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A simple scheme using a single-ion approach has been developed to calculate the pseu-
dopotential and pair potential for aluminum. The electron density around an isolated Al
nucleus in a homogeneous electron gas is calculated self-consistently using the density-
functional method. The induced charge density is then used to produce an ab initio local
pseudopotential and the interionic potential. Two different schemes for embedding the Al
nucleus into the jellium have been considered. A model where the Al nucleus is in the
jellium vacancy gives better pseudo- and pair potentials than the model where the Al nu-
cleus is embedded into a completely homogeneous electron gas. Using the resulting po-
tentials, the cohesion energy, equilibrium lattice constant, bulk modulus, vacancy forma-
tion energy, and the resistivity of the liquid phase were calculated. The sensitivity of the
results to various approximations in the model, the volume dependence of the pair poten-
tial, and the effects of the ionic core are discussed.

I. INTRODUCTION

Computer simulation using molecular dynamics
or Monte Carlo techniques is an attractive way to
investigate disordered solids."? Structural study of
lattice defects, alloys, and liquids can be facilitated
by starting from an effective pairwise interaction
between atoms rather than from the detailed calcu-
lation of the whole electronic structure. Computer
simulation studies can provide an atomistic under-
standing of problems of importance to materials
science, such as segregation of impurities at grain
boundaries, grain boundary structure, diffusion at
grain and interphase boundaries, hydrogen embrit-
tlement, and radiation damage.

The key quantity in this approach is an assumed
knowledge of the interionic potential. Thus several
empirical’~> and theoretical®—® methods have been

24

used to construct interionic potentials for metals.
Consequently many different approaches®~® have
been proposed. The most popular one,>~> adopted
by researchers using computer simulation tech-
niques, is the empirical determination of the pair-
ion potential. Often a Morse or Lennard-Jones po-
tential is chosen with parameters fitted to repro-
duce one or more of experimentally verifiable
parameters, such as lattice parameter, elastic con-
stants, vacancy formation and migration energies,
and cohesive energy of the lattice. Such potentials
are short-ranged, contain no Friedel oscillations,
and are easy to use in computer simulation studies.
Another scheme’ is to use empirically deter-
mined pseudopotentials as a starting point in the
calculation of the interionic potential. The pseudo-
potentials may be, e.g., empty-core Ashcroft type'”
or Heine-Abarenkov type.!! The parameters in the
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pseudopotential can be obtained by fitting certain
electronic properties such as Fermi surface topolo-
gy, electrical resistivity of liquid metal, or spectro-
scopic data to experiment. It is also possible to
calculate pseudopotentials from first principles.
These exhibit Friedel oscillations and may be either
local, nonlocal, or energy dependent.

The difficulties commponly attributed to the
above schemes are twofold. First, there is no
guarantee that a pseudopotential or a pair potential
fitted to reproduce one experimental parameter can
predict another accurately. As a matter of fact,
this is expected since interactions important in
determining a certain experimental quantity may
not be important for another, yet the empirically
determined potentials contain this shortcoming.
Second, the pseudopotentials used in the calcula-
tion of the interionic potential must be weak.
However, it has been shown'? that the electron
density determined from a given pseudopotential in
linear response theory can be very different from
that determined by taking the pseudopotentials to
all orders. This implies that an empirically deter-
mined pseudopotential cannot always be regarded
as weak and thus their use in the computation of
the interionic potential is not theoretically justified.

For simple metals, however, the interionic poten-
tial can be formally constructed from the first prin-
ciples via the pseudopotential theory.® Rasolt and
Taylor’ have proposed a simple method for con-
structing the pseudopotential and interatomic po-
tential for metals and alloys. In their approach the
induced charge density of an isolated metallic ion
in an electron gas is calculated by considering the
full ionic potential and then a nonlocal pseudopo-
tential is chosen which reproduces the original
nonlinear charge density in linear response theory.
In this way the nonlinear effects are partly includ-
ed in the pseudopotential. Another advantage of
this approach is that it is as simple for alloys as it
is for pure metals. The pair potentials determined
from these pseudopotentials have met with ap-
parent success in calculating phonon spectra in
several simple metals'>'* and also other properties
such as vacancy formation energies for alkali met-
als.’”

