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We have studied how the sticking coefficient on metal surfaces depends on the substrate

temperature T, when the energy exchange is due to electron-hole pairs. A previously

derived exact result for the energy-loss (-gain) probability in one round trip is generalized

to Rnite substrate'temperatures. This serves as the input for the stochastic equation
which is used to describe the adparticle motion in the adsorption well. The solution of
this equation shows that two competing effects can lead to a very weak dependence of the
sticking probability on the substrate temperature.

I. INTRODUCTION

When an atom or a molecule hits a solid surface
it can only stick at the surface if it can lose its ki-
netic energy. Two energy-loss mechanisms have
been proposed, namely the coupling to the transla-
tional motion of the substrate atoms, i.e., excitation
of phonons, and the energy loss to the low-energy
electron-hole (e-h) pairs. ' In a recent publication
(I) we have presented calculations for the sticking
probability focusing on the e-h pair mechanism for
particles with thermal energies impinging on a
zero-temperature metal substrate. In this paper
we discuss the additional effects that occur for fin-

ite substrate temperatures T, .
Because of the large mass of the adsorbate com-

pared to the electron mass, we assume, as in I, that
the adsorbate nuclear motion can be treated classi-
cally. At zero substrate temperature the sticking
coefIIicient is then given by the probability that the
particle loses more than its initial kinetic energy in
the first round trip in the metal-adsorbate potential
well. A single (unperturbed) classical trajectory for
the adparticle is a reasonable approximation if the
energy loss during one round trip is small com-
pared to the kinetic energy of the particle in the
adsorption well given by the binding energy. At
finite substrate temperatures the description of
sticking is modified by the fact that excitations in
the substrate are already present when the adparti-
cle hits the surface. Thus, besides energy-loss
processes, energy-gain processes are also possible.

We will show in the following that the (substrate-)
temperature dependence of the probability of the
adparticle to leave the surface after the first round
trip strongly depends on the energy-loss distribu-
tion for a zero-temperature case: If at T, =0 the
probability po for elastic scattering is non-

negligible, this elastic scattering probability-is
strongly reduced due to stimulated emission of e-h

pairs, and the probability of leaving after the first
round trip is decreased. If on the other hand, the
T, =0 elastic scattering probability po is negligible,
the probability of a loss event decreases with in-

creasing T, because of the gain events and the pro-
bability of leaving after the first round trip in-
creases. At finite T, the processes during the first
round trip do not alone determine the sticking
coeAicient, because an adparticle which has lost
more than its initial kinetic energy in the first
round trip can gain enough energy from the excita-
tions present in the substrate to leave the surface
during the next few round trips before it has fallen

deep into the potential well. One way to qualita-
tively describe this behavior is to assume that the
different round trips in the adsorption well can be
described as statistically independent. This leads
to the master equation discussed by Iche and
Nozieres. To obtain the sticking coeAicient we
first have to obtain a microscopic expression for
the energy transfer per round trip and then solve
the master equation.

As we are interested in adparticles chemisorbing
on a metal surface [binding energies Eb in the eV
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range and surface temperatures on the order of
room temperature or less (kr', &&Eb )], the ques-
tion of sticking is decided near the top of the ad-
sorption well. We therefore assume that the energy
transfer per round trip is identical for all the
relevant round trips, i.e., even a trajectory which
corresponds to a situation where the particle is
trapped near the top of the adsorption well is ap-
proximated by the elastic trajectory of the first
round trip. In the next section we present a calcu-
lation of the spectrum of particle-hole pairs created
(or absorbed) by the adparticle in the first round

trip. This generalizes the results of I to finite sur-

face temperatures.

II. DESCRIPTION OF THE
ROUND TRIP

Before the adparticle hits the surface the sub-

strate is in an electronic state
~

E ) with a proba-
—E /kT

bility p (E~ ) =e '/Z, where Z is the parti-
tion function. We want to calculate the energy dis-
tribution in the substrate after one round trip.
This is given by

P(e)=g ( (E„~ U ~E. ) ['p(E. )|'(~—(E„—E.))
m, n

=po5(e)+P(e),

the adparticle motion. Thus U
~
E~ ) =

~ P~ ( 0() ) )
is the solution of the time-dependent Schrodinger
equation with the full Hamiltonian H, =Hp+ Vg

including the perturbation due to the adsorbate

i ~P (r))=H, ~P (r))
Bt

with the initial condition
~

(}I) ( —()() })=
~

E ).
The probability of elastic scattering is given by pp.
In Eq. (I} the thermal average over the possible in-
itial states has been performed. In I we have cal-
culated P(E) for a model of noninteracting elec-
trons at T, =0, describing the low-lying e-h pairs
as bosons. It is straightforward to generalize the
calculations in I to finite temperatures. To show
the connection of our boson approach to standard
quantum-mechanical techniques we describe here
an alternative way to calculate P(e), which like the
approach in I uses the fact that a thermal adparti-
cle presents a slow perturbation to the substrate
electrons. We therefore introduce the adiabatic
eigenstates

~

E ):
a, iE')=E' iE').

