubble diagrams,
Ando's calculation' employing density-functional-
perturbational treatment, and Vinter's calculation
where excitonic binding energy between the excited
electron in the first subband and the hole left
behind in the ground subband was obtained within
a statically screened intersubband interaction. This
last calculation is in fact equivalent to summing
the ladder-bubble series for the vertex correction

using a static interaction, rather than the fully
dynamical interaction used in the present paper.
The result ' of this statically screened vertex
correction [by considering the statically screened

UIJ in Eq. (4)j is a rather small (less than 1 meV)
final-state interaction effect. On the other hand,
the dynamically screened vertex correction could
be quite large ( —5 meV) as seen by comparing
curves 2 and 4 in Fig. 1. Ando's calculation'
which also employs a static interaction (but defined
rather differently through the density-functional
formalism) gives large vertex correction as well.
The fact that dynamically screened vertex correc-
tion is larger than the static one can be understood
easily on the basis of static screening being much
stronger than dynamic screening on the average.
Our present calculation confirms the general belief
that the final-state interaction and the depolariza-
tion shift effects tend to oppose each other. The
degree of cancellation between the two clearly
depends on the approximation used. The ladder-
bubble series while being expected to be the dom-
inant set of diagrams for the excitonlike final-state
interaction effect considered in this paper are by
no means the only vertex diagrams for the prob-
lem. Other diagrams in each order are being 'left

out. Thus from a theoretical viewpoint, the role of
final-state interaction is by no means clear in a
quantitative fashion. It would be interesting to
have the subband energy differences directly by
some experimental technique. ' Since depolariza-
tion shift is accepted to be a quantitatively impor-
tant effect, a precise experimental knowledge of
subband energy difference will throw much light
on the quantitative importance of the final-state in-
teraction effect.
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