In this paper we report detailed studies of the
method of Rasolt and Taylor. For a test metal we
have chosen Al, where the high valency of the ion
makes the interionic potential sensitive to all ap-
proximations of the model. Our method of con-
struction of the pseudopotential is somewhat dif-
ferent from that of Rasolt and Taylor. By taking a
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Fourier transform of the induced nonlinear charge
density we are able to define a local pseudopoten-
tial which exactly reproduces the induced density
in the linear theory. We have also studied the
problems associated with an ion embedded in the
electron gas. In addition to the model where the
screening of the ion is calculated in a homogeneous
electron gas, we also use a model where the ion is
embedded in a jellium vacancy. It is shown that
the latter model, which is physically more appeal-
ing, describes much better the cohesion in Al

In Sec. II we outline the method of construction
of the pair potential from the pseudopotential and
give formulas for the total energy in the pseudopo-
tential picture and also in the corresponding pair
potential formulation, including all the structure-
independent terms. In Sec. III two models for cal-
culation of the induced charge density around the
ion are described. The computational limitations
and the numerical accuracy are discussed in Sec.
IV. The resulting pair potentials and pseudopoten-
tials are used to calculate the total energy of the
metal, the equilibrium lattice constant, bulk
modulus, vacancy formation energy, and the elec-
trical resistivity of the liquid phase. These results
are given in Sec. V where we also evaluate the vali-
dity and consequences of the often used approxima-
tions about the volume independence of the pseu-
dopotential and pair potential. A discussion of the
ion-core contributions to the pair potential is also
given in this section. A summary of our results is
given in Sec. VL.

II. TOTAL ENERGY IN THE PAIR
POTENTIAL FORMULATION

In the pseudopotential formulation, where the in-
teraction between the electrons and the ions in a
metal is assumed to be weak, the total energy per
atom can be given by the second-order perturbation
theory'®!7 as

6T=Z€o(n0)+€M+EBs
N —
43 [drngw(r-R)). M
N o

Here N is the total number of atoms, Z is the
charge of the metal ion, and €y(n,) is the energy
per electron in a homogeneous electron gas of den-
sity ngo=NZ /V, V being the volume of the metal.
The Madelung energy €,, can be formally written
as (throughout this paper we use atomic units)
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[S(k)—1], (2)

where S (K) is the structure factor defined as

S(K) =FE exp[ik(R; R )] .

W (T) in Eq. (1) is a short-range potential defined
through the unscreened local pseudopotential v(T)
as

W(T)=—+v(7) . (3)

%!N

The so-called band-structure energy €gg in Eq. (1)

can be expressed in terms of the structure factor
S(K), bare-ion pseudopotential form factor v(k),
and the dielectric response function e(k),'

ens— 21V —|v(k)|2S K)

k:,:&O

=——1].
5|
4)

In the pair potential formulation® €;, and egg are
combined to form a structure-dependent term and
a structure-independent but volume-dependent
term. Adding and subtracting the k=0 com-
ponent in the sums and defining the pair potential
as

[S(K)—1]

N 2
o1 v |z anZ? | v(k)k?
¢(1)= V%e 2 T | ez
z: | 2 ke) | v (@2 |
© sin(kr) |v
=— 14— k
r + T fO d k 47 e(k
one obtains for the total energy
r=1 S (R, +Zeglng) — o Jim %’TZ
i£0 k“e(k)
2
f P IS i (©6)
477 e(k)

Now all the structure dependence is included in
this sum over pairwise interactions between atoms.
It should be noted that in addition to the purely
volume-dependent terms in Eq. (6), the total energy
depends on volume also through ¢(T’), the volume
dependence of which derives from the volume
dependence of e(K) and v(K).

Finally, we note that for a perfect lattice the to-
tal energy in the pseudopotential formulation sim-
plifies to!®

2
er=2Zeyng)+

W(q=0
Rws “+ng (q )

=2

1 G’ =002
+'_n0 2 |U(G)!
2 6;&0 47TZ

L1,
€(G)
(7
where a is the Madelung constant, Rys is the
Wigner-Seitz radius, and G is the reciprocal-lattice

vector. For a perfect metal the pseudopotential
formulation, Eq. (7), is more practical than the pair

potential formulation, Eq. (6), since the sum over
the reciprocal-lattice vectors converges more rapid-
ly than the sum over the pair potentials in Eq. (6).

III. SINGLE-ION APPROACH TO THE
CALCULATION OF PSEUDOPOTENTIAL

The approach of Rasolt and Taylor’ is based on
the idea that the electron density plays a central
role in calculating the cohesive energy and other
ground-state properties of a metal. Thus their
theory emphasizes the need for the calculation of a
pseudopotential that correctly reproduces the non-
linear electron density around a metal ion. To in-
clude the nonlinear effects they define an effective
pseudopotential so that it gives in the linear theory
the correct (nonlinear) electron density around the
true pseudopotential, or the metal ion outside the
core region. This pseudopotential is then used to
calculate the pair potential.

The first step in this approach, which we follow,
is to calculate the induced charge density around
an ion. This is achieved by embedding a point
charge into a homogeneous electron gas and calcu-
lating the screening cloud self-consistently using
the Kohn-Sham method.!® The point charge
describes the charge on the nucleus of the metal
atom (which has a value of 4 =13 for Al). The in-
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duced density around the ion is defined as

8n(f’)=n(?)—2 | 4/ |2—n (®)

Here n(7) is the total electron number density and
Jon are the bound electron wave functions corre-
spondmg to the ion core. The charge neutrality re-

quires that

[dron®=z. ©

Rasolt et al.”!* used local exchange only (no corre-
lation) in their Kohn-Sham equations and the core
states were frozen in the self-consistent procedure.
We have used the Gunnarsson-Lundqvist form in
the exchange-correlation potential'® and included
the core states in the self-consistent procedure. We
also study two different models for embedding the
nucleus into the electron gas describing the metal.

