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Two-component electron-hole liquid: A simple model

M. Combescot

Groupe de Physique des Solides de I'Ecole Normale Superieure, 24 Rue Lhomond, 75005 Paris, France

and Argonne National Laboratory, Argonne, Illinois 60439

K. S. Singwi and Giovanni Vignale
Department of Physics and Astronomy, Northwestern Uniuersity, Euanston, Illinois 60201

(Received 27 April 1981)

With the use of a very simple model for a uniaxially stressed semiconductor such as Ge
or Si it is shown analytically under which conditions a phase separation of the electron-

hole liquid into two distinct liquids of the type predicted by Kirczenow and Singwi would

take place.

I. INTRGDUCTIGN

Recent theoretical work' on the electron-hole
liquid (EHL) in (111)-stressed Ge by Kirczenow
and Singwi predicted that in this system under
suitable stress conditions the EHI. at T=O should

phase separate into two liquids. One of the
predicted phases consists of "cold" electrons and
holes only, while the other phase contains "hot"
electrons as well as "cold" electrons and holes.
This prediction has apparently now found support
in the experiments of Bajaj et al. and of Timusk
and Zarate. In another publication Kirczenow
and Singwi conclude that in (001)-stressed Si such

a phase separation is much less likely to occur.
More recently Kirczenow has made similar cal-

culations of the properties of the EHL in (110)-
stressed Ge and Si. He predicts that in {110)-
stressed Ge the EHL should not phase separate at
all, while in (110)-stressed Si there should be no

phase separation under experimentally accessible
conditions. The above prediction is in marked
contrast with that in (111)-stressed Ge.
Kirczenow attributes this difference in the behavior
of the EHL in (110)- and in (111)-stressed Ge
primarily to the difIIerent structure of the conduc-
tion band in the two cases. Kirczenow and
Singwi' have attributed the nonparabolicity of the
stress-split valence band as the primary cause of
phase separation in (111)-stressed Ge.

The aforementioned calculations are numerically
fairly involved and therefore tend to obscure the
underlying physics. Besides, in these calculations,
the assumption that the exchange-correlation ener-

gy of the system depends only on the total density
and is independent of the concentration of hot elec-

trons has been made. Nonetheless, in view of the
fact that the phase separation in question is the
result of a delicate balance between kinetic and
exchange-correlation energies, it is not quite certain
whether a slight dependence of the exchange-
correlation energy on concentration may spoil the
final result.

We believe that the condensation into two dis-

tinct liquids that has been observed in (111)-
stressed Ge is a general phenomenon which, of
course, exists only if the semiconductor has a
"good" band structure: Uniaxial stress is just a de-

vice to make Ge achieve the latter. In this paper
we wish to determine what are the main features of
this good band structure in order to predict in

which semiconductor one should look for the phase
separation at hand. In order to examine this ques-
tion in an analytical fashion, we shall take recourse
to a simple model semiconductor.

II. SIMPLE MGDEL GF A SEMICGNDUCTGR

In a semiconductor with only one valence band
and one conduction band, an e-h system is defined

by two extensive variables: the volume V and the
number X of holes (or electrons). The energy e per
e-h pair depends on one intensive variable n =X/V
and the curve e(n} has one minimum, which gives
the e-h liquid density. In order to have two plas-
mas, one needs to give more structure to the prob-
lem. The next simplest case is to condsider a semi-
conductor with one valence band of mass m and

two conduction bands of masses mL and mz. This
physically can describe not only the normal mul-

tivalley degeneracy but also some more complex
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III. MATHEMATICAL CONSIDERATIONS

is
%e shall be working at T=O. The total energy

E ( V, N, N„)=No(n, y) .

band structure. The e-h system is then defined by
three independent variables: the volume V, the to-
tal number of electrons N and, for example, the
number N~ of electrons in the "right" band. Neu-

trality of the charge implies that the number of
electrons in the "left" band XL ——E—N~. The en-

ergy e per e-h pair now depends on two intensive
variables n =N iV and y=Na /N. We shall see
that n and y are indeed the relevant thermodynam-
ical variables. The surface e(n,y) presents a valley
which corresponds to the minimum of e vs n at a
given y. If this valley has a saddle point in the y
direction, or more generally a negative second
derivative, then one expects that for a certain value
of Xq/N around the saddle point, the energy of E
holes and Xz + NL electrons is decreased if the e-h

system splits into two plasmas with different values
of y; one of which is larger than the initial y and
the other smaller. If this happens then such a
band structure with two different electron masses
should exhibit the kind of phase separation we are
seeking. The question is therefore: Is it possible to
find values of m, mz, and mL for this saddle point
to exist?