The time evolution of the initial state
~
E~ ) can

be described in terms of the amplitudes c„~(t) de-
fined as

where U is the unitary operator that describes the
time evolution of the electronic wave function
under the action of the perturbation presented by

c„(t)=exp i E„'dt' (E„' ~P (t)) . (4)

Differentiating with respect to time yields

E„' E„' —exp i J (E„' E„' )dt' c„(t). —
fjt „, Bt

(6)

. ('.; -)
c„, (oo)=f, ,

—exp i I (E„' E' )dt' dt . —
n m

As in time-dependent perturbation theory we can write the equation for the c„(t)as an integral equation.
In the case of weak inelasticity we can iterate this equation to obtain the transition amplitudes (for n+m)

I

h„ „(h)=I ( C ' C„' )hx)h h I (hh„' E„' )Ch" Ch +—'

If we differentiate (E„'
~
(&,—E„')=() with respect to time and multiply from the right by

~

E' ) we can use

the resulting relation to rewrite (6) (for n+m) as

In terms of the c„,„(ao },P(e) is given as

P(e)=y ~c„( ) ~'p(E )&(~—(E„—E )) . (8)
m, n

As in I we assume that H, =OH, /Bt is a one-

particle operator. We express this operator in
terms of the creation and annihilation operators
li, and li), of the adiabatic one-particle states
H,

~

e' ) =e
~

e' ). Note that in the limit of a
semi-infinite substrate the energy of an extended
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one-particle state is not changed by the presence of
a localized perturbation, i.e., e is independent of
time:

a,a'

= (E„~}P g ~

~

E )u (ea —e (10)

The matrix element occurring in the transition am-

plitude in (7) can be expressed in terms of the un-

perturbed substrate eigenstates and the unperturbed
creation and annihilation operators g and 2}'2,

&E„'~y.',q.. , ~E' &u(Et E')—

where u(x) is an arbitrary function. The equality
of the first factors follows from the fact that the

~

E' ) are built from the 2}'t t in identically the
same way as the

~

E ) are built from the i}2~. The
argument E' —E' in the function u can be re-

t f tplaced by e, —e because (E„'
~

1('t, ,l(, ~

E' ) van-

ishes unless E„'—E' =e —e . From this argu-
ment we conclude that while the individual ener-

gies E„' depend on time, the energy difference of
two adiabatic eigenstates connected by a nonvan-

ishing matrix element with respect to H, are in-
dependent of time, which allows us to simplify the
exponents in (7). Inserting (7) together with (10) in
(8) yields

)'(E)=gt (& )(& g U, ,p, t', &.)(E. g u . ,5(E .(c.,,—e—,))p,,t,, E„)
m, n a~a2 C3C4

= X X v~(.2v.,~4@~ (e., ~.—4»&4.'(0.20.',4., &

c)a2 a3a4

where ( ) denotes the thermal average and

oo a~ +t ~C2 I (6 —6 )t

a)

Fol tx3+a4 the expectation value can be expressed in terms of Fermi functions as

& 4',4,4.,P, & =f(,)[1—«
and we obtain for the inelastic part of P(e)

P(e)= g ~ v, , ~
f(e, )[1—f(e, )]5(e—(e,—e, ,

)) .
a)C2

The elastic scattering probability po follows from the sum rule JP(e)de= 1:

Po= 1 — I E' d6'=1 — Ua c Ea 1—
a]a2

(14)

(15)

In the derivation of the "golden-rule-type" expression (14) we have assumed weak inelasticity and have,
therefore, iterated the integral version of Eq. (5). The breakdown of this assumption-is signaled when

JP(e)de becomes larger than one, which would lead via (15) to a negative po. A method to avoid this diffi-

culty without going beyond the first iteration of Eq. (5) suggests itself if we write the expressions (14) and
(15) in the form

P(e)= I 1 —g ~ v, ~
f(e )[1—f(e, )](1—e

c&a2

—I (6~ —6~ )t
2 )

)
tEte

2K

If we now consider the expression in the large parentheses as the first two terms of the expansion of an ex-
ponential, we obtain

P(~)= J exp —g ~
v..., ~'f(~.

