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Simplified theory of dislocation damping including point-defect drag.
II. Superposition of continuous and pinning-point-drag effects
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The combined effects which occur when two kinds of drag, one acting continuously

along the dislocations and other at discrete points {point-defect drag), are derived. It is

found that the damping and modulus change can always be expressed in good

approximation as the sum of two Debye relaxations. For widely separated relaxation

times, one corresponds to the point-defect drag and the other to continuous drag acting

on the in-between loops. Expressions are given for the relaxation times and strengths for
each of the two components for any number of movable pinning points. It is shown that

the characteristic pinning-point-drag effects have nothing to do with whether the drag
acts continuously or at discrete points, but depend on the fact that the movable pinners

exert restoring and viscous forces which act only on a part of the dislocation

displacement.

I. INTRODUCTION

This article deals with dislocation damping aris-
ing from sources which provide both continuous
drag and pinning-point drag simultaneously. It
makes use of results given in the preceding article'
(here referred to as paper I), which are first sum-

maflzed.
(i) Using only physical arguments without calcu-

lations, a simplified theory of dislocation damping
due to point-defect drag was presented. It consists
of an application of the Granato-Lucke formulas
originally derived as approximations for the case of
continuous drag, ' and also for the case of point-
defect drag, and leads to a description of the
internal-friction effects as a simple Debye relaxa-

tion with relaxation strength 6 and relaxation time

w given by

AGb' I.' 8 I.'
(1)

12C y 12C

Here 6 is the shear modulus, b the Burgers vector,
A the dislocation density, C the dislocation line

tension, I. the loop length, and 8 a properly de-

fined drag constant. The parameters v and y are

numerical factors of the order of unity. They cor-

respond to (but are somewhat differently defined

from) those introduced by Lenz and Liicke' in or-
der to obtain a more general form of writing these
equations.

(ii) An exact calculation of b and r for drag due
to equidistant pinning points was carried out as a
function of the number p =n —1 of pinning points
per loop including the case of continuous pinning
with p = oo. The results deviate somewhat from
an exact Debye relaxation and from Eq. (1), which
represents nevertheless a good approximation to
the exact result. The factors a and y change by
small amounts with p, but still by only 33% for
the most extreme case of p =1.

(iii) Different Debye-type approximations to the
exact solutions were defined both for continuous
and point defect drag (low-frequency, frequency,
Fourier, and zero-order approximations). For all

of them the relaxation strength and time are again
given by Eq. (1). They differ only in nuinerical
factors ~ and y, but by less than 20%%uo. This is in
general range of accuracy of the simplified theory.

(iv) Besides generalizing and simplifying the
string theory to include drag effects, the theory
was further generalized and simplified to include
string effects within the framework of a rigid-rod
theory.
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II. SIMPLIFIED DESCRIPTION OF THE
SUPERPOSITION OF THE T%'0 DRAGS
BY THE GRANATO-LUCKE FORMULAS

The dislocation equation of motion

B — +C =her
Bx

(2)

leads, for periodic external stresses o =ooexp(idiot),

to a relaxation behavior that can be well approxi-
mated as that of Debye type with relaxation
strength d and relaxation time ~ given by the
Granato-Liicke formula equation (1). In Eq. (2), x
is the coordinate along the dislocation, y (x, t) is its
displacement, and the inertial term has been

neglected. This was known before for the case of
continuous drag where one obtains from Eq. (1)
with L =Lz and B=B,

AGb Lx Bc Lx
a~ 12C' y~ 12C

(3)

For the case of pinning-point ("discrete") drag,
it has been shown in paper I that one must take
L =LN and 8 =8& in Eq. (1) to obtain

In this article the expected superposition phen-
omena are again first derived without calculation
(Sec. II) by using only physical arguments and ap-
plications of the old Granato-t. ucke formulas.
Section III gives a mathematical treatment but for
the simple rigid-rod model, for which both the
restoring forces and the drag forces—also those
due to point defects —are considered to act con-
tinuously. Because of its mathematical transparen-

cy, this model is especially well suited to demon-
strate the underlying physics of the effects. In Sec.
IV, finally, the string model is treated, in which it
is assumed that both the restoring forces and the
drag due to the point defects act at discrete points.