FIG. 1. Qualitative behavior of e(y) vs y. y~ and yq
are the points of contact of the curve with the double
tangent and determine the values of y in the two phases.
F(y) is along the double tangent.

This means that for this value y the system is un-

stable since it can decrease its energy by splitting
into two plasmas with ratios yl and y2 and con-
taining Nl and X2 e-h pairs, respectively. It is
easy to show that this double tangent construction
ensures the equality of each of the two chemical
potentials in the two phases.

The problem now is to find when the curve e(y)
of the minimum energy has a negative curvature to
allow the double tangent construction. For that
one has to find e(n,y) for this model plasma. The
kinetic part of the energy is

The system adjusts its volume to minimize its
energy,

221
e„,„(n,y)= ', a{y),

's
(Sa)

BE 2 Be0= = —Pl=BV Bn „ a(y) = I+p~y'"+ pi( I —y)'" (5b)

This is the usual relation of the e-h droplet phase
separation. The plasma density is given by the
minimum of e(n,y) at constant y. We shall

represent this minimum by e(y).
Let us assume for a moment that e(y) has nega-

tive curvature [i.e., F'(y) & 0] somewhere in the in-

terval yl &y&y2,'yl andy2 being the points of
contact with the common tangent as shown in Fig.
1. For a given y=Xz/X lying in the interval

yl &y &y2, we immediately see that

e(y) )e(y) =—Nie(yi)+Nor(yp),

y2 —y y —yl

y2-yl ' ' y2-yl '

In Eq. (5) the energy is in units of rydberg and the
length is in units of Bohr radius, both units being
associated with the holes (mass m) only. pL z is
the ratio m /mr ~. Let mL be the lighter of the
two conduction masses. a(y) has a minimum for
y=y, which corresponds to the equality of the Fer-
mi energy of the two conduction bands —a result
which is expected on physical grounds. a(y) as
well as its first and second derivatives a'(y) and
a"(y) are shown in Fig. 2. Note that a"~ co

when y~0 or 1.
The Coulomb interaction gives rise to exchange

and correlation energies ec,„i (n,y). We shall first
follow Kirczenow and Singwi and assume that
ec,„l depends only on n. This assumption has been



M. COMBESCOT, K. S. SING%I, AND GIOVANNI VIGNALE

5.0

a(y) 40

O. I4— 0.5 0.5 075 I.O y

0
a'(y)

-2

0.I 0.5 0.5 0.75l4— I.O y

-3.5

12—
~ (y~ II—

IO

9-
) I

Ql 0.5 0.5 0.7 0.9 I.Oy

FIG. 2. a(y), a'(y), a"(y) vs y. The curves are calcu-
lated for the values of the masses (in electron mass unit):

mi. ——0.22; m~ ——0.458; m=0.916. c(y) has a minimum
at y=y, =0.75.

empirically found to be very good. However, here
one has to be a bit careful since one is interested in
the curvature of e(y), and a very good approxima-
tion on e(y) may not turn out to be so good for
e"(y). We shall come back to this question in the
next section. For the present, we shall take the
Coulomb energy of the form

O 0
&Coul

~P

where Po is a constant independent of y. The ex-

ponent p is equal to unity for exchange alone. In
the density range of interest here, one finds that
for the exchange plus correlation energy p is in the
range 0.7—0.8. The simple expression (6} has the
advantage that it allows an analytic calculation
which helps to investigate from where the instabili-

ty arises. The total energy e(n, y) per pair is then
given by the sum of expressions (5) and (6).