A. Atoms in jellium

In this model the nucleus is embedded into a
homogeneous electron gas and thus the external
positive charge density to which the electrons
respond is

n'@(F)=A8(T)+n, , (10)

where A is the atomic number of the metal atom
nucleus. The corresponding electrostatic potential
can be calculated by solving Poisson’s equation,

V()= —4m[n(T)—n (T)] . (1

The effective electron-ion potential including
many-particle interactions can be approximated by
the local-density formulation,

Vet T)=Ves(T)+ Vi [n (D], (12)

where V,. is the exchange-correlation potential in
the local-density theory. The induced charge den-
sity can then be calculated by solving the
Schrodinger-type equation,

[— 5 V24V D (D) =€h(T) (13)
with
n(@M=3 [¢:()|?, (14)

and ¢; the eigenvalue of the state 1;. Equations
(11)—(14) can be solved self-consistently.

In the case of aluminum, we carried out these
calculations fully self-consistently by substituting
A =13 in Eq. (10). In solving Eq. (13), all possible

bound states had to be calculated. Thus the core-
electron orbitals were allowed to relax in the pres-
ence of a homogeneous electron-gas background.
In addition to 1s%2522p® bound states, we also
found a weak 3s? bound state with a binding ener-
gy of E =—0.248 eV. Since the wave function for
this energy state is rather long ranged, we have as-
sumed it to belong to the scattering states while
calculating the induced conduction-electron charge
density in Eq. (8). Equation (9) then integrates to
Z =3.

B. Atoms in a jellium vacancy

In the jellium model discussed above the positive
charges of the ions are replaced by a neutralizing
homogeneous background charge. When an ion is
embedded into this jellium, there is a local increase
in the amount of positive charge. To retain the
correct amount of positive charge we have to re-
move the positive background charge in the
Wigner-Seitz cell containing the ion. This model
of placing the ion or nucleus into a jellium vacancy
has been widely used in studying local electronic
properties around metal atoms and impurities in
simple metals.?0~23

The induced density is calculated by taking the
difference

dn(F)=n(P)—n,()— 3 |42, (15)

where 1 (F) and 9" are, respectively, the electron
density and the bound state wave functions calcu-
lated with the external positive background charge
density

n'?(F)=A48(F)+no®(r —Rys) . (16)

n,(T) is the electron density around a pure jelli-
um vacancy, i.e., it corresponds to an external posi-
tive charge,

n () =ny®(r —Rys) . W)

As in the previous case, the induced charge density
in Eq. (15) integrates to Z =3 for Al [see Eq. (9)].
In this model no 3s bound states were found for
Al. The repulsive potential introduced by the va-
cancy was enough to kick the shallow 3s bound
states found in atom in jellium model to the con-
tinuum.

The induced charge densities of the two models
would be identical to each other if the electrons
would respond linearly to both the nucleus and the
vacancy. However, this is not the case, as our
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results show in the next section.

Having obtained the induced electron density in
either model the computation of the pseudopoten-
tials and interionic potentials follow the same com-
mon procedure as outlined below. In linear
response theory,

1 —

- 4 y@), (18)
e(q)

on(q)= yym

where 8n(q) is the Fourier transform of the in-
duced charge density and v(q), as before, is the
bare-ion pseudopotential form factor. We calculate
8n(q) from the self-consistent induced densities
where the electron-ion interaction is taken to all
orders. Equation (18) then yields an effective local
pseudopotential which, when used in the linear
response theory, is guaranteed to yield the exact in-
duced density. In this way, as noted by Rasolt and
Taylor,” some of the nonlinear screening effects are
included into the pair potential calculated from
this pseudopotential.

Rasolt and Taylor have used parametrized lo-
cal®* or nonlocal”!? formulas for the pseudopoten-
tial, the parameters of which are fitted to give the
correct induced density. Using a local potential,
the direct Fourier transform uniquely gives the
pseudopotential, and not much is gained by an
analytical form of the pseudopotential since the
complexity of the dielectric function nevertheless
usually requires numerical computations. On the
other hand, when a nonlocal pseudopotential is
used additional parameters are needed to specify
the form factor, i.e., one can construct different
nonlocal pseudopotentials which give exactly the
same induced density, but result in different pair
potentials. To avoid this ambiguity we have
evaluated only the local pseudopotentials.

IV. NUMERICAL PROCEDURE
AND COMPUTATIONAL ACCURACY

Since the numerical accuracy of the computed
interionic potentials depends rather sensitively on
the computational procedure and input parameters,
we devote this section to a detailed discussion of
the limitations of this kind of calculations. By so
doing, it is hoped that an appreciation of the vari-
ous problems involved in the calculation of in-
terionic potentials is developed, thereby producing
a better feeling for the reliability of the various pre-
dictions.