, )[1
—f(~.,)](1—e

Cla2

) 2
)

i4't

2m
' (17)

To evaluate the sums in the exponent we again use the fact that the adparticle presents a slow perturbation
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to the electronic system. The adiabatic one-particle states
I
«' ) can generally be characterized by the energy

«and additional quantum numbers tr, i.e., we replace the summation over a by an integration over «and a
summation over o [a~(«,cr)] and write the states in the following as

~
«, cr) . With this notation Eq. (12)

1eads

1 g
'

g l (6)—8g)t
U~ ~ = («1,0'1

~
Ht

~
«2, CT2) 8 dt .

E1 62

We now assume that the perturbation is slow on a time scale ll /e, where « is the energy range over which
the matrix element in (18) varies appreciably. If, in addition, the substrate temperature T, is small com-
pared to characteristic electronic energies, the energies in '{«l,trl

~
H,

~ «2, az)' can both be replaced by the
Fermi energy because of the Fermi functions in (17). With the de6nition

Oe 0

~, ,(«)= '&«f ~1 IHt I «f, u, &'e'"dt,

the exponent in (17) reads

~)(,...,(«, -«, ) ~'
( . )=—g f f f(«l)[1 —f(«z)](1 e—' ' )d«, d«2

(«1-«1)

with

f A, ,(«')
i=—fd«' g, t A(«')(I —e ' ')d«',

cT)0'2

A («) =f d«, d«z f(«1)[1—f(«t)]@«—{«2—«1))

describing the "excitation density" of the e-ll pairs. Straightforward integration yields

~( )= 1+ 1 =«[1+n («)],

with n(«) the Bose function. If we use the fact that g, , ~ A, ,{«') is an even function of«'we can re-

place the integral over all «' in (20) by an integral over positive «only. Then the result for P(«) reads

JA, ,{«') Jz
P(«)= f exp —f

ohio'2

[1+2n («') —[1+n («')]e '~' n(«')e'~']d—«' e'"g~g dt
2~

(22)

%e could also have obtained this result more
dllectly by a Tg+0 versloll of ollr bosoll appl'oacll
of I. It ls lllstrucllve to conlpal'e (22) wltll the cor-
responding T, =0 result which is obtained by put-
ting n («') —=0. The term in the exponent which is
proportional to e ' ' describes the energy-loss
processes. The T,+0 generalization is to replace
e "'by [1+n («')]e ' ', i.e., in addition to the
spontaneous creation of excitations stimulated
emission of e-h pairs occurs. The term with e'~',
on the other hand, describes the gain processes and
has the number of bosons present as a propor-
tionality factor. To maintain unitarity the constant
1 in the exponent has to be replaced by 1+Zn («').

The step from (16) to (17) in our derivation,

l

where we put the result of (16) in the exponent,
may look like an uncontrolled approximation.
This is actually not the case: In I we have shown
that for the case when the one-particle eigegstates
are labeled by the eneqp only (no o's), coherent su-

perpositions of low-energy e-h pairs first considered

by Tomonaga, in the presence of a slowly varying
perturbation exactly behave as bosons. For that
case (22) therefore presents the exact result for P («)
if kT, is small compared to the bandwidth and

g, , ~ A, ,{«)
~

can be replaced by the Fourier

transform of the time derivative 5, (t) of the phase

shift at the Fermi energy. ' %'hen the one-particle
states are labeled by additional quantum numbers
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o., (22) in the general case does not give the exact
result for a slow perturbation. It is, however, pos-
sible to show that the first two moments of P (e)
are given exactly. The expression (17) for P(e),
which still contains the Fermi functions, also
correctly describes the limit of a weak perturbation
with an arbitrary time dependence. This result for
P (e), which cannot be obtained by a boson descrip-
tion, has therefore, a wider range of applicability
than the expression (22) containing the Bose func-
tions, which should only be used for slow perturba-
tions. The nonzero temperature version of the
weak-coupling boson approach of Miiller-Hartman
et al. is, therefore, valid only for weak and slow
perturbations.

