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A systematic strong-coupling perturbation theory is applied to the one-dimensional

model of an electron interacting with acoustic phonons through the deformation potential.
The Hamiltonian is diagonalized to the next order in the inverse coupling constant beyond

the strong-coupling limit. The energy to this order involves a shift in the density of phonon

modes due to the electron-phonon interaction. This shift is analyzed in terms of a phonon
Green's function and is found to contain a resonance at phonon frequencies —s/R where s

is the speed of sound and R is the size of the polaron. There is also a depletion in the den-

sity of phonon modes due to the polaron, which iteself appears as a translational mode in

the theory. This depletion is related to a form of Levinson's theorem.

In a series of papers' we have investigated one-
dimensional models of an electron coupled strongly
to phonons through the deformation potential. In
the first of these papers' we examined a model with

acoustic phonons and determined the ground-state
(polaron) energy and wave function analytically in

the strong-coupling limit. We also obtained a per-
turbative correction to the ground-state energy to
one additional order in the inverse electron-phonon
coupling constant. Because the ground-state wave

function is not translationally invariant in the
strong-coupling limit, the perturbative correction
calculated was incomplete, although it gave the
dominant contribution to that order. A translation-

ally invariant variational ground-state wave function
was subsequently used but did not lend itself to a
systematic development of the desired corrections.
A strong-coupling perturbation theory was

developed for a model with optical phonons al1 of
frequency coo. In addition to the full first-order
strong-coupling correction to the polaron energy, we
also obtained the leading term in the polaron effec-
tive mass and a modified optical-phonon spectrum.
It was found that one mode has its frequency re-
duced from mo to zero and is a translational mode
corresponding to the polaron, which demonstrates
that the strong-coupling perturbation theory is

translationally invariant. Of the remaining lattice
vibrational modes only a few have their frequencies
altered substantially.

In the present work we develop a similar strong-

coupling perturbation theory for the model with

acoustic phonons. Because the unperturbed

acoustic-phonon spectrum is a continuum, the first-

order correction to the polaron energy requires the
calculation of a density of phonon modes modified

by the electron-phonon interaction. This density of
phonon modes can be expressed in terms of a
scattering amplitude which describes the mixing of
phonon wave vectors through the electron-phonon
interaction. In particular, the density of modes can
be expressed in terms of an effective scattering phase
shift which turns out to exhibit a behavior similar to
that in potential scattering when there is a low-

energy resonance in the presence of a bound state.
In the present case the bound state is the polaron.

In Sec. II we develop the general theory along
lines similar to that of Ref. 3. The analysis is

presented here mainly for the purpose of complete-
ness. In Sec. III we develop the theory for the den-

sity of acoustic-phonon modes and present the
results of its computation.

II. GENERAL FORMALISM

In this section we develop the general formalism
of the theory which is similar to that of the optical-
phonon model and is repeated here to make the
work self-contained. If we choose the unit of length

to be A/ms and the unit of energy to be ms, where

m is the electron band mass and s is the speed of
sound for the lattice, then the Hamiltonian and
momentum operators for an electron interacting
with acoustic phonons through the deformation po-
tential are given by
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Dropping the primes on all of the new variables, we

obtain

In these expressions ak is the phonon annihilation

operator for wave vector k, a is the electron-phonon

coupling constant, x is the electronic coordinate,
and 1 is the length of the one-dimensional crystal
lattice. Next we anticipate the scaling properties in-

herent in strong coupling by making the changes of
variable

with

[Vk Pk'1 ~ ~kk'

According to the physical picture of strong cou-

pling the electron displaces the lattice from its un-

perturbed equilibrium configuration, and this dis-

placed lattice then serves as a potential well in

which the electron becomes bound. In this picture
it is essential that the frequencies of lattice waves

making up the potential well are much less than the

frequency of the electron bound in the well. This
adiabatic requirement is necessary if the potential
well is to remain static. The potential well is

comprised of wave vectors up to some maximum
which is comparable to the inverse well size and in

the original units is of order 4mnms/A. The elec-
tronic kinetic energy is comparable to the electronic
binding energy, and in the original units is of order
(4vra) ms . Thus we require

4nams h «. (4ma) ms /A'

or

and

+ g(pkp k+ k'qkq k
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We conclude that the adiabatic requirement is a
strong-coupling requirement.

