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A perturbative theory of optical, rough-surface scattering must avoid certain pitfalls that

are caused by components of the electric field being discontinuous at the surface. A theory
which eliminates this problem is developed. The theory is simpler than other methods and

is generally applicable to optical surface scattering in the perturbative limit. Scattering in-

tensities from a rough dielectric surface are obtained, and the effect of roughness on the

surface-plasmon dispersion relation is calculated. The methods developed are especially
suitable for film-layered structures and are used to calculate the scattering from a surface

with an overlayer.

Determination of the optical properties of rough
surfaces' " is an important problem not only be-
cause of interest in the scattering and surface-
plasmon properties of such surfaces but also because
of the possible connection to enhanced Raman
scattering. ' Although several perturbative treat-
ments of this problem already exist, ' they some-
times incur ambiguities in prescribing boundary
values ' and can be cumbersome when applied to
film-layered structures. The method given here al-

ways allows well-defined boundary values. It is also
especially well suited for film-layered structures.

We begin the treatment by writing the dielectric
function as the sum of a zero-order, smooth-surface
function and a perturbation describing the surface
roughness

e(r)=so(r)+e'(r) .

ponent of an electric field is discontinuous at a sur-

face, E, can be very different from Ep, in the region
where e'(r)+0, as shown in Fig. 1. Therefore, E,
cannot be neglected compared to Ep, in the above
integral. The normal component of the displace-
ment field D„however, is continuous. Then D, is
not very different from Do, in the region e'(r)@0,
so that D, is small and may be neglected in a per-

turbative expression such as f GoE'(Do, +D, )d r'.
Therefore, the perturbation theory will be construct-
ed so that only continuous components of the elec-
tric or displacement field appear in these integrals.
Such rearrangements of Maxwell's equations have

Eoz
I Z
I

By doing this, we do not imply that e' « ep every-

where; rather, e' may be comparable to ep over a
small region (having an extent less than the
wavelength of incoming radiation). When writing
the solution as Ep+ E', care must be taken in as-

suming that E' is small compared to Ep, the solu-

tion pertaining to ep. The perturbation E is not
small everywhere, but may be locally quite com-
parable to Ep. So, terms of the type e'E' are not
necessarily of higher order than 6 Ep OI 6'pE and

they cannot be neglected offhand.
To clarify this point, consider the expression

Gp rr g'Ep r +E' r d r'

that arises in a perturbative treatment. Gp is an ap-
propriate Green's function. Since the normal corn-

l
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l

z=o z=f
FIG. 1. Since the normal component of E is discon-

tinuous at the surface, Eo, is very different from E, in

the region e'( r )@0. D, is continuous, therefore Do, is

not very different from D, .

24 7112 1981 The American Physical Society



INTEGRAL-EQUATION PERTURBATIVE APPROACH TO. . .

I. THEORY

A. Unperturbed equations

As a preliminary, the unperturbed vector equa-
tions will be reduced to a convenient set of scalar
equations for the cases of interest, where

This zero-order dielectric function applies to a sur-
face or any layered film structure.

The equation for the Eo field

V X fX Ep= ~o(z)Ep2
(1.2)

been used to treat laterally invariant microscopic
and nonlocal perturbations at a metal surface. ' '
Here, the focus is on the laterally varying perturba-
tion of surface roughness. The material is described
simply by a sharp boundary and a local dielectric
function. This procedure is used in the next section
(I) to obtain perturbative equations for the scattering
of light. These derivations are followed by ex-
amples which illustrate the use of the formulas.
Section II contains the scattering distribution for a
planar rough surface of a homogeneous medium,
while Sec. III examines the effects of periodic sur-
face roughness on surface plasmon modes. Finally,
Sec. IV contains a derivation of the scattering distri-
bution for a planar rough surface with a dielectric
overlayer.

Ep(Rg)= J Ep(Koz)e
(2Ir)

the vectors R and Kp being parallel to the surface.
Taking the z component of (1.5) and defining

Dp& =to(z)Ep& we obtain the first scalar equation

(1.5')

d 1 dDo. «oa)
dz tp(z) dz

2Ep+ —
I Do, (Kog) =0 . (1.6)

eo(z) cl

(1.7)

The third component of Eo(Kpg) in the direction
given by Kp is determined most easily from the
divergence condition, V.op ——0:

d
dz-

Do, (Kop)+&&o(z)Ko Eo(Kog) =0. (1.8)

Relations (1.6)—(1.8) complete a set of equations
for the zero-order field.

