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Methods and problems of electronic approaches to the treatment of lattice defect cores are briefly discussed, and
the need of a new theoretical framework—Iless descriptive and more operative—is concluded. Two main objectives
are formulated. (1) A new set of basic equations, providing relationships between practical physical parameters like
force, torque, momentum, energy, etc., is needed. (2) These should be regional, real-space relationships, applicable to
open subsystems like lattice defect cores. Regional virial and hypervirial relations are suggested as one possible set of
equations of the desired type, and such relations are derived in a second quantization formalism, well suited for
systems of undetermined numbers of electrons. This regional theory is developed within the Schrédinger picture by
means of field operators, as well as within the Heisenberg picture in terms of double-time Green’s functions
(propagators). A connection with trace algebra is discussed, and a starting point for further developments is given.
The Kanzaki approach to lattice relaxations is briefly reviewed and compared with the present approach, which is
based on a regional virial equation, defined for an iterative series of artificial, intermediate equilibrium states in the
relaxation process. This approach has three major advantages: (i) the forces are given a nonlinear representation, (i)
the fundamental equations are defined directly for the defect lattice, and (iii) the virial theorem will automatically be
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satisfied for the relaxed system.

I. INTRODUCTION

The plastic deformation of monocrystalline met-
als is mainly caused by formation of and interac-
tion between lattice defects of various types.
These effects are extensively treated within the
theory of dislocations,''? which supplies qualitative
explanations to most features of plasticity. Dis-
location theory, however, is largely of a contin-
uum elastic nature and is not valid inside the core
of a defect (the strongly distorted region close to
the defect center). To obtain a deeper insight into
the problems of plasticity in metals, it is neces-
sary to establish a sound physical basis at an
atomistic level for the creation and behavior of
lattice defects.

A successful, nonempirical representation of
crystal imperfections must be based on the elec-
tronic origin of cohesion. In point of principle,
such an approach demands the solution of the
Schrodinger equation for the atomic configuration
under consideration. In the traditional solid-state
approach,®:* the real-space problem is projected
into k space, where the parts of the problem con-
cerned with energy are explicitly solved. Only in
rare cases are the real-space aspects of the prob-
lem considered in the form of explicit wave func-
tions. In recent years the interest in surface
phenomena and disordered systems have, however,
contributed to a stronger emphasis on real-space
methods.® For semiconductors and insulators the
interest in real-space methods has been stronger,
although the reciprocal space has been dominating
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there too.*

The formal and computational problems associ-
ated with a nonempirical approach are overwhelm-
ing, the Hamiltonian of a distorted lattice of real-
istic atoms being extremely complicated even if
lattice vibrations are neglected. To make a solu-
tion possible, the problem must be simplified by
a series of approximations. First, the many-
electron Schrodinger equation must be reduced to
a set of effective one-electron equations to be
solved by some type of self-consistent field (SCF)
scheme. In solid-state theory this is usually
achieved by means of a density-functional proce-
dure,® but there are also authors who prefer a
Hartree-Fock treatment at this level of approxi-
mation.” Secondly, the picture of the crystal ions
is often simplified beyond recognition in order to
obtain a manageable description of the interaction
between conduction electrons and lattice. Exam-
ples of common lattice approximations are uni-
form background, point-ion lattice, or simple
pseudo~ion lattice models.?*® Thirdly, the interac-
tion within the conduction gas is often given a sim-
plified description by means of local, electron-
statistical ag‘)proximations.‘*'10 Finally, the geo-
metry of the defect must be simulated somehow;
by an assumed scattering potential,* by iterative
schemes of Kanzaki-force type,®** or in some
other way.

The consequenses of all these superposed ap-
proximations are grave. In spite of the advanced
mathematical formalism used, and in spite of a
heavy computational burden, the quantitative re-
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sults (misfit energy, etc.) usually are no better
than those obtained from the much simpler, em-
pirical pair-potential approach.!’ Within the
conventional set of approximations there does not
seem to be a simple way out of this dilemma.