The induced density 8n(T) was computed using

a density functional computer code where the
bound states are obtained via a modified Herman-
Skillman subroutine.”> We have used the same T-
space division as in Herman-Skillman and the
boundary condition which requires the effective po-
tential to be zero for r > 13.5a, (a, being the Bohr
radius). For the calculation of the scattering state
contribution to 8n(T), we have retained as many as
seven partial waves (/,,, =7) and divided the re-
gion 0 <k <kp into 30 intervals. The resulting
charge density and potentials were self-consistent
to an accuracy of better than 0.01%. The accuracy
in the Friedel sum rule was better than 1%.

In using the induced density to calculate the
pseudopotential in Eq. (14), it should be remarked
that 6n (T) contain wiggles at small T values due to
the orthogonalization of conduction states to core
orbitals. These should be missing in the pseu-
dodensity. We achieved this by smoothing dn(7)
in terms of a polynomial at small 7, namely,

dn(t)=A —Br?, r<R, (19)

where 4, B, and R were chosen so that n(T) and
(3/0r)[6n(T)] are continuous at R, and Eq. (9) be
satisfied by the smoothed density. Thus no ad-
justable parameters were introduced in the smooth-
ing procedure. The absence of a linear term in Eq.
(19) is due to the assumption that the pseudopoten-
tial v(T) is constant near the origin. This is the
case for all pseudopotentials of the Ashcroft!® or
Heine-Abarenkov type.'! Higher order polynomials
could, perhaps, also be fitted to the &n (f) in Egs.
(8) or (15) near the origin by requiring that the
higher order derivatives be zero at R,. However,
this may cause unwarranted oscillations in &n(T)
and was not attempted.

The Fourier transform of the induced charge
density can now be evaluated from

n(q)= [ d’re'TTon(r) . (20)

In our calculation, the maximum T value R,
used for integration of 6n(r) was 13.5a,. Since it
is essential to integrate Eq. (20) to infinity, we have
fitted our calculated 6n(T) to an asymptotic form
beyond R,,,, i.e.,

8n(r> R ) =A cos(kpr+6)/r3 . 1)

The constants 4 and 8 were obtained from our cal-
culated 6n(T) for r~13a,. To check the numeri-
cal accuracy of the Fourier transform, we have re-
calculated 8n(T) from 8n(q). The maximum error
at any T value between the original 8n(T) and that
obtained from the Fourier transform of 8n(q) was



7062 M. MANNINEN, P. JENA, R. M. NIEMINEN, AND J. K. LEE 24

0.1%.

From Egs. (5) and (18), we compute the interion-
ic potential. It should be emphasized that the
Friedel oscillations in the interionic potential are
sensitive to the asymptotic region of én(7). For
example, an error of 0.1% in 6n(T) may cause as
much as 1% error in the interionic potential.

A final note in this section concerns the depen-
dence of the interionic potential on the choice of
the dielectric function e(q). Unfortunately, the in-
terionic potential is sensitive to the dielectric func-
tion,?®?7 especially near the first minimum.

To be consistent with the local-density approxi-
mation used in the Kohn-Sham method, it seems
natural to choose a dielectric function which in-
volves essentially the same approximation. If the
energy or the chemical potential of the electron gas
is u(ng), €(q) can be constructed as®®

(@=1+ T n(q) 22
q
where
(q)
(g)= Tod —, (23)
1— (47 /kg)(1—L)my(q)
with
')7'0(0) _ ) aé'p
T w0)  dr/ or, @4
and
ulrs)=ep(ry) +px(rs) . (25)

Here 7o(q) is the usual Lindhard polarizability.
The way in which the exchange and correlation is
included in this dielectric function essentially cor-
responds to the local-density approximation in the
density-functional theory used to calculate the ori-
ginal nonlinear induced density. The dielectric
function by construction satisfies the compressibili-
ty theorem, the importance of which in the connec-
tion of the pair potential has been pointed out by
Duesbery and Taylor.”” To test the sensitivity of
#(T) on the e(q) in our case, we artificially
changed €(q) by taking 1—L in Eq. (23) to be 5%
smaller than the correct value [the maximum
change in €(q) was about 1%]. This changed the
pair potential at first minimum by as much as 0.03
eV, to be compared to the maximum amplitude of
the Friedel oscillations which is about 0.06 eV (see
Fig. 3). This caused an error of about 0.1 eV in
the cohesion energy and in the vacancy formation
energy.