Notice that even for discontinuous eo(z), D, and
ez dD p, /dz must nevertheless be continuous.

An equation for the sagittal component of Ep (the
component normal to the plane of incidence) can be
obtained by taking the scalar product of (1.5) with
the unit vector in this direction, s&& (see Fig. 2):

T

6)
Ko — — ep(z) s() Eo(Kop)=0.

dz c

lillplies V '( EoEp) =0 01'

dao(z)
&p(z)& Ep+Epg

dz

Using the identity

VX V XA=V(V.A) —7 A

(1.3)

Perturbed equations

Including the surface roughness in the dielectric
function @=co+a', we can write E=Ep+ E', where

Eo satisfies (1.2), and obtain the exact equation

and (1.3) to eliminate V' Eo, and Fourier analyzing
the resulting equation in the directions parallel to
the surface gives

z Kp+z
dz

Eo,(Ko,z) dao(z)

eo(z) dz

d ~ ~ N
Eo — Eo(Ko,z) = eo(z)Eo(Ko, z),

dz 2

where

FIG. 2. The scattering geometry. The s component of
E is normal to the plane of incidence, while the p com-
ponent lies in this plane.
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(1.9)

(1.10)

V'X V'XE'= (E,E'+E'E) .
C2

Also, the vanishing divergence of eE implies that
d Ep(z)

Ep(z)V''E'+ E + V'(E'E)=0 .
dz

Then proceeding as in the unperturbed case, identity
(1.4) is applied to (1.9) and Eq. (1.10) is used to el-

iminate V.E'. Fourier analyzing, we have

i K+z--d
dz

1 dEp«), - 1 .- d,—,d'
E,'(K,z)+ iK+z —(E'E)» + K'—,E'(K,z)

Ep Z 'dZ Ep Z dZ dZ

[Ep(z)E'(K, z)+(E'E)»] . (1.11)

The quantity (E'E)» is the Fourier component of the product E'E according to (1.5'). The z component of
(1.11) reduces to

E co I—[E~,'(K,z)] + —,E,(z)E,'(K,z)
dz Ep(z) dz Ep c

iK (E'E)»
(E'L', )»+ — + (E Ei—)»

c2 ' dz Ep(z) Ep(2) dz

%e may be tempted to set E,=Eo, on the right-hand side, but this would be incorrect because e'E,' is not
smaller than e'Eo, . Rather, we define the variable

D, =E'E, +EpE,

This is consistent with putting (Ep+ E')(Ep, +E,' ) =D p, +D,'. We obtain

(1.12)

D, (K,z) + D, (Kp) = ( EE, )»+-
dz Ep z dz Ep c Epz) 'dz Ep z

(1.13)

This result can be written as the integral equation

d 'iK (E'E)»
D,'(K,z)= f G»(z,z'), (E'E, )»+

Ep z dz Ep z
ds (1.14)

where G»(z, z') is the Green's function for Eq. (1.13) as well as for (1.6); it is given explicitly in (1.26). The
integral in (1.14) can be reduced first by noting that

e' e' Do. +D.
Z

6o 6'p co+ 6

1 1
(Dp, +D, ) .

6p 6o+ 6

We now integrate the second term by parts to obtain the exact equation, with Q= K —Kp,

D,'( ,K)=zQ I dz' G (z,z')p, 1 1

Q
6o E'

. Q

dG»(z, z')
K (Dp, +D,') g o —, , EgK.(Ep+E') KE,(z') dz'

K Ep= K'sp(sp Ep) +K Kp(Kp'Ep) (1.16)

Since D, and K.E are both continuous, the reasons
given. in the introduction imply that D, and K-E'
can be dropped in the integrand. Notice that

I

so that (1.15) gives the p~p and s~p polarized
scattering from a rough surface, the p-polarized
component of the field being the projection of E on
the plane containing K and z and the s component
being, as mentioned before, the component normal
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to this plane.
In order to find the s-wave amplitude, we take the

scalar product of (1.11) with s to get

—iqy q pE' —l Pp
Do, (Kop)=Eo* e + . e

q pe —iyp
(2.1)

d co
2 2 +

K — — ep(z} [s E'(K~)]
dz C

2

s (e'E)z . (1.17)
c2

for z ~0
where yo

——(Ko —ego /c )'~ and

qp
——(co /c —Kp )'~ . Likewise, s Ep and s.dEp/dz

are continuous and the solution to (1.7) is

This leads to the integral equation

2

s E'(Kg) = g Glr(z, z')ebs
c2

Q

x (E,+E')-„odz' . (1.18)

