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We have investigated the effect of “ladder-bubble” vertex correction on the polarizabili-
ty function for the transitions between the ground and excited subbands in a (100) Si-SiO,
surface inversion layer. At all inversion layer concentrations we find a large cancellation
between the dynamical vertex* correction and the resonance screening effect. Calcula-
tions for the resonance energies are close to the subband separations that include
exchange-correlation effects and agree well with the spectroscopic measurements.

1. INTRODUCTION

In a metal-oxide-semiconductor (MOS) system,
the presence of an electric field normal to the inter-
face confines the electrons and quantizes their
motion into electric subbands. There are two sets
of such quantized levels in a (100) Si-SiO, surface
inversion layer; (1) a twofold-degenerate set
(0,1,2,. . .) associated with the heavier electron
mass ( ~0.9) perpendicular to the plane of the
inversion layer, and (2) a fourfold-degenerate set
(0°,1',2" , . . .) associated with the lighter mass
(~0.2).! Comparison with spectroscopic measure-
ments show that the Hartree calculation? for the
subband structure is inadequate and that the ab-
sorption energies are quite close to the differences
in the quasiparticle energies which include ex-
change and correlation.’~% However, it is mislead-
ing to relate the energies of observed absorption
peaks to the subband separation because the spec-
troscopic measurements are always accompanied
by two physical effects which must be included in
a calculation before comparing it with the experi-
ment. One of these effects, known as the reso-
nance screening (depolarization shift), is caused by
the screening of the incident light by the inversion
layer electrons.**~!? Calculation of depolarization
shift is straightforward, and it is found to increase
the observed resonance absorption energies above
the subband separations.

The second effect, known as the vertex correc-
tion (final-state interaction or excitonlike shift), is
due to the interaction between an electron in an ex-
cited subband and the hole in the ground subband.
In this paper we investigate the effect of final-state
interaction on intersubband transition (given by the
peaks in the corresponding polarizability, or
equivalently, in the conductivity for the long wave-
length limit) by including vertex corrections in the
theory. This is done by including all the “ladder-
bubble” diagrams containing the repeated interac-
tion between the electron and the hole in the polar-
izability in an approximate fashion, in addition to
the lowest-order intersubband polarizability bubble.
The lowest-order polarizability has a pole at the
quasiparticle energy difference between the two
subbands. But the vertex correction through the
ladder-bubble series shifts the pole to lower energy
so as to partially cancel the depolarization shift.
The cancellation occurs for all transitions
{0—1;0—2) and inversion layer concentrations
(Nipy =10"1—3% 10" cm~2) that we have investi-
gated. The resonance energies including these two
effects are, therefore, close to the corresponding
quasiparticle energy differences and to the experi-
mental values. In Sec. II we discuss the theory ex-
plaining the basis set used for the calculation, as
well as the approximation scheme in which the
dynamical ladder-bubble diagrams were included.
In Sec. IIT we discuss the results, comparing in
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particular with Ando’s calculation'? of final-state
interaction. We conclude in Sec. IV with a discus-
sion of what we believe to be the status of the field.

II. THEORY

We are interested in evaluating the polarizability
diagrams at zero temperature. However, we shall
first formulate the problem at finite temperature
and subsequently take the quantum limit. At a
finite temperature we approximate a quasiparticle
propagator by
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where P defines the particle momentum in the
plane of the inversion layer, p the chemical poten-
tial of the system, and z a complex frequency. In
Eq. (1) Ef, the energy associated with the bottom
of the ith subband, is a sum of the Hartree and the
exchange-correlation self-energy.*>'* We take
#=1 throughout.

