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X-ray structure-factor data can be used to obtain an electron-density matrix corre-
sponding to a wave function that is a single determinant of orbitals. Equations are
derived which treat this problem for the case of electronic open shells. The equations are
solved for model numerical problems of lithium and berylium atoms. For these cases the
structure-factor data are obtained from essentially exact wave functions.

I. INTRODUCTION

We' have previously pointed out the need for a
proper quantum-mechanical model for a charge
density that is fit to accurate x-ray diffraction data.
We have proposed that the first-order reduced den-

sity matrix be required to be idempotent. Al-
though idempotency restricts the class of wave
functions that give rise to such a density to a single
determinant of molecular spin orbitals, such wave
functions appear able to give an excellent fit to
scattering factors of correlated systems. Gilbert
has conjectured that the electron density of any
system can be exactly described by the electron
density of a single determinant wave function and
has presented a compelling plausibility argument to
support this idea. The work of Henderson has
shown that very accurate density-dependent prop-
erties can be obtained from single determinant
wave functions. The advantage of an idempotent
density matrix in x-ray analysis is that it allows
one to correctly compare experimentally deter-
mined population coeAicients to theoretical calcula-
tions, and in fact to calculate any property of the
system. In this paper we generalize the formalism
for obtaining an idempotent density matrix to treat
open-shell systems that can be described by a single
determinant. The form of the wave function is the
same as that taken by Pople and Nesbet in the
method known as unrestricted Hartree-Fock (UHF)
or spin-polarized Hartree-Fock. In contrast to the
UHF method where the parameters in the wave
function are chosen so as to minimize the energy,
we shall choose them so as to get the best fit, in an

average sense, to a set of x-ray diffraction data. In
Sec. II we present the formalism for obtaining such
a fit and in Sec. III we present the results as ap-
plied to the lithium and beryllium atoms.

II. FORMALISM

In the unrestricted Hartree-Fock method, the
wave function is a single Slater determinant of N
spin orbitals 4;, where N is the total number of
electrons in the system. Each orbital consists of a
space part times a spin function which may be ei-

ther a or p spin, but there is no requirement that
any space orbitals be doubly occupied. For such a
wave function the first-order reduced density ma-
trix will be a sum of the squares of the spin orbi-
tals

N

N +N&

+ g p;(r])y,*(p& )p(l)p(1') .

N and Nit are the number of a and p electrons,
respectively; N +Np must of course equal N. It is
natural to define the two spinless density matrices

(2a)
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and

N +Np

i=N +1

Due to the orthonormality within the set of u-
space orbitals and within the set of P-space orbi-

tals, p and p~ must satisfy the following condi-
tions of idempotency, normalization, and hermitici-

ty:

trices are conveniently written as a trace

p'(r;r')=trP P(r)P (r'),
where P is the m )& m matrix representative of p
in the g basis defined by

Pa ( a}tea

Similarly,

pP(r;r')=trPPQ(r)ft(r') .

PP=(cP)'cP . (10)

JpP(r;r' )pP(r';r'')dr';=pP(r;r''),
~?I ~

~
~~ t~

~

~ p j

pP(r;r)dr =N

JpP( r; r )d r =Np,

p (r;r')=p (r';r),
(3b)

(3c)

(pa)2 pa.

trP =N;
(pa)t pa.

(PP) PP

(PP)& PP

(1 la)

(1 lb)

(1 lc)

Conditions (3) become the following matrix condi-
tions:

In fact, should two density matrices satisfy all of
conditions (3), they must be of the form of Eq. (2)
and can be broken down into their constituent or-
bitals. Our task is to find a p and p~ subject to
conditions (3} that give the best fit, in an average

sense, to a set of crystallographically determined
structure factors F(S), the relationship being

F(S)=J[p (r;r)+pP(r;r)]e"' dr . (4)

Toward that end we expand the space orbitals in
an atomic basis set of size m [QI

qr;(r)= gc;„l(t&(r), i=1,N .
p, =l

The set of equations (5) can be written more

compactly in matrix form

%=el( .