~~@(~K ) ~
—lgpz qp yo hjpz

gp+ leap
(2.2)

for z g0.
A

To find the component Kp'Ep (1.8) is used to ob-
tain

The quantity Gz(z, z') is the Green's function for
(1.17). This equation determines the first-order
s~s and p~s scattering since

—+

s 'Eo=s 'Kp(Kp'Ep) +s 'so(sp 'Ep)

—+ —iqy q p& —l fp iqyKp'E(Kpg} =Ep~ e — e
/pe+ leap

for z g0,
(2.3)

Equations (1.15) and (1.18) form the basis of the
perturbation theory derived in this paper. It ap-
plies when the quantity

~

e
~

'~ cog/c is small, g be-

ing the maximum height of the surface-roughness
perturbation. %hen this quantity is small, the per-
turbed field does not deviate greatly from the un-

perturbed field over the region of the surface
roughness. The theory is applied to first order in
the next section to obtain equations for the scatter-
ing of light and to second order in Sec. III to ex-
amine the effects of roughness on surface-plasmon
modes.

e'=(e —1)g(x,y)5(z) .

Also,

(2.4)

1 1

6'p
[8(z)—8(z —g) ]

B. Scattered p-wave amplitudes

For the present case, the perturbation is given as
e'=(e —1)[8(z)—8(z —g)], where 8(z) is a unit
step function. Since it has been assumed that g is
small we can make the approximation

6—1
g(x,y)5(z) . (2.5)

II. PLANAR ROUGH SURFACE
OF A HOMOGENEOUS MEDIUM

In this section we consider a medium bounded by
the surface z =g(x,y) so that

1, z &g(x,y)
e, z &g(x,y) .

The coordinate axes are chosen so that the average
value of g is zero.

A. Zero-order solution

Using the required contiimity of Do, and
ep '(z)dDo, /dz, we find that the solution to the
zero-order equation (1.6) is, for this surface,

The Green's function Gg (z,z') corresponding to
(1.13) obeys the equation obtained by replacing the
right-hand side of (1.13) by 5(z —z'). For z' & 0 the
solution is

A(z')e"', z &z'

Gg(z, z')= B(z')e+'+C(z'}e '~', 0&z &z'

D(z')e~, z &0

where q =(co /c K)'~ and y=(K— co e/c )'~—
The z'-dependent functions are found by requiring,
firstly, Gg to be continuous at z =0 and z =z' and,
secondly, ep'(z)de ldz to be continuous at z =0
and to have a unit discontinuity at z =z'. Here, we
need only know Gg for z & z' & 0, and find by im-
posing the boundary conditions that
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Gg( z )
i eig(z —z')+ eq iy iq(z+z')

2q eq +iy

for z yz') 0.
(2.6)

To display the results, define 0; and 8, to be the
azimuthal angles of the direction of propagation of

the incident and scattered waves. Let P be the angle
between K and Kp. Also define f to be the angle
between the polarization direction of the incident
wave and the incident plane defined by Ko and z.
Then (1.16) and (2.1)—(2.6) can be used in (1.15) to
obtain a first-order expression for the scattered z
component of the field:

2(co/c)(e 1)g—O E; sinH, qpKecosg sinH; +yyp cosf cosH; cosP iqpy sing sing
E,'(K,z) =i + e'~', (2.7)

eq +iy qpF+ l pp qp+ l pp

where E; is the amplitude of the incident wave.

C. Scattered s-wave amplitudes

The Green's function of the s-wave equation (1.17) is found to be, analogously to (2.6),

G'(z, z')= e'i' ''+ . e' '+'' for z &z'&0.
2q q+iy

(2.8)

Then (1.19), (2.2)—(2.4), and (2.8) can be used in (1.18) to obtain an expression for the scattered s component
of the field

22(p)/c) (e 1)goE; cos—H; ypsinpcosW i (p)/c) co+sings.E'(Kp) =— e
q+iy qo&+ i' qp+ iso

(2.9)

The remaining K component of E is obtained by employing the divergence condition V [e(z)E]=0. Using
(1.8) evaluated for wave vector K, and the definition of D,

'
(1.12), the divergence condition reduces to

I
dDz

e(z)iK.E'+e'(z)iK Ep+ =0 .
dz

When z is not close to the surface it is true that e'(z) =0, so

I

i deE E'(Kp)= = —~E, (Kg) .
Ee(z) dz E (2.10)

D. Scattered intensities

We can now determine the scattered wave distribution. The intensity of the scattered p waves is, using
(2.10), IEz I

= IE, I
+ IE.E'I = IE, I

/sin H, . The intensity ratio of the scattered p wave to the incident
wave is then

4(p)/c)'
I
e—1

I

'
I g o I

' qpee cosit sinH;+yyp cosp cosH cos(() iqpysinp sinit)

I
eq+iy I

' qpe+iyp qo+& To
(2.11)

The total diffuse reflection is given by
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The summation over all Q becomes for an L XI. surface
2I 2 I N

z J QdQdg= z
— I cos8,dQ .