E} is calculated in the recently developed
many-body — density-functional technique.’> In
this new method!® the Hartree potential is modi-
fied by adding to it a term V,, which approxi-
mates the effect of exchange and correlation and
contains a parameter, B. The variational solutions
of the modified Schrodinger equation (including
V,.) provide the basis set for the calculation of
subband self-energies. The contribution of the ad-
ditional term is subtracted from the electron-
electron interaction to give H', the perturbation

used in evaluating the self-energies. The parameter
i
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B is varied until the self-energy of the ground sub-
band vanishes. With the new perturbation, the
self-energy of an excited subband is found to be
much smaller than the corresponding Hartree ener-
gy. In a (100) silicon inversion layer the energy
separation between the ground and the first excited
subband is found to be very close to the value re-
ported in earlier perturbation calculations.'*
Furthermore, the parameter B in the exchange-
correlation potential is found to be essentially in-
dependent of the inversion layer concentration.
One advantage of this new technique is that the
one-electron basis set { £;(z) } so obtained includes
some effects of electron-electron interaction in the
sense of density-functional method.!? For details
of this many-body —density-functional technique
we refer to Ref. 15.

From the form of the propagator, it is apparent
that the quasiparticles are assumed to be extremely
long lived. The reason for neglecting the lifetime
effects is a practical one, for the calculation of po-
larizability becomes extremely difficult with finite
lifetime effects. In Eq. (1) we have also assumed
that the quasiparticle energy dispersion is the same
as that for the free particles. This is quite a
reasonable approximation, because in the calcula-
tion of polarizability, most of the contribution
comes from k <2ky (where kp is the 2D Fermi
wave vector) and in this range the self-energies are
almost independent of wave vector k.*!* Finally,
the particle propagator in Eq. (1) is taken to be di-
agonal in the subband indices. The reason for the
diagonal approximation will be explained later.

With quasiparticle propagators, the lowest-order
contribution to the polarizability function can be
written'?
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where B=1/kpT, w,=(2n+1)7/B, vy, =2mm/B (m and n are integers), and the summation over X in-

cludes the spin and valley degeneracies.

By substituting Eq. (1) into Eq. (2) and performing the frequency sum over w,,"* we find that in the quan-
tum limit the vertical transition (g =0) between the ground (i =0) and an excited subband is described by

Ns
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where E fo =E }' —E}, and Ny is the inversion layer density. For the vertical transition the contribution to
the polarizability from the first-order vertex term can be written'’
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where G;=G; and Uj; is the screened Coulomb in-
teraction. In fact Uj; stands for Uyj;. According
to Dyson’s equation, Ujj,, is proportional to
Vijim—the sum of the bare Coulomb and the image
interactions.*!* Explicit calculations'* reveal that
Viim and consequently Uy, are small unless i =j
and /=m. Under these conditions, the self-
energies and the Green’s functions [Eq. (1)] become
diagonal in the subband indices within the lowest-
order screening approximation.'* We make the
plasmon-pole approximation'* for the screened in-
teraction in Eq. (4). The usefulness of the
plasmon-pole approximation has been stressed in

the 3D electron gas!®!7 and it has also been suc-

cessful in explaining the quasiparticle properties in
inversion layers.*!* Performing the frequency sums
over w, and v; in Eq. (4) and then going over to
the quantum limit we find (in the reduced units),

(Q—Ef)* (e’a*)’

where the length is measured in units of
a*=#/m,e* (m,, is the electron mass in the
plane of the inversion layer) and the energy in units

of e?/2a*. The expression for C;(Q2) can be writ-
ten
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where bubble diagrams is of course impossible in the sys-
0N =E% —p ey (10) tem under consideration. So we have used the fol-

In these equations H (x) denotes a Heaviside func-
tion and V(q)=qV(q)/e%a*. The integrals in
Egs. (7)—(9) are evaluated analytically, whereas
those in Eq. (6) are performed numerically. The
functions @(q) and 7;(q) are, respectively, the ef-
fective plasma frequency and the interaction
strength in the plasmon-pole approximation.'*
These are determined by using the f sum rule and
Kramers-Kronig relations as explained in detail in
Ref. 14.