Any attempt to improve the results by making the
crystal model more realistic seems to lead to a
virtually exponential rise in mathematical com-
plexity and computational effort. The reason is
the fact that the basic equations are too detailed
in their description of a system: In order to ob-
tain a quantitatively correct result for some para-
meter, we must feed the equations (via their Ham-
iltonians and boundary conditions) with very de-
tailed information about the system. And even
then, the desired result may only be acquired—

at best—by an extensive computational effort. The
apparently “unuseful” parts of the information are
cumbersome to drag along in the calculations, and
it may be tempting to reduce them by some kind
of approximation. However, such a reduction may
be risky; at a later stage it may turn out that a
seemingly innocent approximation distorts the
“useful” information. In short, the conventional
approach is too much descriptive and too little
operative.

A. Objective 1

We need a new set of basic equations which pro-
vide relationships between practical physical para-
meters like force, torque, momentum, energy,
etc. Such a formalism should not require a too
detailed description of the physical system in
order to be operative. The hypervirial theo-
rems'?”'* seem to provide one “safe” set of re-
duced relationships of the desired type, In these
equations, parts of the unuseful information have
been reduced, in a formally exact manner, by
averaging. An attempt to use such relationships
is presented in this paper.

Hypervirial relationships can be utilized for two
different purposes.

(i) As an instrument to test the validity and the
accuracy of a calculation.'®!® For example, it is
a well-known fact that the total energy of a system
is fairly stable; good energy values can be ob-
tained from rather approximate wave functions or
electron distributions. The virial equation, which
governs the kinetic-potential balance in the system
is very sensitive to perturbations. Therefore, if
the different parts of the energy can be determined
by some other means, the virial theorem provides
a most sensitive possibility to check these results.

(ii) In order to perform direct calculations of
physical parameters. Examples of such paranie-
ters are the forces of constraint acting on the

atoms in an unrelaxed vacancy configuration. If,
for any fixed-vacancy geometry, it is possible to
calculate good regional mean values of kinetic
and potential energy and surface-flux virial, the
nonlinear lattice relaxation can be determined
from the regional virial equation. This is further
developed in Sec. III. The above example points
towards a second objective.

B. Objective 2

The set of reduced basic equations should be
regional, real-space relationships, applicable to
open subsystems like the cores of lattice defects.
Thetraditional k-space viewpoint that introduction
of a lattice defect affects the whole bulk of the
crystal (in the sense that the electron-energy
levels of the whole crystal are shifted) cannot be
directly transferred into real space. In reality,

a lattice imperfection affects the distant parts of
the crystal no more than a pole in the water out-
side Gothenburg affects the waves washing the
shores of New York.'” An imperfection in an ex-
tended crystal affects only a limited part of that
crystal, and it should therefore be possible to
handle it within a regional real-space formalism
for open subsystems.

To combine the desiderata presented under the
headings Objectives 1 and 2 is by no means trivial.
The quantum theory of open systems is still in its
early stages of development'® and the program
sketched, touches therefore, some very basic
theoretical questions. QOur own interest is pri-
marily aimed at practical applications. Although
all applications will require a number of approxi-
mations, we find it desirable to first develop a
theoretical framework, in which we are at least
aware of the main conceptual difficulties. As a
first step in such a program we discuss, in Sec.
II, certain aspects of regional hypervirial theo-
rems. Two characteristics of the open system
must then be kept in mind. First, there is no wave
function or state vector for such a system; it
must be described by a density matrix.'*"?' Sec-
ond, since the subsystem is open, the number of
particles in it is not fixed.

In order to illustrate how to use such abstract
concepts, we sketch in Sec. IV, an application of
a special hypervirial relation—the virial theorem
for a subsystem—designed to give a scheme for
the calculation of the lattice relaxation around a
defect in a crystal.