(2ir) (2m) c
(2.13)

%e then have the p-wave differential scattering coefficient
'

dP
'

I.z
'

oi

'

I&—I
I I 0o I cosg(EEpE+yypcoM) l'(oi/c)ysBlfslng

cos Hs cosH]
I Eq+iyI g oE+ l fo o+ le

(2.14)

Foi the s wave, we similarly obtalIl

dP I.' ~ z I
&—I

I I &o I (~/c)yocos0»n0 i(co/c) sinlPcog
cos Hs cosH)

Iq+iy I' qo&+&yo Co+ ~To
(2.15)

Equations (2.14) and (2.15) agree with the scattering
formulas obtained by other methods. '

e(co)/y+i/q =0 . (3.1)

In the presence of periodic surface roughness, the

nl. SURFWCE-PI.WSMON EXCRETA.TIONS rN
THE PRESENCE GF SURFACE ROUGHNESS

A planar surface can exhibit collective-mode, @-

polarized electronic surface excitations known as
surface plasmons, ' with a dispersion relation given

by

l

surface plasmons can undergo diffraction, thereby
causing the mixing of certain states together and
changing the dispersion relation. ' ' In this section
we calculate these changes for a planar rough sur-
face of a homogeneous medium by applying the
theory of the previous two sections.

Since the surface plasmon is a resonant state, we

must find nonzero solutions to (1.15) and (1.18)
when there is no incident wave Eo——0. Employmg
Green's functions (2.6) and (2.8), and using (1.16),
(1.19), (2.4), and (2.5) we obtain the self-consistent
set of equations:

r

e +y
(3.2)

2 + + + +

.E(K) g
e"—1

g (,), E(K,)
(s K')K' E(K')

z p+ I —K' + (3.3)

where p= iq. All comp—onents of the field are evaluated on the surface, z =0.
Equations (3.2) and (3.3) are solved to second order as follows. Suppose we begin with a zero-order, Iiat-

surface surface plasmon of wave vector K. Since V'.0=0, at the surface we have the condition

K.E= iPD, (K) . (3A)

Also, the surface plasmon has no s component to zero order: s E(K)=0. Equations (3.2) and (3.3) are used
to find the first-order field D,(K):

Dg(K') = E—1

ep'+ y'

S2 l I ~E ypK K
g D (K) (3.S)

lCi) E—12

s E(K')= —
zc' p'+ y' ~z KD(K) . (3.6)

Now, the second-order dispersion relation can be found by substituting (3.4) and (3.6) back into (3.2):

(Ex y'p oQ)(KK' yp—' oQ) yp—
E +f +j c

(3.7)
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A short calculation shows that (3.1) is equivalent to
the relation E =yp. Using this and the additional
identity

—EY)pV

00(r) ( Yoed inpE)(np+ qoed )e

E'IIp1

+(yped+ i n'pE)(np —qped)e (4.3a)

(&' py)(—p+ y) = (Ep+ y)o)'/c',

one can reduce (3.7) to the equation

'P+ y= X «—1)'
I &Z Z I

'

(3.8)
—l /pe

~po(r) ( YOEd inpE)(no qoed )e

l7fp1
(YOEd+ inpE)( 10+qoed )e (4.3b)

—1 'YIpZ l gpZf 0+(z) =e (Edro i e—np)+e (Edyp+ienp),

(K.K' —yP')(K K' —y'P)
E +y

The dispersion relation in this form was originally
derived by Taiga et al. ' by another method and is
equivalent to the ones given by Maradudin and
Zierau, and Kroger and Kretschmann.

IV. SURFACE WITH OVERLAYER

We will now find the scattering distribution for a
planar rough metal surface with a dielectric over-
layer. The thickness of the overlayer can vary in

any manner desired (e.g. , the boundaries of the over-
layer may be uncorrelated), but the average thick-
ness is given as t. We organize the notation after
that of Bison, ' who first presented a solution of the
problem.