(5)

Here g and P are column matrices of the space or-
bitals and basis functions, respectively, and c is the
rectangular XXm matrix of expansion coefficients.
The first E rows of c comprise c, while the
remaining X~ rows comprise cp. The density ma-

for an orthonormal basis.
By defining the set of matrices f(S),

f&(S}=f 1(t (r)gj(r)e" dr, (12)

Eq. (4) can also be written as a set of trace condi-
tions

F(S)=tr(P +PP)f(S) . (13)

Since the set of structure factors F(S) contains ex-

perimental errors and the number of parameters is
much less than the number of data points, we do
not expect (13) to hold exactly for every reflection.
Instead we seek to minimize the sum of deviations
from (13)

g ~

tr(P +PP)f(S)—F(S)
~

=e, (14)

by choosing P and PP subject to constraints (3}
such that e is a minimum. The absolute value is
chosen for (14) to have a linear function of P and
P~ and render the problem mathematically tract-
able.

The idempotency of P and P~ can be ensured
~2 A 2 2

by reducing the quantity tr(P Pa) +tr(PP-
PP) to zero and —using the Lagrangian multiplier

technique to enforce (1 la) and (1 lb).

5 tr(P P) +tr(PP P—P) 2A, &trP 1 —2A2tr—PP1—
—2A, , gtr(P +PP)f(S ) —gtr(P +PP)f(S )

S+ S

where a reflection is in the S+ group if

=0 (15)
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tr(P +P~)f(S)—F(S))0

and is in the S group otherwise. To first order the variation yields

2 tr 2Pa' 3Pa'+Pa

+tr 2pp —3Pp +Pp —A,21 —A,3

gf(S+)—gf(S )

S+ S

gf (S, ) —gf(S ) 5PI =0 .
S+ S

Since the variations 5P and 6Pp are arbitrary
and independent of each other, each expression in
square brackets must be identically zero:

to

8~+1 ——3P„—2P„+X1n 1+X3n G„, (20a)

2P —3P +P —A, 11—Z36 =0, (18a) p2 p3
P~+1 3pn 2pn +~2n 1+~3nGn (20b}

2PP —3PP +PP—A,~1 —A,3G =0

where

G—=gf(S+)—gf(S ) .

Equations (18}can be solved iteratively according

Note that the matrix 6 changes upon each itera-
tion since a reflection may go from the S+ to the
S group or vice versa. The Lagrangian multi-

pliers are determined at each step by enforcing
(lib) and (14) for P and P~, which yield the fol-
lowing matrix equation:

T

tr11 0 tr61
0 tr11 tr61

tr61 tr61 2 trGG

N —tr(3P„—2P„)1

Np tr(3P~ 2P—~ )1—
e+ g+F(S+ ) tr(3P„2P—„+3P~—2' ~)G„—

(21)

I

since tr11=m. Scharz's inequality requires that
(22) be greater than zero since the G matrix cannot
be proportional to the unit matrix in this case.
Therefore, these iterative equations can and will

converge quite independent of any correlation of
parameters that might be present. The number of
independent parameters to be determined is

2 p2@=md —X (23)

If the chosen basis is not orthogonal but has an
overlap matrix defined by

S~J
=Ig;*( r )ir/i ( r )d r, (24)

then Eqs. (20) and (21) can still be used if P, p~,
and f( s ) are replaced by 8, R ~, and f' (S) ac-
cording to

g a g1/2pag 1/2 (2Sa)

WP=S'"PPS'" (2Sb)

To summarize the procedure, one chooses an ini-
tial guess for P and Pp from which a value for e
[Eq. (14)] is determined. A smaller e value is
chosen and a new Pa and Pp determined via Eqs.
(20) and (21). Equations (20) and (21) are applied

a a 2 2
repeatedly until tr(P~ P) and tr(P~—P~) are-
as close to zero as desired (less than 1 X 10 " is
satisfactory for five-decimal-place accuracy in the
elements of the P matrix) and (14) is satisfied for
the chosen e. At this point e is again decremented
and (20} and (21) applied until convergence is ob-
tained. By thus decreasing e in a superiterative
process, one arrives at idempotent P and PP
which yield the minimum e. We point out that
Eq. (20) must be solved simultaneously as they are
coupled through the matrix G (which requires P
and Pp to decide whether a reflection is in the S+,
or S group) and A,&. If N =N~, Eqs. (20) reduce
to the iterative equation for closed-shell systems. '

The determinant of the matrix of traces in (21) is

b, =2m[trlltrGG —tr(G1) ] (22) fi
(S) g —1/2f ( S)g —1/2 (25c)
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At solution, P and P~ can be recovered by the re-
verse transformations.