Bader and collaborators??~%* have made very
important developments towards a quantum mech-
anics for a subsystem. By limiting themselves to
a special kind of subsystems—so-called virial
frégments which are limited by surfaces through
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which the flux of the gradient of the density vani-
shes—they have been able to contribute in a fun-
damental way towards one of the central questions
of chemistry: what do we mean by an atom in a
molecule? This type of consideration has impor-
tant implications for solids in general and for
defect problems in particular. In the present pa-
per it is, however, necessary to work with a sub-
system of a more general nature than the virial
fragments.

II. REGIONAL HYPERVIRIAL RELATIONS

The term “hypervirial” seems to have been
coined by Hirschfelder'? in a paper dealing with
both classical and quantum-mechanical hyper-
virial theorems. In classical mechanics, the
long-time average of the Poisson bracket {H, Z}
between the Hamiltonian function H and a function
Z of the generalized coordinates and momenta
satisfying certain conditions, vanishes:

3N
9Z O0H 0Z oH
o (BER £ o
.2y, ; 8q; 8p;  9p; 94, /],,,
Hirschfelder proposes the name classical hyper-
virial theorem for (1) when Z is a homogeneous

function of the generalized momenta of degree one,
i.e.,

i) qu);kpu L vkpaN
=kZ(qp ) qSN;pU . 'p3N) : (2)

In conventional quantum mechanics the hypervi-
rial relations associated with a quantity Z are
nothing but the diagonal elements (in the energy
representation) of Heisenberg’s equation of motion
for the quantity z'2-1*

Z2(qy, a5, - -

An expression of this kind presupposes the exis-
tence of a set of wave functions for the pure states
of a system with a well-defined number of elec-
trons. The primary purpose of the papers in Refs.
12-16 was to use hypervirial relations as a means
of optimizing approxmate wave functions. We also
notice that (3) means that the integration is car-
ried out over the whole space. The ordinary vir-
ial theorem is the special case of (1) and (3) when

Z=3. %D @
i

As pointed out in the introduction, we are interes-
ted in relationships referring to partial regions

in real space, i.e., to subsystems. These sub-
systems are allowed to exchange matter and mo-
mentum with other parts of the total system; they
are so-called open systems. For such open sys-
tems there are no pure state wave functions. In-

stead they are characterized by a density ma-
trix.““z‘

Schweitz?® has derived a classical virial theorem
for open systems, which in addition to the ordin-
ary terms, also contains a surface-flux virial
associated with particles that leave and enter the
open system. For the quantum-mechanical ana-
log Schweitz?® has given a derivation in terms of
reduced density matrices. This constitutes one
step towards a correct treatment of open systems,
since the number of particles in the open subsys-
tem is not fixed. However, this treatment is in-
complete, since it presupposes the existence of
a state vector for a larger system to which the
open subsystem belongs. The same objection can
be made about the generalization to hypervirial
theorems.?” As a logical next step, we now de-
velop a treatment, which ultimately, will elimi-
nate the need for a state vector.

One characteristic of open systems, the unde-
termined number of particles, makes it attractive
to work with second quantization. For our pur-
poses this means that we should study expectation
values of operators like

f $00z (Y (e (5)
Q

where (/f(x) and (x) are fermion creation and an-
nihilation operators, and z(x) is the one-electron
operator under consideration. § is the volume of
the region that is studied. The expression (5)
gives an explicit regional operator. We need the
expectation value of the operator

z=22(x), (6)
j
with respect to a state function &(¢), i.e.,
(Z(10q = [ @O0 @) dx ™
Q

Assuming that the operator z is time independent,
we obtain with the time-dependent Schrodinger
equation

22N =i f, @O, ke Chw]leOdx.
(®)

We write the Hamiltonian for the system as

H =[¢*(y)[—% v2+f (W (v)dy

1 LB @y, 2 )iz dy ©

and obtain with the anticommutation relations sat-
isfied by the field operators

[H, 600z () (x)] =00 (x), 2 () o (x)+S(x), (10)
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where

e(x)==3v2+f(x) +5(x), (11)
with

20 = [dy)ete, ys()ay (12)
and

S(x) =2 $0)v2[z (x), ¥(x)]

~1 [V, 3(0)]z2 (D (x) . (13)

The volume integral over S(x) can be transformed
to a surface integral which can be written as