All the information about the perturbation in the
"slow case," Eq. (22), is contained in

(e)
~

. In I we have considered only

the perpendicular incidence of the adparticle and
have described the interaction of the adsorbate and
the metal surface by a coupling between the adsor-
bate aAinity level and the metal band states. If the
aAinity level couples, with a time-dependent cou-
pling constant, to the same linear combination of
metal band states at all times, the calculation of
P (e) is simplified considerably. These assumptions
lead to an effective one-dimensional coupling (no
o's) and the sum over the

~

A,
~

is replaced by

(23)

At/2
t'+(at/2)' (25)

(27)

while for T,+0 the integral must be calculated nu-

merically.
Inelastic effects are most drastic when the cross-

ing time 3 t is much sma1ler than the round-trip
time T. In the following, we consider the case
At =2T/3. For T, =0 this gives a substantial elas-
tic scattering probability (@0=0.31) and we can
study the effects due to the reduction of po as T, is
increased. The energy (and temperature) scale is

given by I/T, which for low kinetic energies of the
incoming particle is of the order of the vibrational
frequency of the adparticle in the adsorption well

and is typ''cally a few tenths of an eV. In our cal-
culations we arbitrarily choose T =15, which
determines the temperature range in Figs. I and 2.

We have assumed that the aNnity level crosses
the Fermi energy at t =0 when the adsorbate ap-
proaches the surface, and at t = T when the adsor-
bate leaves the surface. The time needed to cross
the Fermi energy is described by At. This model
for 5, (t) describes the crossing of a sharp level forEF

b, t « T. Inserting in (23) yields

~

A,(e)
~

=2(1—coseT)e

For zero temperature we can perform the integral
(22) analytically and obtain

where 5, (t) is the phase shift at the Fermi level

produced by the perturbation presented by the ada-
tom. The time derivative 5, (t) describes the rateE'F

at which new states are created below the Fermi
level. As these new states cannot be occupied in-

stantaneously, this is the cause of the inelastic ef-
fects.

If we restrict ourselves to the special assumption
about the adsorbate level to the metal states, P(e)
can be calculated once 5, (t) is given. The case6F

when the affinity level crosses the Fermi energy is
of particular interest. As shown in I, a two-

parameter expression for 5, (t) can be given, which

in one limit describes such a crossing and allows
the analytical evaluation of P(e) for T, =0:

03

0.2

0.1

t

0.02
I

0.04
I

0.06

where

(24) FIG. 1. Elastic scattering probability for a single
round trip as a function of surface temperature T,
(T=15).
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Tg =0
ing probability now equal to s (e'). lf one restricts
the discussion to temperatures kT, /(weil depth}
g~ 1 one can treat the adsorption weB as infinitely
deep. Then the function s (e) obeys the simple in-
tegral equation (3)

, r

t/

/
/

-02 0
I

0.4

(28)

which must be solved with the boundary condition
s(e)~1 when e—+ —00. The sticking probability
is thus entirely determined by the energy-loss (gain)
probability for a single round trip P,(e e'). —

If like Iche and Nozieres we introduce the nota-
tion

FIG. 2. Spectrum of excitations created (annihilated)
per round trip for different surfaces temperatures T,
(T=15).

In Fig. 1 we show the decrease of the elastic
scattering probability with temperature. The ine-
lastic part of P(e) is shown in Fig. 2. For T, =0
the spectrum is restricted to loss processes and
starts out linearly w'1th cncrgy. With incrcasiilg T,
this sharp onset is smoothed out due to the in-
creasing probability for gain processes. In the fol-
lowing section we use the 6rst round-trip distribu-
tion P(e) as a "microscopic" input for the stochas-
tic description of the sticking process at finite sur-
face temperatures.

III. STOCHASTIC DESCRIPTION
OF THE STICKING PROCESS

Following Iche and Nozieres we want to
describe the sticking process as a stochastic process
in the energy variable. As mentioned in the Intro-
duction we assume that there are no statistical
correlations between two successive oscillations in
the adsorption well: The sticking process is treated
as Markovian from one round trip to the next.