V. RESULTS

A. Electron charge density, pseudopotentials,
and interionic potentials

In Fig. 1 we have plotted the induced charge
density around an Al ion in a homogeneous elec-
tron gas of density r;=2.07 (corresponding to bulk
Al in the atoms in jellium and atoms in jellium
vacancy models. The broken curve corresponds to
the jellium model while the solid curve represents
vacancy model. Note that the wiggles at small 7,
as mentioned earlier, are due to the core orthogo-
nalization. The induced charge densities in the
two models are clearly different at all » values.
There is a significant shift in the phase of the
Friedel oscillations in addition to a small difference
in the amplitude of the oscillations. In addition to
the two models used here, there exist several other
ways to estimate the induced electron density. The
effect of the surrounding lattice can be mimicked
by using the spherical solid model of Almbladh
and von Barth? or the variational self-consistent
method.*® Calculations made for light impuri-
ties?>3! indicate that all these methods result in
different density profiles, especially in the region of
Friedel oscillation.

The bare-ion pseudopotentials calculated from
the induced densities using Eq. (18) are plotted in
Fig. 2. Of the various popular local model poten-
tials (Ashcroft, Heine-Abarenkov, Shaw, etc.) none
gives a particularly good fit to the form factors in
Fig. 2. The simple empty-core Ashcroft potential
(~cosgr, ) comes closest to the solid line in Fig. 2
with the core radius 7, ~1.42 a.u. This value is
somewhat larger than the one (r,=1.12 a.u.) which
is obtained by adjustment to explain Fermi surface
data.!” While the oscillations are in phase, the am-
plitudes corresponding to the two ways of embed-
ding are very different from each other. Figure 3
shows the corresponding interatomic potentials.
They differ drastically from each other, and also
from the potential of Rasolt et al.,'* where the first
nearest-neighbor site was in the repulsive part of
the potential. In our calculation the nearest atom
site is around the first minimum of the potential.

B. Total energy, equilibrium lattice constant,
and bulk modulus

The results for the different energy terms and for
the total energy per electron, calculated using Eq.
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FIG. 1. Radial distribution of perturbed electron charge density in atomic units around an Al nucleus embedded in
jellium with the density parameter r,=2.07 (corresponding to Al). The solid line is the atoms in jellium vacancy model

whereas the broken line is the atoms in jellium model. The wiggles at small r are due to core-orthogonalization. Note
that the electron densities at large r are shown on a magnified scale.

(7), are given in Table I. The experimental result
for €7, given in Table I, is the sum of heat of sub-
limation and the ionization energy of Z electrons.
In the pair-potential formulation, Eq. (6) gives na-

turally the same value for the total energy. The
sum over the pair potentials turns out to be only a
minor part (0.22 eV in the atoms in jellium model
and 0.02 eV in the atoms in jellium vacancy

v(g) (au)

q 2
412

q (a3
FIG. 2. The wave-vector dependence of the bare-ion pseudopotential of Al (in atomic units, 1 a.u.=27.2 eV). The
rest of the legend is same as in Fig. 1.
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FIG. 3. Interionic potentials of Al. The arrows indicate the position of the near neighbors. The dotted line demon-
strates the sensitivity of the pair potential on the dielectric function. (See Discussion at the end of Sec. IV.)

model) of the total energy. Thus the energy is al-

most totally determined by the structure-
independent terms.

In calculating the equilibrium lattice constant
and the bulk modulus the volume dependence of

the pseudopotential and the pair potential has to be

considered. In the present model they both depend
on volume and one should, in principle, repeat the
entire calculation for different electron gas densi-
ties. This would lead to a volume-dependent pair
potential, which would be impractical in many
computer simulation applications. To estimate the

TABLE 1. Binding energy per electron, equilibrium lattice constant, and bulk modulus for

Al. Numbers in parentheses are determined using the calculated equilibrium lattice con-
stants.
Contributions “Atoms in “Atoms in
to binding jellium” jellium Experimental
energy (eV) model vacancy” result
em/Z —24.5 —24.5
elng)/Z —0.5 —-0.5
noWgr(qg=0)/Z 4.5 6.0
635/ A —1.4 —0.4
er/Z —21.8 —19.4 —18.8
Equilibrium 0.86% 0.99* 1.00
lattice constant 0.67° 0.95°
(in units of 4.05 A)
Bulk modulus —130 (300%) 74 (87%) 76
(10" dyn/cm?) —130 (8900° 52 (390°)

#Pair potential volume independent.
*Pseudopotential volume independent.
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errors made in assuming the pair potential to be
volume independent we calculated the equilibrium
lattice constant and bulk modulus in two different
approximations: (i) Only the pseudopotential form
factor was assumed to be volume independent, and
(ii) the pseudopotential, the dielectric function, and
the pair potential were all assumed to be volume
independent. The assumption of the volume in-
dependence of the pseudopotential is physically jus-
tified, since the pseudopotential represents an effec-
tive potential due to an ion and thus depends only
weakly on the surrounding electron gas. To obtain
a volume independent pair potential from Eq. (5)
one has to assume that the dielectric function is
volume independent. The large differences in the
equilibrium lattice constants and bulk moduli in
Table I due to different approximations indicate
the importance of the volume dependence of the
pair potential. This point has recently been
stressed by Taole and Glyde,*? who evaluated the
contribution to the longitudinal elastic constants
Ci; and C;, from the volume dependence of the
screening. There is also a contribution to the bulk
modulus from the volume forces; Taole and Glyde
estimated this from the observed deviation from
the Cauchy relation (C,5#%Cy44). In the present
work, the pseudopotential of the atoms in jellium
vacancy model gives results which are in much
better agreement with the experimental values than
those calculated in the atoms in jellium model.
The total energy as a function of the lattice con-
stant is plotted in Fig. 4 for the different models.