/S(x)dx=if [f,,.z(x)zp*(x’)zp(x)]-dgx . (14)
Q s

Here T,,. is the flux density operator

-

T = =5V, =V,.), (15)

introduced by Schweitz.2%?” Combining (8) with
(10) and (14), and taking the long-time average of
(8) we obtain

*/tav

(if(‘I’(t)lzJ)T(x)[e (%), 2(x) Jp ()@t ) dx —f (@) T 2 ()9 (M (x) |<I>(t))-d§> =0. (16)
Q s

This is one form of the hypervirial theorem as-
sociated with the operator z(x) for an open system.
The first- and second-order reduced density ma-
trices associated with the state ®(t) are

v (x|x) =@ (N (x) @) 17)
T (xy, %5157, 25) =@ |0 O (eg)p ()9 () @)Y

Combining (16) and (17) we retrieve the form of
the hypervirial theorem given in Ref. 27.

Another modification is obtained by going over
to the Heisenberg picture

&(t) = exp(—iHt)®¥, (18)
Alx, t) = exp(GH)A(x) exp(~iHt),

and by expressing (Z), in terms of the one-particle
propagator?®

~ (@7 [p(x, ) (x’, t)|@F) for t>¢'
G(x’ 4 x,’ tl) 2{

(19)

This gives

9 9
z1< +—)G (x,, & x4, ¢)dx

d .
71 Z =i YREYZ

(20)

Q
t'—>t+0
where we use the convention that z, operates only
on the unprimed variable x,. A set of straight-
forward but tedious operations analogous to those
leading to (16) then allow us to write the hyper-
virial theorem in the form

(f [e (8), z,)G (x,, t; x%, t))dx,
Q
t'—>t+0 (21)
+if [T,02,Gx,, t; %, t')]-dg) =0.

S Y tav
t>t40

+i(@ (!, 1 (x, )| @) for 7> ¢,

f
The two forms, (16) and (21), of the hypervirial
theorem offer interesting prospects for more re-
alistic applications than was possible with the
special form derived in Ref. 27.

The surface term in (21) can be rewritten as
a sum of two volume integrals

Z-if
s

t'>t+0

[‘711‘2 Gy, 8 x4, t]- dgl

=§f (V2 2,]G(x,, t; x!, t")dx,

t'—=>t+0

st (P -v2GG, 2, )dx, . (22)
Q
t'—>t+0

Since

V2-v2=(V,+V,.)-(V, -V ,)

=(F,-9,):(F,+9,), (23)
the last integral in (22) vanishes identically if
(v,£V,)G=0. (24)

This happens (with the plus sign) for translation-
ally invariant systems, for which

G(x, 1) =Gylx, ~x%). (25)

The free-electron gas offers an example of (25).
In the special case of the virial theorem (z, =%, - p,)
the surface virial then reduces to

ZM =~ 2AT),, (26)

in complete agreement with the classical result
for an ideal gas.?®

The trace algebra of Lowdin?® suggests still an-
other form which might be suitable for a regional
hypervirial theorem. In that formalism, the phys-
ical situation is described by a system operator T’
of unit trace. The expectation value of an operator
Z is given by
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(Z) =Tr(ZT). (27

If I'?=T" we have a pure state, i.e., thereis a
wave function. It is important to note, however,
that the trace algebra formalism also covers the
general situation I'?#I" when there is no wave
function. The time evolution of the system opera-
tor is governed by the Liouville equation
-, (28)
where the operator M is related to the evolution
operator S by
ds
M==—=8"1, 2
dt S (29)
Provided we can define a suitable regional version
of (27), i.e.,

<Z>g:Trn(Zr) , (30)

which is consistent both with the trace algebra
and with the statistics of the particles under con-
sideration, we obtain with (28) (if Z is time in-
dependent),

L (2ya=(2,M)a, (31)

which can serve as a starting point for further de-
velopments.