We coIISIdeI' the stlckIIlg plobabtllty s (6) of aI1

incident particle with energy a ~0. After one
round trip it has the energy e' with probability
P, (e e'), where th—e method to calculate P,(e e')—
has been described in the preceding section. The
index e indicates that the spectrum of excitations
created (or annihilated) in the first round trip
dcpcnds on thc initial kinetic energy~ because dif-
ferent trajectories lead to different 5, (I). If the en-

ergy e' after the first round trip is positive, the ad-
particle escapes, i.e., it does not stick. If e g0 it
starts the next round trip in the well with a stick-

s+-(e) =s (e)e(+e), (29)

where e is the step function, we can rewrite (28) as

0
s-(e)= f p, (e e')s—(e')de', «0

(30)

s+{e)=f P,(e e')s (e—')de', ep0.
(31}

(32)

For finite temperatures one has to solve Eq. (30).
As we generally only have numerical results for
P,(e e') we hav—e solved this integral equation nu-
merically. To obtain an inhomogeneous equation
we introduce the quantity

r (e)=1—s (e), (33)

which tends to zero for e—+ —Oo and obeys the in-
homogeneous integral equation

r (e)=f P,(E e')de'—
+f P,(e e')r (e')de' . — (34)

%'e now separate the elastic and the inelastic part
of P,(e —e'),

P,{e e') =P&,5(e —e')—
+(1—Po,,)~,(e—e'),

where the inelastic contribution Io,(e—e ) is nor-
malized to 1, i.e.,

One has to solve the integral equation (30) first and
then obtain the "measurable" quantity s+(e) by in-

tegration. For T, =0 the negative-energy sticking
probability s (e)=1 and we obtain the result of I:

s+(e)=f P,(e e')de' .—
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f to, (e —e')de'=1 . (36) $.0,

Inserting (35) into (34) we see that for negative en-

clglcs p0 ~ dfops out:

r (e)=f w, (e e')de-'

+ N~ E—E I' E dg . 37

The elastic scattering probability enters only in the
determination of s+(e) via the integration in (3l):

0
s+(e) =(I—po, , )f to, (e—e')

X [I r(e—')]de' . (38)

In principle, thcfc is no problem ln evaluating
w (e—e') for the proper intial energy for each
round trip. As we restrict ourselves in the follow-

ing to initial kinetic energies and temperatures
small compared to the well depth, we neglect this
energy dependence and replace P,(e e') by—
P, (e—e'), where e;„ is the initial kinetic energy of

thc adpaftlclc. Fol thc case wc wRnt to dcscfibc
(e;„,kT, &~ well depth), this is a reasonable approx-
imation; The particle is accelerated in the adsorp-
tion well and all classical trajectories with energies
near the top of the well lead to almost the same
energy-loss (gain) spectrum.

%ith this simplification the integral equation

(37) is of the Wiener-Hopf type and the exact

analytical solution can be given for a special (ex-

ponential) analytical form of u (e—e'). This exact

solution can be used as a test of our numerical pro-

cedure to solve (37) by discretizing the energy vari-

able and matrix inversion. In Figs. 3 and 4 we
show the numerical solution for the sticking coeffi-
cient for the model behavior of the phase shift at
the Fermi level as described in Eqs. (24) —(26).

For a given kinetic energy of the incoming parti-
cle the sticking coefficient shows a small variation
with surface temperature T, . This is shown in Fig.
3 for two different kinetic energies. This small
variation with T, shows that the two effects men-
tioned in the Introduction, i.e., the decrease of the
probability to leave the surface after the first round
trip due to stimulated emission of particle-hole
pairs and the possibility of leaving the surface after
a few round trips before falling to the bottom of
the well, largely cancel each other. This can be
understood in a discrete model for w (e—e') dis-

cussed in the Appendix. The sticking coefficient
ln oui IIlodcl fliI'st flscs slowly as show'n ln Fig. 3
and then decreases. To show the relevance of the
two effects separately, Fig. 3 also shows the stick-

O.I .
—

I

0.025

Ts

0.050 0.075

).0

0.8--

I

0.025 0.050 0.075

FIG. 3. Sticking coefficient as a function of surface
temperature T, for different kinetic energies of the ad-
particle. (a) T=15, (b) T=40, and At=10. The
dashed curve shows the sticking coefficient after the
first round trip.

ing probability after the first round trip.
In Fig. 4 we show the sticking probability for

two given surface temperatures as a function of the
initial kinetic energy of the adparticle. As thc pro-
bability for the adparticle to be "trapped" after the
first round trip decreases, the sticking coefHcient
decreases with kinetic energy. For a thermalized
beam thc avcfagc sticking coeiT1cicnt

sT ——f s+(e)(e '/kTs )de
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0.8

Ts= 0

—-- T =0.03

0.05
I

0.10

FIG. 4. Sticking coefficient as a function of the kinet-
ic energy of the incoming particle for different surface
temperatures (T=15).

decreases with the gas temperature Tg. Comparing
Figs. 3 and 4 we conclude that the variation of the
sticking factor with the gas temperature is more
pronounced than the variation with surface tem-
perature.