For a multicenter basis, the structure factors
may not be real and the f(S) matrices will general-

ly not be Hermitian. In this case the intensities
should be used for data and the f(S) matrices re-
placed by the Hermitian operator matrices

d'„(S)= —,[f+(S)tr(P„'+Pg)f„(S)

+f, (S)«(I'+&g)f+(S)], (26)

which will change at each iterative step until
P + &

——P„and PP+ i
——P~. It is straightforward to

include weighting factors so that more accurate
pieces of data are given more importance in the fit-
ting, or to emphasize different regions of space.

III. RESULTS AND DISCUSSION

The lithium and beryllium atoms served as test
cases for the formalism presented in Sec. II. The
scattering factors used as data were taken from
Benesch and Smith who calculated correlated
coherent scattering factors from natural orbital ex-
pansions of high-accuracy wave functions. The
lithium wave function was Larsson's 100-term
Hylleraas-type function which accounted for 99%
of the correlation energy. For beryllium, %eiss's
configuration-interaction wave function (93.06% of
the correlation energy) was used. In both cases 108
scattering factors, from sin8/A, =0.000 A ' to
sin0/A, =4.000, were used and given weighting
coefficients of unity. The basis sets used here are
the near-Hartree-Pock bases of Qementi. In each
case the initial guess used was the UHF solution
and e was slowly decreased from the UHF value

until an apparent minimum was reached. As can
be seen from Table I, the value of the measure of
fit parameter e decreased by a factor of about 100
from the UHF value for both Li and Be. As dis-
cussed by Henderson, this should lead to the
single-determinant wave function with the desired
properties (in this case the best fit to the scattering
data) whose energy is closest to the Hartree-Fock
energy. Henderson's work is based on the conjec-
ture of noncrossing-energy hypersurfaces in proper-
ty space. In fact the x-ray-structure factor-fitted
wave functions (XR) have energies only 0.0009—
0.01% higher than the UHF determinant. There
is, however, no guarantee that this procedure will

produce the lowest possible e or that the density
matrices determined for the lowest e found are
unique.

The density-dependent properties studied, (1/r )
for Li and Be and (r ) for Li, show significant
improvement over the UHF values. The expecta-
tion values for other density properties were not
available for the exact wave functions and so com-
parisons could not be made. Since the density ma-
trix was determined by getting the closest possible
fit to the fourier transform of the density at a
number of discrete points, this improvement in

density properties over the UHF wave function is
not unexpected. Although average values of other
powers of r could not be compared to the exact
values, it is likely that they would also show im-

provement. Unequal weighting of the observed
structure factors could be used to emphasize dif-

ferent regions of space. Structure factors for small
values of sin8/A, contain significant contributions
from the valence density, whereas structure factors
for large values of sin0/A, do not. The weighting
scheme used here emphasizes those structure fac-

TABLE I. Comparison of expectation values from the exact, Hartree-Fock, and x-ray-fitted densities for the lithium

and beryllium atoms.

Total

energy

Kinetic

energy („')
Fermi

contact (Atomic units)

term

Li Exact 0.0000
HF 0.1506
XR 0.0020

—7.478025
—7.432 749
—7.432 694

7.478
7.433
7.438

2.199
2.281
2.285

5.71822
5.71549
5.718 66

18.350 34
18.626 10
18.34609

2.906
2.909
3.015

0.75000
0.75002
0.75002

Be Exact 0.0000
HF 0.9945
XR 0.0093

—14.66090
—14.573 02
—14.571 50

14.66
14.57
14.59

4.3803
4.4891
4.5376

8.4246
8.4088
8.4255

17.32008
16.320 10
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tors with the largest magnitude, hence the smaller

values of sino/A, .
Figures 1 and 2 show the difference between the

UHF and XR densities. The greatest absolute

differences occur at the nucleus with a buildup of
charge ip the XR density. This buildup at the nu-

cleus is balanced by a steep deficit between 0.08
and 0.4 a.u. in Be, and a shallow deficit between

0.23 and 0.60 a.u. in Li. At r g 0.6 a.u. the UHF
and XR densities are virtually the same in Li. In
Be this does not occur until 1.5 a.u.