The second-order polarizability ITi; (0;Q) turns
out to be of the same order of magnitude as the
lowest-order diagram HB}) (0;Q1). This makes it
imperative that the whole ladder-bubble series is
taken into account in obtaining the intersubband
transition frequencies. Inclusion of the whole
ladder-bubble series in the polarizability is also
consistent with our use of the self-consistent
random-phase approximation (RPA) energies and
wave functions to'describe the quasiparticles in the
subbands. An exact evaluation of all the ladder-

lowing approximate formula'® for the irreducible
polarizability containing the lowest-order bubble
(né)}’) and the whole ladder-bubble series:

Iy (Q)=114/(0,2) /[ 1 - I17(0;2) /Ty (0; Q)] . (11)

Equation (11) is known'® to reproduce the first
three diagrams in the ladder-bubble series exactly.
In addition Eq. (11) is exact for a short-range
delta-function interaction. It is expected to yield
reasonably good results even in the presence of
dynamically screened vertex correction since the
interaction is of sufficiently short spatial range.
Note that Eq. (11) indicates that the pole of the
polarizability shifts from Q=Ej, to Q=E},
—C;(Q)/N; due to vertex correction. This result
would not come out of any finite-order perturba-
tion expansion. The irreducible polarizability
I1,;(Q) given by Eq. (11) is used to form the total
or the reducible response function X 0j(€}), which
can be written as*
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In Eq. (12), Vy;o; stands for
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where k; is the semiconductor dielectric constant,
and &, &; are the wave functions (including
exchange-correlation effects)'® of the ground and
excited subbands.

‘The peaks of ImX give the resonance absorption
energies including the depolarization shift and the
vertex correction. Neglecting vertex correction
(i.e., C;=0), ImY,;(Q) has a delta-function peak at
Q=[E}o(E]y+2V;0iN,)]'/?, which is the depol-
arization shifted result.

We investigate the peaks in ImX,;(Q) for j=1,2
numerically in the range of inversion layer density
N,=1x10"—1.5x10"? cm~2 Results are given
in the next section.

III. RESULTS

In Fig. 1 we display the resonance energies for
the 0—1 transition as a function of inversion layer
concentration, as given by the peaks of ImX. The
quasiparticle energies and wave functions are those
obtained by the many-body — density-functional
technique. We find that the vertex correction
tends to cancel a large part of the depolarization
shift. The final resonance absorption energies
(curve 4) are thus close to the corresponding quasi-
particle energy differences (curve 1). This large de-
gree of cancellation holds for transitions between
0—1 and 0—2 subbands at all concentrations.

Ando has earlier investigated'? the effect of ver-
tex correction on the subband structure by calculat-
ing the excitonlike shift using the density-func-
tional method. His results agree well with experi-
mental measurements. His final results are very
similar to ours (compare curves 3 and 4 in Fig. 1),
but the objection of using a static theory like the
density-functional technique to study dynamic
response of rather high frequencies makes his
theory somewhat unjustifiable from fundamental
principle. We would like to add, however, that the
time-dependent —local-density approach used'? by
Ando has been quite successful in atomic physics.!
The fact that our result is quite close to Ando’s
lends some fundamental justification to the time-

9

(12)

—
dependent — local-density approach in calculating
dynamical response. Ando also uses the static
exchange-correlation potential corresponding to the
ground state of the system to study the dynamic
response. Because the energies of the excited states
are considerably larger than the Fermi energy of
the system, there is no reason to expect the static
exchange-correlation potential to give quantitative-
ly accurate results. When we use a statically
screened vertex in our theory [i.e., we use the static
screening in the interaction Uj; in Eq. (4)], we get a
result®® which is formally the same as Ando’s. In
the presence of dynamic screening, however, it is
not possible to extract any such formal similarity
analytically. For the sake of comparison we show
the results of Ando’s vertex correction'? in Fig. 1
(curve 3) as against the dynamical vertex correction
(curve 4) carried out in this work. We have used
the same wave functions { £;(z) } and energies