The minimum of e(n,y) at constant y is

I I

G.25 0.5 0.75 I.O y

FIG. 3. (a) a(y)'~ & and (b) a(y) ~ vs y. The two
quantities are, respectively, proportional to r, o(y) and

Zo(y), The masses are the same as those used in Fig. 2.

p is taken to be 0.82. There is an interval of slightly
negative curvature between y=0.01 and y=0.25 in Fig.
3(b).

l Q

/+1 cx
(8)

Figure 4 shows the typical behavior of these two
quantities as a function of y. In order to see what
the masses should be for the solution to exist, one
rewrites (8) in the form

=q+I,
tX

(9a)

which on using (5b) and after some algebra be-

is positive. Phase separation into two e-h plasmas
will exist if eo' (y) =0 somewhere, i.e., if the follow-

ing condition is satisfied:

~(y)= —~~ '(y),

corresponding to

(7a)

(7b)

(9b)

where ro and eo are constants independent of y,
and q=p/(2 —p} is a number lying between 0 and
1. From a(y) we deduce that eo(y) and r, o(y) are
minimum for y =y, (see Fig. 3). Around y„eo' (y)

t=p —&t2
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FIG. 4. Graphical solution of Eq. (8) for the same
values of the parameters used in drawing the curves in
Figs. 2 and 3.
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FIG. 5. Shaded region under the curve corresponds
to the values of the quantities p and p&

' for which a
phase separation into two EHP exists: p=mL, /m~,
p~ ——m/m~. Points corresponding to Ge(111)
(m=0.347, mL ——0.22, and m~ ——0.458) and Si(100)
(m =0.523, mL,

——0.510, and m~ ——0.809) as given by the
simple model are shown in the figure. The value of p is
0.82.

Now aa"/a' diverges for y=o, y„and 1, i.e.,
t = ao, 1, and 0, respectively. A solution e"(y)=0
exists if ua"/a' is less than q + 1 —1.7 some-
where. From Eq. (10) we see that f(p,ptt, t) is an
increasing function of t and is always larger than

p (& 1). We also note that f(p,pz, t) decreases
—3/2

with increasing pz for constant p and t.

Case (i) 0«&1 .(i.e., 1&y &y, )
In this range of t values, I/t(1 t ) is —greater

than 3.5 and since f(p,pz, t) is always greater than
unity, the left-hand side of Eq. (9b) is always
greater that 1.7, whatever be the values of p and

pq. Therefore a phase separation into two plasmas
can never occur if the initial y is larger than y,
corresponding to the equality of Fermi energy in
the conduction band. It can be proven very gen-
erally that this result is valid for values of p & 1

(see Appendix A).

Case (ii). 1 & t (i.e., y, &y & 0)
In this case a phase separation can be shown to

exist for suitable values of p and p&. In Fig. 5 the
relevant values of these two quantities are shown as
shaded. The value ofp is 0.82. One can say gen-
erally that large values of both m/mz and m~/m~
help the instability to occur.

The solid circle in Fig. 5 have been drawn for

Ge (m =0.347, mL,
——0.22, and m~ ——0.458) and Si

(m =0.523, mL, ——0.510, and mz ——0.809). It is seen
that these points lie above the shaded region (Ge
being on the border line); and hence this simple
model fails to predict a phase separation even
under the most favorable assumption for the hole
masses. A more detailed discussion of this point is
reserved for Sec. VI.

IV. EFFECT OF DEPENDENCE OF e„, ON y

rs
(1 la)

where

p (y)=0.916[1+y /3+(1 —y) / ] .