C. Vacancy formation energy

The vacancy formation energy is given by
E,=E)—pQ,, (26)

where E_ is the constant-volume vacancy
formation energy, € is the atomic volume, and p
the pressure of the metal. Within second-order
perturbation theory, E, depends only on the
structure of the metal. Neglecting the relaxation
of atoms around the vacancy, it can be written as

E/l=—3 3 ¢R)—¢ 3 R,-E% L@
i£0 i£0

For an oscillating pair potential, this sum is not
trivial to compute.?®> In some cases the asymptotic
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FIG. 4. Total energy per electron as a function of the
lattice constant (in units of 4.05 A) calculated in the
atoms in jellium model (a) and in the atoms in jellium
vacancy model (b). The solid lines are calculated by as-
suming both the pair potential and the pseudopotential
to be volume independent, whereas in the dashed lines
only the pseudopotential is assumed to be volume in-
dependent.

part can be summed exactly.>*

The pressure of the metal can be calculated as-
suming either that the pseudopotential is volume
independent or that both the pseudopotential and
pair potential are volume independent. Both ap-
proximations were used and the results are given in
Table II. Again the atoms in jellium vacancy
model gives better agreement with the experimental
result. The negative constant-volume vacancy for-
mation energies would indicate that the perfect fcc
lattice is not stable at the normal lattice constant.

It is known'?3’ that in the case of polyvalent
metals the linear screening theory can not describe
correctly the screening around a vacancy (the large
difference between the two density profiles in Fig. 1
is also a manifestation of this) and thus it is not
expected that a theory based on linear screening
could give quantitatively correct vacancy formation
energies. Although in the present approach part of
the nonlinearity is (perhaps artificially) taken into
account in determining the pseudopotential, the ap-
parent good agreement with experiment of the
atoms in jellium vacancy model should be taken
with caution since the constant volume vacancy
formation energy is negative. One should again
note the large difference in results depending on
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TABLE II. Vacancy formation energy E, for the different models. E, is the constant
volume vacancy formation energy and g p the pressure term in Eq. (22).

Model E} (V) Qop (eV) E, V)
“Atoms in jellium” —0.6 —0.5° —0.12
—5.0° + 4.4b

“Atoms in jellium —0.2 —0.2° —0.0°
vacancy” —1.4° +1.2°
+0.7

Experimental result (Ref. 42)

?Pair potential volume independent.
®Pseudopotential volume independent.

which quantities are assumed to be volume-
independent.

D. Electrical resistivity of the
liquid phase

Another sensitive test for the pseudopotential
form factor is the electrical resistivity pg in the
liquid phase. It can be calculated from the Ziman
formula3®

3w 1 1 q
= d —_—
fie? vEQ, fo [ka

3
q
2Uep |

(28)

PR ,vsz(q)l(q)4

where vy =#ikp/m is the Fermi velocity. I(q) is
the liquid interference function and v,(g) is the
screened pseudopotential form factor. The Ziman
theory of transport properties for liquid metals is

very successful when both the interference function
and the pseudopotential form factors are accurately
known. The interference function which contains
the entire structural information can be found from
neutron and/or x-ray scattering experiments. The
validity of Eq. (28) relies on the assumed weakness
of the pseudopotential and is based on the Born-
approximation. Thus one requires that
I(qv2(q)/e} << 1. We have plotted this quantity
versus 0 <k <kp in Fig. 5. The results clearly in-
dicate that the Born approximation is valid.

Using Eq. (28), we have calculated the resistivity
of liquid Al near the melting point. We have used
for I(q) the hard-sphere form of Ashcroft and
Lekner’? with the packing density 7=0.46 mainly
because it is in excellent agreement with experi-
ment?® for g values of interest and because the ex-
perimental I (g) for small g values is not accurately
known. The results are given in Table III. Again
the atoms in jellium vacancy model gives much

T hl T | | | T [ [

0010 -
0008

U N
3 0006 —
5 _
¥ 0004 #- —
0002 I -

] | | ] | | | |
O 01 02 ©03 04 05 06 07 08 08 10

x=q/2k,_—

FIG. 5. Test for the validity of the Born approximation in the calculation of liquid metal resistivity. It is required

that V2(q)I(q)/ef << 1 for 0<q < 2kp.
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TABLE III. Electrical resistivity pg (ucm) of
liquid Al at 667°C.