To introduce the physical idea of strong coupling
we make a canonical redefinition of the phonon
coordinates

qk~qk+dk Pk~Pk
. a —iraq kpka-
xx

where we have introduced phonon coordinates

(5) where dk is a real even c-number function of k.
Under the above canonical transformation the Harn-

iltonian becomes

1 8 1

, + Q(pkp k+k'qkq k
—lk I)

2 ()x2 8m'+,/z g lk lqke' + gk'dkqk+ gk dk + „,g lk Idke'
(2~al )' 4m+ (2vral )'

and the momentum becomes

P = —i —iraq kpkk —igdkkpk . (12)a
Bx

C

We note at this point that the change of variables

does not affect the translational invariance of the

system which is stated through the commutation re-
lation
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[P,H] = 0 . (13)

This condition holds for any dk, and we now deter-
n1ine dI, by making a variational estimate of the sys-

tem energy. For a trial function we choose

lr(x)) = u(x) l0),

H = Hp+ H] + H2, (22!

where

ments may now be put back into the Hamiltonian
of Eq. (11) to give

where u (x) is an electronic wave function localized
about the origin and l0) is the vacuum for the new

phonons, i.e., those which are excitations relative to
the deformed lattice. The expected value of H gives

f dx (r(x) lH,
l
r(x))

IIp = — —sech x +
dX 3
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+ gkdj, f dxu (x),
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where we have assumed that u(x) is real. This

quantity is now minimized with respect to the dI,
and the functional form of u (x) subject to the con-
straint

I,z„p + itanhx
u (x = e'~"

i 1»
~2

3 2

The Hamiltonian in this form serves as the starting

point of a strong-coupling perturbation theory. We
note here that in addition to the bound state, the

Harniltonian Hp also has a continuum that was

analyzed originally by Yukon. The orthonormal

eigenfunctions and eigenvalues of Hp are

1 1 ]
u(x) = sechx, Ee ————, ~ —, = ——,

and

pk = f dx u (x)e'

f dx u'(x) = I .

This procedure gives

1/2
27TCX Pk
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(17)
l

1/r(x) ) = u (x)
l y) + pup(x)

l yp ), (27)

(26)

where the factor of —, in Eq. (26) is the lattice ener-

We are now in a position to construct the strong-

coupling perturbation theory. We expand the eigen-

state of H in terms of the complete set u (x) and

u~ (x):

—2u (x) .u(x) = eu(x)1 d

dX

which has one bound solution '

(18)
where the "expansion coefficients"

l
P) andi Pz )

are as yet undetermined phonon-state vectors which

are normalized so that

(28)

1 1

u(x) = sechx, e= ——.
2

(19)

The quantities pk and dk of Eq. (17) may then be

explicitly evaluated to give

Rather than develop the general method by which

l P) and
l P~ ) can be determined to arbitrary order

in a ' as was done for the optical-phonon model,
we solve

mk mk
pk = csch

2 2
(20) H

l
y(x) ) = Z

l
Ii(x) ) (29)

and

2am
dg, = —77

l

' ]/2
k ~k

csch
2

(21}

only to one order in a ' beyond the strong-

coupling limit. From Eq. (29) we obtain

f dx u(x)H
l
Iij(x)) = E f dx u(x) lP(x))

This variational expression for the lattice displace-
(30)
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and

f dx up*(x)H
I
P(x) &

= E f dx up*(x)
I
g(x) & .