From the derivation of the two main results (16)
and (21) of this section, one might get the impres-
sion that we still need a state vector for the sys-
tem under consideration. The same derivations
can, however, be carried through to final results
of the same form, with the expectation value (7)
and the propagator (19) defined instead by means
of a density operator.?® We have thus obtained a
regional hypervirial theorem expressed in terms
of quantities that allow both a general density-
(system-) operator description of the region un-
der consideration and an undetermined number of
particles. Further studies are needed in order to
connect this form of the hypervirial theorem with
the trace algebra formulation.

III. NEW APPROACH TO LATTICE RELAXATIONS

As mentioned in the introduction, virial rela-
tionships can be used not only as instruments to
test the validity of given results, but also as a
tool fordirect calculations of physical parameters.
Here, we suggest a method, according to which,

a regional virial equation can be used to deter-
mine the geometrical relaxation close to a lattice
defect. This method also provides an application
of regional relationships to open systems with
indefinite numbers of electrons.

The contribution from distortions caused by lat-

tice defects is of importance in discussing vari-
ous phenomena, e.g., interaction between defects,
binding energy of defect clusters, x-ray diffrac-
tion, electrical resistivity, and deep energy lev-
els in semiconductors. Experimentally, it is very
difficult or even impossible to obtain detailed,
quantitative information about these distortions.
We must, therefore, resort to theoretical consid-
erations in order to obtain such information.
Basically, this issue is of a complicated, many-
body character. Some 25 years ago, Kanzaki®®
suggested a simplified treatment of the lattice re-
laxations near point defects. His method, the so-
called lattice-statics method, has been extensively
applied, and is still one of the main methods for
the study of relaxation phenomena.®* Below, we
give a short outline of the Kanzaki approach.

Kanzaki’s method is based on the Born-Oppen-
heimer crystal approximation, and the fundamental
equations are defined for a distorted, perfect lat-
tice, i.e., all points are occupied by normal atoms,
which, however, havebeen shifted from their true
equilibrium positions into a simulated, relaxed point-
defect geometry. The system is held in an arti-
ficial state of equilibrium by a set of external
forces of constraint, which are assumed to be
known. For a lattice of that type, Kanzaki expands
the crystal energy E in a Taylor series in terms
of the displacement vectors E, (I refers to the num-
bering of atoms). This series is truncated after
the second-degree terms, whereby the forces be-
come linear functions of the displacement

EM=ZZIEZ A (32)

m and [ refer to the numbering of atoms, Km is the
external force of constraint (Kanzaki force) acting
on themth atom, and the elements of the matrices
A are given by
2

Ag‘f:(zu?_T’a%},,—E’l’ @,8=1,2,3. (33)
The subscript “0” indicates that the derivatives
are to be taken at undisplaced lattice positions,
i.e., A;, are materials constants. Assuming ﬁ,,,
and A, to be known, the corresponding equili-
brium displacements can be determined by an
iterative procedure. Since the force constants
are characteristic of the perfect lattice, impor-
tant simplifications can be achieved by means of
a normal coordinate analysis. Here we suggest an
alternative, nonlinear approach, based on the com-
plete regional virial equation of the system. We
adopt the Born-Oppenheimer picture, but do not
linearize the theory by some approximation, and
we do not study a distorted perfect lattice. In-
stead, we consider directly a distorted defect
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lattice. Thus, in the case of a monovacancy, one
atom is missing at some lattice site.

We now proceed to set up the regional virial
equation of the system. First of all, we note that
all interactions among the electrons and the atomic
nuclei are of the type »~!. For the relaxed true
equilibrium configuration, the regional virial equa-
tion can be expressed as

2<7;e1>9 +<Urel>Q +Zs rel = 0. (34)