P„(y) has a minimum for y= —, and is a very flat

(1 lb)

In this section we shall examine the validity of
the approximation (6). One knows from experience
that the correlation energy has the efFect of
smoothing the dependence of the exchange energy
on any parameter. However, qualitatively the
combined behavior of exchange and correlation re-
tains a "memory" of the exchange alone. The
latter is easy to calculate as a function of y and rs.
One finds that
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function of y, but its second derivative becomes in-
finite for y=0 andy=1 (as a"). We shall show in

Appendix B that this divergent behavior of P' '(y)
always leads to a phase separation in the Hartree-
Fock approximation. As ec,„~ countains e„, such a
divergence will persist in ec',„i(y), and this may af-

fect the instability in question. To see the conse-
quences of such a divergence, we write the e-h en-

ergy as

e(n, y) =2.21
2

a(y) (y)

Tg ~p
(12)

where P(y) has the same qualitative behavior as

P„(y) but only somewhat flatter. The behavior of
P, P', and P" is, respectively, like that of u, n', and
n" fory, —,. The minimum energy is then given

by

e(y) = —eiP a (13a)

for
i /(2 —p)

u
r, (y) =r,

Equation (14) replaces Eq. (8). One sees that the
real structure of P may play a role. One can say
that if for some values of the masses Eq. (8) has a
solution, Eq. (14) will also have one, provided the
new terms decrease the right-hand side of (8) and
increase the left-hand side in the range of values of
y for which the solution of {8)exists {see Fig. 4).
One immediately sees that since P"/P and 13'2/P2

are both positive, the curve ct' /a is pushed up by
these new terms for all y. Since a' & 0 for y &y,
and P' &0 for y & —,, (1/q +1)(a"/a) is pushed

1

down by the new terms for —, &y ~y, . Therefore,
if Eq. (8) had a solution for —, &y &y„Eq. (14)
will also have one. The dependence of P on y thus
helps to realize e"=0. One, therefore, arrives at
the conclusion that if a band structure gives an in-
stability within the approximation of a Coulomb

where ei and ri are independent of y. As P(y) is a
very flat function, e and r, are a priori not expected
to diAer very much from eo and r, o given in Eq.
(7). But if one looks at the possibility of a change
in curvature of e(y), one has to look for the solu-
tion of

l2
1 Ptl P/2 1

II Pl I

2+ + 2= +2a2 q P P~ q+1 ~ Pa

(14)

energy being independent of y, the existence of this
instability will persist.

V. PHASE SEPARATION IN THE MOI3EL
SEMICONDUCTOR

We shall now discuss how the preceding calcula-
tion applies to the possible observation of the coex-
istence of two EHP. We first start with the case of
Ge under (111)-uniaxial pressure as considered by
Kirczenow and Singwi. Our "left" mass corre-
sponds to the mass m, of the conduction band,
while our "right" mass is mz ——3 m, (see Fig. 6).
The latter takes care of the threefold degeneracy of
the conduction band in stressed Ge. The shift 6 of
the left conduction band does not play any role
since the total number of electrons in it stays con-
stant in the phase separation. In order to produce
two EHP we have seen that one needs an initial y
between yi and y2 (Fig. 1). When the e-h are pro-
duced by the laser pulse at time t=0, by symmetry
the upper three valleys and the lower one valley are
filled to the same level, i.e., y=y„and the plasma
does not split. As t increases, the electrons begin
to fall into the lower valley, i.e., in the left band so
that y decreases and eventually reaches the region

y& &y &y2 where two EHP coexist. Note that the
hole density of the plasma y &

which contains more
of the "light" electrons is smaller than the one of
the plasma y2 [i.e., r, (y, ) & r, (y2)]. For b large
enough, one explores the region y &y, and sees the
splitting of the initial EHP as t increases and as
observed by Bajaj et al.

It would be interesting if such a coexistence of
two plasmas could be obtained as a quasi-
equilibrium state in a CW experiment. This would

imply an equilibrium y which is different from y, .
In all likelihood such a situation has been realized
in the experiment of Timusk and Zarate where

they have observed a new EHD plasma resonance
in stressed Ge corresponding to a second plasma
containing both hot and cold electrons and which
is of higher density.

For a multivalley structure without uniaxial
stress all the electrons have the same Fermi
momentum so that y=y, and only one plasma ex-
ists as in normal Ge and Si. y will be diferent
from y, only if the bottoms of the conduction
bands are not at the same energy. This of course is
realized when a uniform pressure is applied but
also in alloys such as Ge-Si when the composition
is such that -the Ge and Si conduction bands are
close.
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(a)

less, the model is capable of making some definite
predictions. For example, if p

~ exceeds 0.8 (see
Fig. 5) there can be no phase separation into two
plasmas. This will be the case for (110)-Ge. De-
tailed calculations of Kirczenow do support this
prediction. As long as p &0.8 and 1/pz is very
small, i.e., hole mass very large, the model always
predicts the coexistence of two plasmas.