(31)

Equation (30) then reduces to

( ——, +Hp) Iy&+ y(uHiup) Iyp& = E
P

(32)

+ g~kkqkq k
—Ik I
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where

with

~kk = Ikk 1(4k —~k'k")
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where

(uH&uz) = f dx u(x)H, up(x) (33)

2m
2

and we have used

(uHiu) = (uH&up) = 0.
From Eq. (31) we also obtain

(u Hiu) I$&+ g(u Hiu ) IP
P

(34)

1

3
—H, Iy, &. (35)

To the leading order in a ' Eq. (35) becomes

I Pp &
= — (upHiu)

I P&
2

+ p2
(36)

where we have set E equal to its strong-coupling-
limit value of ——, on the right-hand side of Eq.
(35). Putting Eq. (36) back into Eq. (32) we obtain

HphIO& =E IN& (37)

where II~h is an eoective phonon Hamiltonian
which involves only the phonon degrees of freedom
and is given by

&& g sech —(p —k)sech —(p —k ')kk'

(p +1) 2 2

(42)

The quantity Vk'k' is the same matrix element that
appears in the optical-phonon model. The form of
H ph is similar to that in the optical-phonon model,

but the dependence on e ' is quadratic in the opti-
cal model and linear in the acoustic model. This
difference is a manifestation of the different scaling
properties of the two Hamiltonians due to the pho-
non dispersion relation and k dependence of the
electron-phonon interaction.

Although we are interested eventually in the con-
tinuum limit, for the present we consider the lattice
to consist of a large but finite number, N, of sites

separated from neighbors by a lattice constant a.
The Rkk can be viewed as an N X N Hermitian
matrix which as N real eigenvalues and N orthonor-
mal eigenvectors with properties

QRkk gk „=Q„gkn (n = 1,...,N),
k'

(uH &up )(upH &u)
Hph

————, + HP —2+
p +1

ggkngkn' ~nn' ~

k

ggkngk n
= 5kk (ClOSure) (43)

The solution of Eq. (37) then gives E correctly to
order a '. From Eq. (33) we make the explicit cal-
culation.

1 1
(upH iu) =—

1 (4n.a)'i p —i

Furthermore, because

we can choose the gk„ to satisfy

g —kn gkn

(44)

(45)

so that

&& gk I

k
I
qksech —(k —p)

2
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We then introduce Hermitian operators

Vn Qgknqk i
k

kn = QgknPk 1

k
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with inverse transformations
1H ph 6

Pk ggkn kn

(47)
(i+ g (g„+ A„i)„)—g k

~Sax n+1 k

(55)

By putting Eq. (47) into Eq. (40) and using the
properties of Eq. (43) we find that the effective
Hamiltonian is diagonalized by the linear transfor-
mation Eq. (47):

a„„=——+ g(g„'+ n„'q„') —g ~

k

(48)

~„=(2n„)-'"(n„q„+g„) (n ~1)
[A„A ]=5„

and obtain

(56)

1 HH h
————+

6 2m.

Finally, we introduce phonon annihilation operators

[II,Hph] = 0

where

(49)

11 = —igkdkpk .
k

(50)

We note here that Eq. (49) is reasonable since the
momentum operator Eq. (12) becomes the operator
II in the strong-coupling limit because dk —(o, )' '.
When Eq. (40) is used in Eq. (49) we obtain

g~kk'k dk'
k'

(51)

which indicates that kdk is an eigenvector of Rkk
with zero eigenfrequency. When normalized and
given a phase to make (, and i), Hermitian, the
eigenfunction for the translational mode is

' —1/2

gki = lkdk gk dk
k

(52)

with

As in the optical-phonon model we can show that
one of the eigenfrequencies, say 0], vanishes by
translational invariance. In an appendix we repeat
the proof that the translational invariance of the ef-

fective Hamiltonian is expressed through the condi-

tion

g~„'W„n„~ —g ——g ~k
~4~a ~, 2 2

m„= 4rragk dkm = —, (4ma) m .
k

(58)

The effective Hamiltonian describes a free polaron
of mass m~ and free phonons of frequencies 0„.
The state

~
P) is then specified by the momentum

eigenvalues of II and a set of occupation numbers
The last two terms in Eq. (57) give the shift in

the vibrational zero-point energy due to the
electron-phonon interaction. To calculate this shift
we must determine the shift in the density of pho-
non modes brought about by the electron-phonon
interaction.