The first term is twice the average kinetic-energy
content of a volume § containing the defect, the
second term is the corresponding average poten-
tial energy, and the last term is the average sur-
face-flux virial, taken over the surface s enclos-
ing ©. The last term may be evaluated from Eq.
(22), for instance, withz,=X,+p,. The evaluation
of the quantities in (34) can actually be made in
several different ways as illustrated in the pre-
vious section. In Eq. (34), as always in the fol-
lowing, time averages are tacitly understood.
Next, we shall define a similar relationship for
some intermediate stage of the relaxation process.
It is important to remember that a virial theorem
is valid only for a state of equilibrium. There-
fore, for an intermediate stage, we create an
artificial equilibrium state by introducing external
forces of constraint (F, ) to fix the atoms in their
displaced positions (r;). The virial equation of
this state must be completed with the contribution
from the constraint forces to the virial sum

XUT) o +(UYg +Z, + 2 T+ F, =0. (35)
1

In the last term, the summation runs over all
atoms contained in Q. In the following we shall
assume that the regional averages (T),, (U),, and
Z, can be determined for any given set of nuclear
positions Y‘, by some independent method. Such a
method may, for instance, be based on a density-
functional or a Green’s-function approach. Thus,
we consider the first three terms of Eq. (35) to be
known functions (explicit or implicit) of the nuc-
lear positions Y‘,. Consequently, the total energy
content of © is also known:

(E)q =(T)q +(U)q - (36)

The forces F,, required to keep the crystal in an
artificial state of equilibrium, must be equal but
oppositely directed to the forces exerted by the
crystal on the various atoms

Fi=+V,(E)g, 37

where _V-, is the gradient with respect to the nuc-
lear position T, . Hence, for any given set of T,,
the forces F; are known. Equation (37) is based

on the assumption that the relaxation affects only
the energy content of the observed volume £, so
that the energy of the “outside region” is unaffec-
ted. This is true if Q is chosen sufficiently large.
It has been shown that the creation of a vacancy
causes a uniform contraction of the whole crystal
(including the outside region), but this contraction
affects the energy to negligible if any extent.*

Combining Egs. (35) and (36), the total energy
can be expressed as

Ba=A{(10+2, DI "f) (38)

Equation (38) holds for every state of equilibrium,
artificial (F,# 0)as well as true (¥, = 0). Forboth
types of equilibria, the fofalforce acting on every at-
om must vanish. Inthe artificial case, thisisthere-
sult of an exact balance between nonvanishing exter-
nal and internal components. The true equilibrium
state is the special case when the external and inter-
nal force components vanish individually, i.e.,

the conditions

must be fulfilled for all atoms. Applying these
conditions to Eq. (38), the following set of equa-
tions is obtained:

TalTYo +2,) +2 V(F,+ F1) =0. (40)
1

Assuming rotation-free forces (¥,,X F,=0 for all
m and [), the last sum of Eq. (40) can be expanded:

Zem(—fl'—ﬁl):—f‘m+E(—f['6m)-f‘l’ (41)
1 1
where
Fr = V(B =V (T +(Uy) . (42)
The last sum of Eq. (41) can be written as
2 (5 F,0F,=0_ 7, By, (43)
1 1
where the elements of the matrices are
dXE)
ap 9 \E)q -
B Py a,f=1,23. (44)

Inserting Eqgs. (42) and (43) into Eq. (41) and then
Eq. (41) into Eq. (40), we obtain

VATV +(UYg +2,) + 2 F1* By =0 (45)
1

Equations (45) are the fundamental equations which
can be utilized in an iterative scheme to determine
the true equilibrium positions. The procedure is
straightforward: for some initial set of nuclear
positions T, the gradient terms ¥V, (...) and the
matrices B,, are evaluated. Then a new set of T,
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is determined from the solution of Eq. (45); new
gradient terms and matrices are evaluated, and
so on. The iteration goes on until the constraint
forces F,, [Eq. (42)] vanish or are small enough.

The algebraic problem to solve in every itera-
tion cycle is the linear system of Eqs. (45). It
should be noted that, although the mathematical
problem at hand is a linear one, the physical mod-
el is nonlinear: The forces F, may be nonlinear
functions of the displacements.

The convergence properties of the suggested
iterative procedure remain to be investigated.
The linearity of the mathematical problem leads
us to believe that the convergence should be no
worse than in the Kanzaki theory. In fact, the con-
vergence may be even more rapid, since the force
“constants” B, are redetermined in every cycle
and therefore tend to “follow” the crystal in the
relaxation process.