(4.3c)

T~ = —4166dgp Ip ~

and E; is the amplitude of the incident wave. Like-
wise, (1.7) gives the s-polarized wave as

(4.3d)

(4.4)

with

;q, R,o(r);q, ,
0 r

KO (z +r)
s() Eo(Ko,z)= 'E;,2qp, 0&z & r—

0 1

Tso yO(z+s)
E;, e', z& —r

A. Zero-order solution

l, z)0
Ep(z) = ' Ed, 0 & z & —r

z( —t.
(4.1)

With this dielectric function, the solution to the
zero-order equation (1.6) is

The zero-order dielectric function Ep(z) is chosen

po(r) = (yo —'no)(no+ qo)e

+(ro+ i no)(no qo)e'""—
l'IIpT

~so(r) = (ro i no)(n—o qo—)e—
0

—('Yo+ inp)(np+ qo)e
—l 7/pZ

Zo+(z) =( y, i no)e—
l 'gpZ

+(ro+ i no)e

Tgp= —4lqp'gp .

(4.5a)

(4.5b)

(4.5c)

(4.5d)

;q,, Rpo(r);q,
E;, e '+ e ', zgQ

p(r)

f'0 (z+r)
Dp (Kpz)= 'E 2Edkp '0&z & —r

0(r)

yp~~+T
Eiz e z (—r

(4.2)

where qo
——(co /c Eo )'~, no (Edo) /—c ——Ko )'—

and yo
——[Eo —(o) /c')E]'~:

Finally, the Ep component can be found by using
the divergence relation (1.8).

B. Solution for scattered waves

The perturbation implied by the choice (4.1) is

Eg ——(Ed —1)g)g5(z) + (E—Ed )$2g5(z+ r), (4.6)

where g) describes the surface bounding dielectric
and vacuum, and g2 describes the boundary be-
tween dielectric and metal, and G=K —Kp indi-
cates the Fourier component. Also,
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1 1 ed —1
g)g5(z)

where

1 (z) = (ed y i—er)}e '"*+(ed y+i eri)e'"',

6' —Eg
(2g5(z+r) . (4.7}

The Green's function for the p-wave equation (1.13)
is in this case

P(r) = (r—ie+iedy)(ri+ edq)e

+ (rie ie—d y)(ri ed—q)e'"' .

(4.9a)

(4.9b)

Gg (z,z') = ed
r (z+r),

P(r)
for z &0 and 0&z'& —w,

(4.8) Using (4.16}and (4.1)—(4.9}in (1.15) we get, after
much algebra, the scattered wave

i cosPP+gp(r)+ sindhi sin(()P+Pp(r)
D =2E.—sin8 cos8Z I S P(r)

~fgZ (4.10)

where

Pe= 4irir/ped(e ed C2g—(++pe+yyped cog} i(ed ——1)pig(EEpedI I'p —rir—ipl +—I p+ coM}, (4.1la)

N
Py= i' [4ripe y(e edgzg +i(ed'Ig']gl +&p —1 ~

C
(4.11b)

The Green's function for (1.17) is

E (z+r), ,
Gz(z, z') = e'e' for z &0 and 0&z'&X

p(
where

K+(z) = (y i')e —'"'+(y+iri)e'"',

p(r) = (ri+ k)(ri+ i—y)e 's'+ (ri k)(ri i—y)e'"', —.

(4.12)

(4.13a)

(4.13b)

Using this Green s function and the appropriate zero-order solutions in (1.18) and (1.19) we get the s-wave am-

plitude

g cos1/l s111$cos8 Bg/Pp(r) i'cog si—nf cos8;BPPp(7)
s E(Kp) =2E(— ~ le

C P(r)
where

(4.14)

N
Be= rip

—
[4iriyped « &d 42g —I'p+«d —1Cig f—

C

'2

B& — [4iririp(e ——ed }gzg —iX K—p (ed —1)g]g] .
C

(4.15a)

(4.15b)

With these first-order scattered solutions, we obtain the differential scattering coeAicients by using the same
procedure as in the derivation of (2.14) and (2.15}. The result is

dP L, ~ ~ I
cos+Pppp} i sin/sing(P—+pp} I

cos8; cos 8,
dQ c

I
cosgsing(B+Pp) i sin/cog—(B+Pp) I

IP I

'

The first and second terms in the braces are the p-polarized and s-polarized intensities.

(4.16)
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This is a slight generalization of the result derived by Elson, '
applying also to nonuniform overlayers.

Furthermore, the treatment given here is far simpler than Bison's coordinate transform method.
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