III. DENSITY OF PHONON MODES

In this final version of the effective Hamiltonian we
have expressed g, in terms of the generator of
translations II through Eqs. (50) and (54).

The quantity m, is the polaron effective mass
which is given in terms of the electron band mass
by

—1/2

i)i ——igkdkqk gk'dk'
k k'

and
' —1/2

gi ———igdkpk gk dk
k k'

The effective Hamiltonian is then given by

(53)

(54)

In the optical-phonon model the analog of the
eigenvalue problein stated in Eq. (43) was solved for
the phonon frequencies and eigenvectors. For the
acoustic model in the continuum limit we must
proceed in a different manner, since the spectrum is

actually known and is the same as the unperturbed
continuum. The relevant quantity for the acoustic-
phonon model is the density of vibrational modes.
If the number of phonon modes between frequency
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where ho(co) is the density of phonon modes in the
absence of the electron-phonon interaction. These
densities of modes can be written as

Ao(co) = +5(co —
I

k
I

)
k

b(ttt) = +5(ai —0„), 0„)0.
n+1

(60)

co and co + d ~tt is A(co)d ttt, then any quantity involv-

ing a sum over phonon modes can be expressed as
an integral over h(co). In particular, the shift in

zero-point energy in Eq. (57) is proportional to

—, g 0„—, Q I

k—I= —,f dco[b, (co) —b,o(ttt)]co,
n+1 k

(59)

(46), the closure relation Eq. (43), and the polaron
momentum eigenvalue property

y &o lgk*jpk =
& o

I ki = o, (67)

we arrive at

dt
A(m) = 2iX f &o lp, (t)q,

I
0) .

k
(6g)

We define a retarded-phonon Green's function by

Dkk'(t) = —t 8(t)&0
I
[q-k(t) qk ] I

o)

where 8(t) is the Heaviside function

This expression for b (et) is inconvenient since it is

given in terms of the unknown mode designation
described by the index n To e. xpress b(co) in terms
of the noninteracting phonon wave vectors, k, we
first note that

and note that its Fourier transform

Gkk (co) = f dt Dkk (t)e'"'

(70)

(71)

iHtg iHt— (62)

Here 8 is the effective Hamiltonian of Eq. (57)
without the constant polaron self energy and with
an additional convenient change of energy scale

4 IIa = g~„'~„n„+ + —,gn„——,g lk
I

(63)

with

b, (ei) = 2i g f dt &0
I
g„(t)rt„

I

0)e™,(61)
n+1

where i)„and g„are the modified phonon coordi-
nates and conjugate momenta, respectively, and

g„(t) is the Heisenberg operator

has a spectral representation

dttt '4kk'(ttt ) '4 —k', —k(~ )
Gkk(~)=, . +

2K CO —CO —l'g CO + CO + l'g

(72)

where the spectral function Akk (co') is given by

= f dt &o
I q, (t)q„

I
0)e'"'

(73)

&olq-k(t)qk lo) = f &kk'(~)e'"'.

By writing the Hamiltonian Eq.(63) in terms of the

gk and pk,

1

X PkP —k + k'qkq k
—Ik I

k

1 1
Hph ————+ H .

6 4m+
(64) g( Vkk'qkq —k'

k'
(74)

With this new scale, .time is measured in units of
(4irams /fi) ' and hence frequency in units of
(4trams /R) The state

I

.0) is simultaneously the
phonon vacuum defined by

3„ lo) = 0

and the polaron zero-momentum eigenstate

lllo) =g, lo) =o.