Model Theory Expt.
“Atoms in
jellium” 30.6
“Atoms in
jellium
vacancy” 24.9 24.7

better agreement with experiment® than the atoms
in jellium model.

We should remark that pg in Eq. (28) is not
only sensitive to the pseudopotential form factor
and interference function, but also to the dielectric
response function. Sharp and Smith* have dis-
cussed the dependence of pg on various parame-
ters. It should be noted that we took for the liquid
structure factor the hard-sphere result, although to
be completely consistent it should have been deter-
mined from the calculated pair potential, e.g., us-
ing Monte Carlo or integral-equation methods.
However, the structure factor depends mainly on
the repulsive part of the potential and the packing
fraction 7=0.46 corresponds to a'hard-sphere po-
tential radius of 4.6 a.u. which is in good agree-
ment with the radius of the strong repulsive part of
the calculated pair potential of the atoms in jellium
vacancy model (see Fig. 3).

E. The effects of the ion core
on the pair potential

An interesting application of the present ab ini-
tio pair potential would be the calculation of the
dynamical structure factor for the liquid phase us-
ing molecular dynamics techniques. Recent work
by Ebbsjo et al.*! indicates the existence of collec-
tive density excitations for wave vectors k <2 a.u.,
a result somewhat sensitive to the choice of the
pair potential.

The developments leading to the pair potential
discussed above are based on two fundamental as-
sumptions. First, it is assumed that the interionic
separations considered are much in excess of ionic
diameters. This assumption is usually satisfied for
most simple metals under equilibrium conditions
(although it may not hold under compression or
for nonequilibrium processes such as interstitial
migration), but is more questionable for metals

with large (d-electron) ionic cores, e.g., noble met-
als. In cases where the short-range pair potential
is needed, the direct screened Coulomb interaction
considered above has to be augmented by the core-
core exchange repulsion. The values of this contri-
bution, often approximated by the so-called Born-
Mayer form ¢py(r)=Ae ~5" are difficult to evalu-
ate, and the quoted values depend strongly on the
representation chosen for the electron states. In
the case of Al, Benedek* has obtained from a
Hartree-Fock calculation with ionic wave functions
bpm(r) =4230e ~7/%22% 3 u., which is insignificant
in comparison with the Coulomb term for separa-
tions » >4 a.u. Certainly more theoretical efforts
directed towards a reliable determination of the
core-core exchange repulsion in general would be
highly desirable.

The second assumption behind the standard pair
potential formulation is that of a rigid ionic core.
This view ignores the possibility of fluctuation or
polarization effects, which typically manifest them-
selves as dispersion or van der Waals forces that
are important in, e.g., condensed rare gases. Allow-
ing the ionic cores to fluctuate in a metallic en-
vironment will (within perturbation theory) lead to
three kinds of additional contribution to the total
energy: (i) the direct Coulomb interaction between
the static ions is screened by the fluctuating core
electrons; (ii) the electron-ion potential leading to
the band-structure energy is also screened; (iii)
there is a van der Waals —type interaction between
the fluctuating cores, screened by the conduction
electrons. As far as the interionic potential is con-
cerned, the effect of the contributions (i) and (ii)
can be estimated by replacing

o(q) 24 (29)
€.(q)

where €,(q) is the dielectric function of the polar-
izable ionic cores. In the important long-wave-
length limit,

eld—0=1+ 4N a(0), (30)
where a(0) is the static polarizability of the ion
core. In the large q limit, €.() will approach un-
ity proportional to g ~*.

The dynamically screened van der Waals contri-
bution to the pair potential has recently been con-
sidered by Mon et al.,** who suggested it as the
physical origin of the structural anomalies of some
liquid simple metals (Ga, Sn). These anomalies
show up as weak subsidiary maxima of the static
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structure factor observed by x-ray or neutron dif-
fraction. The corresponding feature in the ion-ion
interaction is a softening (the screened van der
Waals term is always attractive) of the pair poten-
tial which in extreme cases can lead to additional
minima at relatively short range. The effect is
largest for highly polarizable ionic cores. Assum-
ing the frequency-dependent polarizability of metal
ion core to be of the Lorentz form

a(0)
=0 31
a(w) 1—(0/ag) (31)

where w, is a characteristic frequency (@ is typi-
cally 1—2 a.u.), one obtains within the Drude
model the following order-of-magnitude estimate
(assuming fluctuating point dipoles) for the
screened van der Waals contribution to the pair po-
tential ¢,qw:

2
Gyaw(r)=— 3__aloy % (32)

4 (14wp/wg)? r®’
where wp is the plasma frequency.