(b)
Yp Yg

VII. CONCLUSIONS

FIG. 6. {a) Band structure of a multivalley semicon-
ductor under uniaxial stress is replaced by a model with
only two inequivalent conduction bands. {b) Densities of
the two EHP when phase separation occurs. This draw-

ing is made within the free-particle model; the Coulomb
interaction, of course, shifts the free energies so that the
chemical potentials of each of the two kinds of electrons
are the same in the two plasmas.

Vl. CRITIQUE OF THE MODEL

The simple model of an indirect band semicon-
ductor that we have discussed in the foregoing sec-
tions involves only two parameters, one the ratio

p~ ——m/m~ and the other the ratio p=m~/ml,
and given the values of these parameters it has the
merit of predicting in a simple and analytic way
the conditions under which two e-h plasmas would
coexist. In a real situation such as (111)-Geor
(100)-Si, the model is capable of giving only ap-
proximate answers. The reason for this is that one
does not have a reliable method of estimating the
hole mass m of the single parabolic valence band
which replaces the complex structure of two cou-
pled hole bands in the stress region of interest. For
example, in Ge-(111) we know through detailed
calculations' that a phase separation exists in the
region of stress when the Fermi energy of holes is
comparable to the stress splitting. However, in the
present simple model for the phase separation to
exist 1/pz, i.e., m~/m has to be less than 1.21
(since p

~ =0.33). This is not the case even if we
take for the hole mass a value corresponding to
that of the heavy hole in normal Ge (see Fig. 5).
This condition is even more violated if we take the
mass of the hole to be that corresponding to the in-
finite stress limit of Ge-(111). In the case of
(100)-Si the model even in the most favorable cir-
cumstances does not predict a two-phase separa-
tion. There is no simple way of extrapolating the
hole mass in the stress region of interest. Nonethe-

In a semiconductor having large m/mz and
mz/mL ratios, an e-h plasma splits into two
separate plasmas when the initial Fermi energy of
the light conduction band is larger than that of the
heavy one (Fig. 6). This splitting can be visualized
as most of the heavier electrons with some light
ones concentrating in a region having a large hole
density, while the rest of the light electrons with
their holes form a second plasma at lower density
(in order to keep a small Fermi energy).
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APPENDIX A

Here we prove that a phase separation into two
plasmas can never occur if y &y, for any value ofp
in the interval 0&p & 1. This is mathematically
equivalent to proving that [see Eq. (9b) of the text]

A)q+1 for 0&t&1,
with

(Al)

0&p&1, 0&p~ & Oo,

0&p ~ =.&1.
This holds if

f(p,p„,t) & 4t (1 t')' . —

From Eq. (10) we see that

f(p,p„,t) & s '(1+st')'

g(s, t) &g ( l, t) =—(1+t )

(A2)
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where we have used the fact that g (s, t) is a de-

creasing function of s for 0(t (1. Therefore, ine-

quality (A2) is satisfied if

(1+r')'&4r(1 —r')'

a(y)=(+pay +pL. (1—y)

P„(y)=0.916[1+y ~ +(1—y) ~ ] .

Now

OI

(r' —3t+1)'&0.

This completes the proof.

APPENDIX 8
Here we show that the Hartree-Pock (HF) ap-

proximation always predicts a phase separation for
y~0 and y~1 irrespective of the parameters of
the band structure. In the HF approximation, the
energy per pair is given by

p. (y)
e(n,y)= ; a(y)—

r,'(n} «, (n)
'

where

and

&(y) = —~~p„'(y) /a(y)

I

e "(y)= —~I +2(2P P' )
a(y)

When y~0 or 1, the behavior of e"(y) is deter-
mined only by the most divergent term, i.e.,

p. yp." y

a(y)

Therefore, in the HF approximation there is always
a phase separation.
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