(65)

(66)

The equality of Eqs. (60) and (61) follows from Eq.
(56). Then through the linear transformation Eq.

where

Vkk = Ikk'I VkÃ (75)

and Vk'k
' is defined by Eq. (42), we determine that

2i&0
I pk(t)qk I

0& = 2&0[q-k(t) H(t)qk']0~

i&2l oqk(t)qk lo)
dco —l COt

7T

(76)
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From Eq. (73) it also follows that

~kk'(~) ~ —k —k'(~)

and thus from Eq. (72) we obtain

(77)
b(co) = Im+Gk(co),

k

+ ~ ™g[Gk(~)]Tkk(~) .
k

21m+Gkk(co) = gAkk(co), co ) 0 .
k k

(78)

Finally, from Eqs. (68), (76), and (78) we make a
connection between the density of phonon modes
and the retarded Green's function:

At this point we pass to the continuum limit by
defining

Tkk (co) = T(k,k';co),2K

2'
QlmGkk(m), co & 0

Q(~) = ir

0, a) (0. (79)

To determine Gkk (co) we note that Dkk (t) obeys
the diA'erential equation

2%
Vkk = V(k,k'),

l

where from definitions Eqs. (42), (76), and the

prescription 2irl 'g ( )~ I dp( ) we find
00

V(k,k') = ikk'ikk'

(87)

k + Dkk'(r) 5kk'5(r) + g Vkk Dk k'(r)
Bt k

1 1

(80)

oo
sech —(p —k)sech —(p —k ')

2 2
X dp

00 (p'+ 1)'

(88)

Gk(co) =0 1

k —(co+i')
(82)

In the continuum limit Eq. (81) becomes an inho-

mogeneous linear integral equation for Gkk (co), but
it is more advantageous to first introduce a scatter-

ing amplitude Tkk (co) defined by

Tkk'(~)Gk' (~) y VkkiGk]k'(~) .
ki

By inserting Eq. (81) into the right-hand side of Eq.
(83) we obtain the I.ippman-Schwinger equation

kk'() Vkk' + g VkkiGki ( ~)Tkik'(~) (84)
kl

On the other hand, by substituting the right-hand
side of Eq. (83) into Eq. (81) we obtain

Gkk() = Gk'(~) + lGk'(~) )'Tkk(~) (85)

which then relates the density of phonon modes to
the scattering amplitude through

which follows from the definition Eq. (69), the usual

Heisenberg equations of motion, and Eq. (74) which

gives H in terms of the qk and pk. By Fourier-
transforming Eq. (80) we obtain

Gkk'(~) Gk(~)~kk' + Gk ( ~)g VkkGkik'(~)
k,

(81)

where

The density of phonon modes may now be written

as

(89)&(~) = &,(~) + &(~),

where b, o(co) is the unperturbed value

2' dk 1
b,o(co) = 1 Im

2ir —~ 2' k' —(co+ i7t)~

(90)

and b, (co) is the shift generated by the electron-

phonon interaction

1
Q(~) = —j dk—00

)& Im T(k,k;co)
a

intro k —( co + i ri)

(91)

The scattering amplitude T(k,k';co) in Eq. (91) is

determined from the continuum Lippman-
Schwinger equation

T(k,k ';co) = V(k,k ')

V(k, k i) T(k i k ';co)
dki

k) —co+ I. q 92

The interpretation of the scattering described by this

amplitude arises from the last term in the Hamil-
tonian Eq. (74) which can be viewed as an external
phonon potential well from which a phonon of
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b(co) = &s(co) =-
8M

V(co,co)
(93)

wave vector k is scattered into a new wave vector
k '. It might appear that this interpretation violates
momentum conservation and hence translational in-

variance. However, to the order of approximation
considered here, the polaroid carries momentum but
the phonons do not.