For Al, the polarizability is presumably very
small (for the free ion APP*, a(0)=0.36 a.u.), and
consequently the effects of both ionic background
screening and screened van der Waals interaction
are insignificant for normal metallic separations.
However, even for the simple metals this is gen-
erally not the case.*>* This underscores the im-
portance of obtaining reliable results for the static
and frequency dependent polarizability of an atom
embedded in a metal. Polarizability calculations®
have recently been carried out successfully for free
atoms using the density-functional theory; it would
seem very worthwhole to extend such methods to
the case of the atom in jellium vacancy considered
in the present work. Then one would be in a posi-
tion to obtain both the statically screened Coulomb
and the dynamically screened van der Waals con-
tributions on essentially equal footing, including
the effect of the metallic environment beyond linear
response.

VI. DISCUSSION AND CONCLUSION

In this paper we have outlined a method, similar
in principle to that of Rasolt and Taylor,” to com-
pute the interionic potential of a simple metal.

The method consists of first calculating the in-
duced electron density self-consistently around a
metal nucleus embedded in a homogeneous electron
gas. A pseudopotential is then constructed which,

in linear response theory, reproduces the calculated
self-consistent electron density exactly. The in-
terionic potential can then be computed from the
pseudopotential form factor and the dielectric func-
tion.

It is shown that the electron density, the pseudo-
potentials and the interionic potentials are sensitive
to the models that represent the metal atom in a
solid. Furthermore, as is well known, the interion-
ic potential is also sensitive to the dielectric func-
tion. Using the computed potentials, we have in-
vestigated various electronic properties, such as
binding energy of an electron in a metal, equilibri-
um lattice constant, bulk modulus, vacancy forma-
tion energy, and the electrical resistivity of the
liquid phase. The atoms in jellium vacancy model
gives rather good agreement with the experimental
results, whereas the atoms in jellium model fails al-
ready in describing the cohesion of the perfect met-
al. An additional reason for preferring the atoms
in jellium vacancy model is based upon the follow-
ing physical picture: If we remove an atom from a
metal, a vacancy is left behind. Thus the screening
charge associated with one ion occupying a substi-
tutional site is the electron density of a perfect
metal minus that of a metal with a vacancy.

In computing the charge densities the effect of
the discrete lattice has been ignored. In a simple
metal like Al the lattice effects are generally re-
garded to be small. In any case, incorporating
these effects using the spherical solid model or the
variational self-consistent model would lead to
slightly different charge densities compared to the
atoms in jellium vacancy model. The effect of the
lattice on the pair potentials and other calculated
quantities has to be investigated before the validity
of the present approach can be fully assessed.
However, the present calculation clearly shows that
in the jellium model one has to embed the ion into
a jellium vacancy in order to get a reasonable
description for the induced charge density.

The pseudopotential used in our calculation is
local. Rasolt and Taylor and Dagens et al.!> have
used a parametrized nonlocal pseudopotential in an
otherwise rather similar calculation. They have
not carried out the direct Fourier transform of the
charge density to get the correct local pseudopoten-
tial, and thus the importance of the nonlocality of
the pseudopotential is not yet completely clear.
The induced density can of course be fitted also by
a nonlocal pseudopotential, but this involves addi-
tional parameters (the form of the nonlocality)
which have to be calculated, e.g., by fitting some of
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the band-structure properties. In their embedding
scheme Dagens et al.'® used a method which paral-
lels that of the atoms in the jellium model. How-
ever, they used linear screening theory in calculat-
ing the electron density ny around the vacancy.
This gives a slightly different induced electron den-
sity, since the linear screening theory is not able to
describe correctly the electron density around a va-
cancy.'? On the other hand, Dagens et al.! used a
trapezoidal background charge density for a vacan-
cy, which makes the use of linear screening more
justified. In addition, the main emphasis of their
study has been in alkali metals,>~ !> where the
difference between our two models is also expected
to be smaller than in Al. In alkali metals the
linear screening describes a vacancy much better
than in polyvalent metals like Al. The effect of the
volume dependence of the pair potential on various
electronic properties was estimated and found to be
large. Thus caution should be taken in applying
the pair potentials in problems which involve
volume changes.

Another method of computing the interionic po-
tential directly would be to study the interaction
energy of two atoms separated by a distance 7 in a
homogeneous electron gas using the Kohn-Sham
formalism. This method requires the solution of a

two-center problem and is numerically difficult.
The same questions concerning the embedding
atoms in the jellium would also arise in this ap-
proach.

One may question the need for going into the de-
tailed calculations for computing the interionic po-
tential particularly when such information can be
obtained empirically by fitting to certain experi-
mental data. The merit of the first-principles cal-
culations is that they give physical insight to the
form of the pair potential and reveal the sensitive-
ness of it to various approximations and parame-
ters that enter into the calculations. Also the ap-
plicability of the potential to various problems can
be evaluated. An accurate determination of an in-
teratomic potential including all lattice and many-
body effects is indeed difficult. Therefore, the
correctness of an interatomic potential, empirical
or otherwise, that reproduces a certain kind of ex-
perimental data should be assessed with caution.
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