{ E{ } (calculated according to Ref. 15) to obtain
both of these curves. To obtain curve 3 we use the
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FIG. 1. Density (N;) dependence of energy separa-
tion (E o) between the ground subband O and the first
excited subband 1 in a (100) Si-SiO, inversion layer.
Curve 1 shows the quasiparticle energy difference be-
tween O and 1; curve 2 includes the depolarization shift;
curve 3 takes into account the depolarization shift and
the final-state interaction effect calculated by Ando’s
method, whereas curve 4 includes the depolarization
shift and the dynamically screened final-state interaction
effect. A calculation of vertex correction using the stati-

cally screened interaction (Refs. 4 and 20) would give a
curve very close ( <1 meV below) to curve 2. Nge, has
been taken to be 1.0 10! cm ™2
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prescription given by Ando in Ref. 12, whereas
curve 4 is obtained by the method outlined in Sec.
III. The point to note here is that the result (curve
4) with the dynamical vertex correction is even
closer to the original quasiparticle energy difference
(curve 1) than the result with Ando’s density-
functional-perturbational — final-state interaction.
Thus the cancellation between depolarization shift
and final-state interaction is even more complete
when dynamically screened vertex correction is em-
ployed in the theory. Both Ando’s and our results
are close to experimental® values of intersubband
absorption energies. Also shown in the figure is
the result with depolarization shift alone (curve 2)
without any vertex correction.

IV. CONCLUSION

In conclusion, we have used many-body pertur-
bation theory to evaluate the resonance position as
observed in the infrared absorption measurements
in Si(100)/SiO, inversion layers. The calculation
includes self-energy, depolarization shift, and a
dynamically screened vertex correction in a con-
sistent fashion and is in good agreement with the
experiment.® We would like to emphasize the im-
portance of dynamic screening in vertex correc-
tion—a fact that is not appreciated in the previous
calculations. Since the self-energies are evaluated
with dynamical screening, it is only consistent to
treat the vertex correction in the same fashion.

It is, however, appropriate to insert a word of
caution at this stage. There have essentially been
three different calculations of final-state interaction
effect in silicon inversion layers, namely the
present calculation involving dynamical vertex
correction through the ladder-bubble diagrams,
Ando’s calculation'? employing density-functional-
perturbational treatment, and Vinter’s calculation*
where excitonic binding energy between the excited
electron in the first subband and the hole left
behind in the ground subband was obtained within
a statically screened intersubband interaction. This
last calculation is in fact equivalent to summing
the ladder-bubble series for the vertex correction

using a static interaction,” rather than the fully
dynamical interaction used in the present paper.
The result’®* of this statically screened vertex
correction [by considering the statically screened
Uj; in Eq. (4)] is a rather small (less than 1 meV)
final-state interaction effect. On the other hand,
the dynamically screened vertex correction could
be quite large (~5 meV) as seen by comparing
curves 2 and 4 in Fig. 1. Ando’s calculation'?
which also empioys a static interaction (but defined
rather differently through the density-functional
formalism) gives large vertex correction as well.
The fact that dynamically screened vertex correc-
tion is larger than the static one can be understood
easily on the basis of static screening being much
stronger than dynamic screening on the average.
Our present calculation confirms the general belief
that the final-state interaction and the depolariza-
tion shift effects tend to oppose each other. The
degree of cancellation between the two clearly
depends on the approximation used. The ladder-
bubble series while being expected to be the dom-
inant set of diagrams for the excitonlike final-state
interaction effect considered in this paper are by
no means the only vertex diagrams for the prob-
lem. Other diagrams in each order are being left
out. Thus from a theoretical viewpoint, the role of
final-state interaction is by no means clear in a
quantitative fashion. It would be interesting to
have the subband energy differences directly by
some experimental technique.'? Since depolariza-
tion shift is accepted to be a quantitatively impor-
tant effect, a precise experimental knowledge of
subband energy difference will throw much light
on the quantitative importance of the final-state in-
teraction effect.
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