In the Born approximation we replace T(k,k ';co)

by V(k,k'), and Eq. (91) reduces to

0.75-

g 1

o.5o—

l
l 1

1
0.25—

l \
l
l
I

03
I&3

From the explicit form of V(co,co) given in Eq. (88)
we note that b, s(co) has the properties

- 0.25—

O(co ), co~ oo
As(co)~ 'O( 2) 0

(94)

-050-

I.O
l

2.0
1

4.0 5.0

I dcohs(co) = 0.
As we will see, only the first of these properties is
retained by h(co) when the full scattering amplitude

is used. In Fig. 1 we have plotted hs(co) as a func-
tion of frequency. Because of the behavior of b s(co)
at high frequency, the shift in the zero-point energy
diverges. Using the explicit form of V(co,co) and
cutting off the integral at co = co,„we find that the
divergent and hence dominant contribution to the
energy in dimensional units is

Eo;„———gams 1n(fuu~~/ms ),
which is the result of Ref. 1. In fact the perturba-
tion theory used there is essentially equivalent to the
use of the Born approximation here. Physically, the
divergence appears because the high-frequency pho-
nons cannot be treated adiabatically and should be
treated by weak coupling. It is reassuring that Ez;,
also appears in weak-coupling perturbation theory. '

In the Born approximation A(co) has the con-
venient form given in Eq. (93), and when b (co) is
given without approximation it is possible to express
it in a similar form. We first note that V(k,k') can
be written as

V(k,k') = I dp 8(k p)8(k'p),

where

8(k,p) = k ~k ~(p'+ 1) 'sech —(k —p) .
2

(97)

To facilitate the following analysis we write Eq. (96)
in matrix notation

V=BB (98)

where the superscript T is the transpose, and siml

larly the Lippman-Schwinger equation Eq. (92)

T(co) = 88 + BB Go(co)T(co),

where Go(co) is a diagonal matrix. As a practical
matter the integrals implied by the matrix multipli-
cation can be approximated by finite sums in a
variety of numerical integration schemes and the
matrix multiplication can be interpreted according-
ly. Since B ' exists we may define

R(co) = 8 'T(co)(B )

and hence Eq. (99) can be solved for

R (co) = [1 —C(co)]

where

(100)

(101)

C(co) = 8 Go(co)8 . (102)

The shift in the density of modes is then given by

b(co) = —Im Tr BR (co)8 Go(co)
Bco

= —Im Tr R (co) R (co) . (103)
1 8
7T BN

FIG I. -The shift in the density of phonon modes as a
function of frequency. Dashed curve is for Born approxi-
mation. Solid curve is without approximation. Frequen-
cy is in units of 4mams'~Pi.
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Because R (co) is symmetric (but not Hermitian) it
can be diagonalized by an orthogonal transforma-
tion for which the trace in Eq. (103) is invariant. In
this way we can obtain

I.OO—

1 d
b, (co) = — 5(co),

7T dN

where 6(co) is defined through

detR (co) = r(co)e' '"'

(104)

(105)

0.75—

5&(co) = ~V(co,co)/co . (106)

[r(co) and 5(co) real] and we have made use of the

invariance of detR (co) under the orthogonal

transformation. In potential theory the connection

between scattering phase shifts and the shift in the

density of states due to interaction is well known

and finds an application in the quantum-mechanical

theory of the second virial coefficient. Note that in

the Born approximation we can make the identifica-

tion

0.50—

0.25—

I.O
I

2.0
I

3.0 4.0
I

5.0

FIG 2. The phase shift 6(co)/~ as a function of fre-
I

quency measured in units of 4~o,ms /R.