At low gas and surface temperatures the sticking
coefficient tends to a value s & 1 for the case con-
sidered here where the elastic scattering probability
is nonzero. For this reason absolute rate theory,

which is equivalent to the assumption s =1, ' is
not correct in contrast to the conclusion reached by
Iche and Nozieres, who do not include the possi-
bility of elastic scattering.

IV. CONCLUDING REMARKS

We have calculated the sticking probability for
finite surface temperatures T, in a model that in-

cludes the electron-hole pair energy-loss (gain)
mechanism. In contrast to the T, =0 case con-
sidered in I, the calculation of the sticking proba-
bility proceeded in two steps.

The first step required the T,+0 result for the
energy-loss (gain} probability in one round trip.
The method presented here for calculating this
spectrum is an expansion around the adiabatic lim-

it where the "bosonization" introduced in I is not
used. That the basic result equation (22) obtained

by this approach provides the exact solution for a
slow perturbation follows from the fact that in this
case the fermion problem can be exactly reformu-
lated in terms of bosons, as shown in the Appendix
of I.

In the second step the motion of the adparticle

near the top of the well is described as a Markov
process in the energy variable, following Iche and
Nozieres. With our "microscopic" input for the
single round-trip energy-loss (-gain) distribution we
have solved the master equation for a given kinetic
energy of the incoming particle. We have found a
very weak dependence of the sticking coefficient
with surface temperature. For a thermal beam of
adparticles, the sticking coefficient decreases with

surface temperature. In the calculation of the sin-

gle round-trip energy-loss (-gain) probability we
have not included the energy loss (gain} to pho-
nons, which usually will be the dominant energy
exchange mechanism when the (adparticle-to-solid
atom} mass ratio is not small. Therefore, our cal-
culation is restricted to light chemically active ad-
sorbates, like hydrogen atoms or molecules. Ab in-
itio calculations by t.undqvist et al. ' show that,
e.g., for the chemisorption of hydrogen molecules
on metal surfaces the level crossing effect included
in our calculation [Eq. (26)] plays an important
role.

APPENDIX

In this appendix we discuss a discrete version of
the integral equation (37). Such a discrete master
equation has been studied in the classic paper by
Montroll and Shuler. " In the notation of Sec. III
we consider the most simple case

m (e)=w, 5(e—eo)+ w, 5(e+ eo)

with w, +w & =1, i.e., in one round trip the
adparticle can only lose or gain the discrete energy
eo&0. If the kinetic energy oI the incoming parti-
cle is less than eo, there is nonzero sticking coeffi-
cient and the adparticle can drop down on a
discrete ladder of negative energies, which we label
n =1,2, . . . (see Fig. 5). With the definition

&in

FIG. 5. Level scheme for the discrete model dis-
cussed in the Appendix.
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r„:r(—e„) the integral equation (37) is replaced by
the matrix equation

i.e.,

Wg

~ =w)6~ 1+w)p'++1+warn —1

or in explicit form

0 0
—w, 0

0
-r=w,

(A2)

The sticking probability can then be obtained from
Eq. (38)

s =(1—po)(w, —w, )

(A7)

i.e.,

A r=wte1. (A3)

(A4)

Using the partitioning technique we can easily
derive an equation for (A ')~t..

(A5)

The physical solution of this quadratic equation is

To calculate the sticking coefHcient we only need

r1, which is proportional to the 1-1 matrix element
of the inverse of A: he= f eP(e)de=co(p, —p, ) (A9)

or

s =AE'/6'p . (A10)

If we calculate the average energy transfer Ae

per round trip for 8(e) given by (22) we find that
b,e is temperature independent for arbitrary A,(e).
If we now choose a A(e) =Ao,5(e eo, ) an—d 7 o small

enough, we obtain a P(e} of the form given in
(AS), and because ice is independent of T, so is the
sticking coefficient according to (A10).

where we have also introduced the loss and gain
probabilities p, and p, defined by

P (e) =po5(e)+p &5(& &o) +—p t &(e+co) (Ag)

The average energy transfer Ae per round trip is
given by
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