For both atoms the UHF structure factors are
most grossly in error in the region 0& sin8/A, ~0.7
A ' (Figs. 3 and 4). Benesch and Smith also re-

poort "best density" (BD) structure factors for Li.
The BD wave function is obtained by taking the
three natural spin orbitals with the highest occupa-
tion numbers in the exact first-order density matrix

d forming their antisymmetrized product. Ac-

cording to a theorem by I.owdin this gives the

best approximation (in an overlap sense) to p~

(l; 1'). The BD structure factors for Li deviate sig-

nificantly from the exact in the area around

sinM/A (A )
-1

FIG. 3. Coherent x-ray scattering factor differences

for ground state of the lithium atom.

sinH/A, =0.5 A ' and fit worse than UHF in the
area from sin9/A, =0.45 to 1.0 A '. The XR
structure factors agree better than either the UHF
or BD in all regions of reciprocal space and oscil-
late mildly around the exact values. The XR
structure factors for Be fit better than the UHF
and exhibit their maximum difference from the ex-
act at about 0.07 A '. The kinetic energy, which
depends upon the first-order density matrix (i.e.,
the off-diagonal elements) shows a slight improve-
ment over the UHF values.

In contrast to the one-body properties, whose

values appear to improve by structure factor fit-

ting, two-body properties are worse than the UHF
values. As previously mentioned the total energies
of the two systems studied increased by less than
0.01% over UHF. Since kinetic and electron-
nuclear attraction energies improved, this decrease
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um atom.
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FIG. 4. Coherent x-ray scattering factor differences
for the beryllium atom ground state.



IDEMPOTENT DENS&TV ~TRACES FOR CORREI.ATED. . . 7023

in accuracy of the energy can be attributed to
electron-electron repulsions. The average value
(1/r |& ) increased for XR functions, indicating a
less favorable r&z distribution. For Be, Benesch
and Smith report total scattering intensities which
are related to p2(1;2) by

tot iS.(r )
—I 2)=%+2 e ' '

p, (1;2)d 1 d 2, (27)

0.3-

0.2-
O

a

ptt )caee t
tot t»

II. tHF-teaeet
tet t»

where I,~
is the classical scattering intensity of a

free electron. For comparison we draw differences
in I„,between the exact wave function and the
XR and UHF values in Fig. 5. The shapes of the
difference curves are quite similar, yielding max-

imum errors at the same values of sin8/I, .
Benesch and Smith attribute the peak at
sinO/X=O. 12 A to I.-shell coffelation, and thc
errors in the region sin8lA, =3.0 A. ' to &-shell

correlation. At sin8/A, =0.12 A ' the correlation
distribution error is about three times that of the
UHF value, although in the region sin8/A, =0.37
A ' it is somewhat improved over UHF. For
sinO/k & 1.1 A ', UHF and XR give essentially

identical values.
One of the major objections to the UHF method

is that the wave function is not an eigenfunction of
S . In this formalism the expectation value of S
is given by

' N+ ,
' gr Xl'—)' trP SP~S—. (2g)

Fof thc Bc atom this is no problem if wc start with

an initial guess of P =I'P. This is equivalent to
enforcing double occupation of the orbitals, and the
itcfRtion will prcscrve this fclation. Fof thc Li
atom, the UHF calculation gives a value for (S )
of 0.7500158 that is very close to the value for a

pure triplet, 0.750000. This value changes insigni-

ficantly to 0.7500152 in the XR function. The hy-

perfine splitting energy which arises from the Fer-
mi contact term in the Li atom is a function of
(p —p~) evaluated at the nucleus. The magnitude

of this quantity is generally much improved in the

UHF function over the restricted Hartrce-Fock

value and is known to be very sensitive to the basis

set used. In the one case tested here, I.i, the XR
value was significantly worse than the UHF value.

It may be that an energy criterion such as is used

0.5 1.0
stnMIA. (A )

FIG. 5. Total scattering intensity differences for the

beryllium atom ground state.

in determining the HF wave function, is a more
stringent requirement on the density at the nucleus

than x-ray scattering conditions. However, it ap-

pears from other expectation values that x-ray At-

ting will provide a better average density.

CONCI. USION

Very accurate one-body density-dependent prop-

erties can be obtained by fitting the parameters of
an idempotent density matrix to an accurate set of
x-fay-diAraction structure factors. Properties re-

quiring the off-diagonal elements of the density

matrix, e.g., kinetic energy, also appear to improve

slightly over that obtained by a variational calcula-

tion of the energy. To pay for this improvement,

the two-body distribution is not as good as that ob-

tained by a variational calculation, although the to-

tal energy need not be dramatically increased. The
need for a density matrix which takes into account

clcctfon correlation is appafently not necessary foI'

Rn RccuI'atc description of thc density.
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