We have computed 5(co) from Eqs. (101), (102),
and (105) by Gaussian quadrature and there are

several interesting features of the results which are

plotted in Fig. 2. Unlike its Born approximation,

6(co) does not vanish as co ~0 but approaches ~ in-

stead. Since 5(co) ~ 0 as co~ co, we then obtain

dcok co = = —1 107

which is analogous to Levinson's theorem in poten-

tial theory when a bound state is present. The signi-

ficance of Eq. (107) is that one vibrational made be-

comes a translational mode in the presence of the

electron-phonon interaction, as was indicated previ-

ously in Eq. (S I) by the occurrence of a vanishing

eigenfrequency. The translational state was also

identified previously with the polaron which is the

bound state of the system. The absence of one vi-

brational mode is shared by all wave vectors, and

the extent to which each value of k (and hence co in

our units) participates is given approximately by

g„i ~ (cocschcon/2), where gk is the eigenfunction

for the translational mode. Hence the shift in the

density of states is depleted more at zero frequency.
From Eq. (104) we may calculare A(co) which has

been plotted in Fig. 1, and the depletion has this

qualitative feature.
In the absence of any further structure the phase

shift would fall monotonically to zero as co~ ao.
However, at co —0.5 the phase shift rises abruptly

and reaches a maximum at co ) 1 after which it

falls monotonically to zero as co~ ~. In potential

theory a resonance is indicated by a phase shift
which starts at zero for zero energy, rises rapidly
through m/2, ans then falls slowly to zero at high

energy. The behavior of the phase shift 5(co) in Fig.
2 suggests the presence of both a bound state and a
resonance. We point out, however, that we have

made no attempt to decompose the phase shift 6(co)
into contributions from different "channels" (e.g. ,

parity) as is done in the analogous potential-

scattering density of states referred to above.
In that case the analog of 5(co) is a sum of phase
shifts for various angular momentum states. Conse-

quently, in our case it is not clear that there is a res-

onance in the traditional sense. But there is clearly
an enhancement in the phonon density of states at
cu = 1, and this serves as the analog of the localized
modes which were first discussed for the optical-
phonon case by Melnikov and Rashba, and sube-

quently by Gross' and Shaw and Whitfield along
the lines of the present work. That the enhance-
ment occurs at co = 1 can be understood when it is

noted that in our units this corresponds to
wavelengths comparable to the size of the polaron.
The electron-phonon interaction tends to lower the
phonon frequencies, and phonons "resonating" with

the polaron would interact most strongly and hence
be lowered the most. This would cause a bunching
of phonon modes slightly below co = 1.

Finally, the shift in the zero-point energy can be
calculated numerically in terms of- the shift in the
phonon density of states, and the ground-state ener-

gy for a polaron of low momentum p is given by
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EG(p) = —(4ira) + + 0.178 4nams2 ms p
6 2m~

In Eqs. (22) —(25) the Hamiltonian H is written as a
polynomial in a ', and in a similar manner we

may decompose the momentum as

where

—Sums ln2 ~max

4~vms
(108) P =Po+P

where

(A3)

~max )+ 47TQms

p g~ m~s,

and we have restored all dimensional units.

(109)

and

~ a
Po = —' —igV kPkk-

BX k
(A4)

We wish to thank G. Whitfield for helpful discus-
sions.

APPENDIX

P i
——11 = —'gkdl, pk .

k

By separating [P,H] into terms with the same

power of a ' we obtain four identities:

(A5)

We show that

[II,H„h] = 0. (A 1)

[P,H] = 0. (A2)

The proof is essentially that given in Ref. 3 for
optical phonons. The translational invariance of the
system is contained in the statement.

[II,H, ] = 0,
[Po,Ho]+ [II,Hi] = 0,
[Pp H i] + [II Hp] = 0

[Po H~l = 0.

(A6)

(A7)

(A8)

(A9)

Only Eqs. (A7) and (A8) are nontrivial. Now from
Eq. (36) we obtain

(u [II,H i]u~ )(uqH iu) + (uH pu~ )(u~ [II,H i]u)
[II,H„h] = [II,H2] —2

p2+ ]

By using Eq. (A7), Eq. (34), and the completeness of u (x) and uz(x) we find

[II,H ph] = [II,H2] + (u [Pp,H i]u) .

Finally, by using Eq. (A8) we prove Eq. (Al).

(A10)

(Al 1)
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