Assume that the volume 2, which we have cho-
sen to consider, contains N atoms. The task of
solving the system Eqs. (45) then is, in principle,
equivalent to the problem of finding the inverse of
a 3N X 3N matrix. Utilizing modern numerical
methods and computer techniques, this problem
can be adequately handled, even for fairly large
matrices. Furthermore, for a given type of de-
fect in a given lattice structure, the number of
(T,) unknowns in Eq. (45) can be considerably re-
duced by symmetry considerations, the size of
the matrix being accordingly reduced.

Close to the defect the forces are most certainly
nonlinear. Farther from the defect (but not very
far), a linear approximation is probably accept-
able, and we may replace the functional matrices
B, in Eq. (45) with the constant matrices A, of
Eq. (33), whereby the numerical problem is fur-
ther simplified.

For a simple crystal model, such as a point-ion
lattice immersed in a quasi-free-electron gas, the
surface virial may be approximated according to
Eq. (26) if © is chosen large enough:

Z, ==AT), . (46)

Thus, in this approximation, the surface-flux
virial is directly linked to the kinetic-energy con-
tent of the considered volume. Z is affected by
the presence of a defect via the average formation
of T over . Elimination of Z; in Eq. (45) results
in a simplified set of fundamental equations

VU)o + 0 Ty By =0 (47
1

Formally, Eq. (47) resembles the Kanzaki rela-
tions of Eq. (32). There are, however, several
important differences: V,(U), does not represent
the total external force of constraint; the matrix

B,n is not a materials constant; the parameters
T, of Eq. (47) are not displacement vectors; and
the parameters (U), and B,,, are not associated
with a perfect lattice. B

Obviously, the present approach [represented by
Egs. (45) or (47)] demands more detailed previous
knowledge about the system than is required by
the Kanzaki method [represented by Eq. (32)].
This is quite natural, since the present theory
deals with a more complicated nonlinear problem.
The suggested method has three major advantages
over Kanzaki’s method: (i) the forces are given a
nonlinear representation, (ii) the fundamental
equations are defined directly for the defect lat-
tice, and (iii) the virial theorem will automatically
be satisfied for the relaxed system. The price to
be paid in return for these advantages is increased
computational difficulties, mainly due to the fact
that the elegant and effort-saving method of nor-
mal coordinates, applied by Kanzaki, cannot be
utilized in the present theory.

IV. CONCLUSION

In his monograph on the theory of defects in
solids Stoneham® states that, since the virial
theorem (in its conventional form) is not valid for
a subsystem, it is not particularly useful in de-
fect theory. In other papers one of us?®*~?” has
tried to remedy that situation. In the present
paper we have derived a regional hypervirial theo-
rem by different procedures, which correspond to
a more realistic description of a subsystem than
those used in Ref. 27. Both the virial theorem
and other special cases of the hypervirial theorem
are, therefore, now open to applications in defect
theory.

As a first application we have proposed an iter-
ation scheme for calculating nonlinear lattice re-
laxation around a defect. This scheme is based on
a regional virial theorem and it presupposes that
we can calculate the kinetic- and potential-energy
contents of the chosen region as well as the sur-
face virial of the limiting surface. Although the
final equations are linear, one definite advantage
of the procedure is that the forces can be nonlin-
ear functions of the displacements. The method
can be expected to converge faster than the Kan-
zaki method.

On the basic theoretical side, very interesting
problems present themselves, as sketched in Sec.
II. A representation must be found which accounts
both for an undetermined number of particles in
the open system and for the fact that such a system
is not described by a wave function. A combina-
tion of trace algebra and second quantization would
seem to provide an interesting possibility.
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Applications should be made at two levels. On
one hand, hypervirial theorems for different op-
erators should be exploited in order to formulate
relationships between “practical” physical quan-
tities. On the other hand, such relations, like the
one developed on the basis of a regional virial

theorem, should be used for actual quantitative
calculations.
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