It is found that all three treatments give rather
similar results. The damping and modulus

changes can always be expressed in good approxi-
mation as the sum of two Debye-type relaxations.
With these results, a fuller understanding of the
basic physics of the drag effect is also obtained. It
is found that the characteristic effects for pinning-

point drag have nothing to do with whether the
movable point defects act continuously or at
discrete points. They depend instead on the fact
that the movable pinners exert both restoring and

viscous forces which act only on a part of the
dislocation displacement.

AGb2 Lx
ad 12C yd 12C

(4)

As will be shown in present paper, for the case of
superposition of both continuous and discrete drag,
an additional relaxation process will occur given
again by Eq. (1) but with L =L~ and 8 =8, as

gob Ld Bc Ld

In the above equation Lz is the distance between
fixed network pinning points, L~ ——L~ln where
n —1=p is the number of movable pinning points
per network length L~, and Bd is the drag con-
stant for pinning-point drag, given by

1 n D
Bd —— m =

mLg mL~
' kT

where m is the mobility and D the diffusion coeffi-
cient for diffusion of the movable pinning points
with the dislocation.

In the treatment of the effect of movable pin-

ning points given in paper I it is assumed that no
continuous drag exists, so that only the drag force
due to the pinning points dragged along by the
moving dislocation (Fig. 1) has to be considered.
This treatment, which seems to suggest that the
only influence of movable pinning points is to ex-

ert drag [first term in Eq. (2)] on the dislocation
misses, however, two important features. They are
connected with the facts that, even for infinite Bd,
the dislocation motion is not completely suppressed
and that the pinners also cause a restoring force
[second term in Eq. (2)] for the dislocation. This
is shown in Fig. 1, which indicates that there are
two components to the response of the dislocation,
one (y~) corresponding to the motion of the mov-

able pinners and the other (y, ) to the motion of
the segments Ld between the pinners. First, two
limit cases (i) and (ii) will be considered.

(i) Here it is assumed that 8~ &&8„i.e., the
pinners are able to follow the dislocation motion
rather fast, so that the displacement is given nearly
by that of a dislocation without pinners [y =y~,
Fig. 1(a)]. This means that, in this case, the role
of the pinners is principally to produce some drag
with very little change of the restoring force. The
latter remains about the same as for the free dislo-
cation corresponding to the loop length L~. Thus
one has essentially the original Granato-Liicke
form for a damping peak, which is given by Eq.
(3), but with a drag constant slightly larger than

Be.
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FIG. 1. Schematic representation of dislocation dis-
J

placement y as a function of the coordinate x. Ld is the
distance between pinning points. LN is the distance be-

tween immovable pinning points. (a) Displacement

yN(x) for Bq «B„where Bd is the discrete pinning-

point drag and B, is the continuous drag. The pinners
are able to follow the dislocation line. (b) Displacement

y(x) =yd(x)+y, (x) for Bq »B, and low frequencies.

yd(x) is the displacement of the pinning points and yo is
the displacement of the dislocation segments between

the pinning points. The pinners are able to move at low

frequencies. (c) Displacement for Bd »B, and high
frequencies. The pinners move only slightly.

(ii) Now it is assumed that Bd »B,. Then at
high frequencies, the pinners move only slightly
and dislocation motion is mainly caused by the in
between loops [Fig. 1(c)]. Here the pinners contri-
bute only slightly to the drag but increase the res-
toring force to a value nearly that corresponding to
Ld. Since the drag on these segments is of the
usual continuous nature, i.e., 8 =8„adamping
peak arises again, described by Eq. (5). At fre-
quencies low enough to cause a motion of, and
thus also a damping by, the pinning points, [Fig.
1(b)], the pinners influence both the drag and the
restoring farce. Because 8, «8d, the in-between
loops are practically in phase here with the applied
stress, so that their motion contributes fully to the
modulus but only slightly to the damping. This
means that at these frequencies one obtains the
modulus defect due to the motion of the in be-

tween segments L~, superimposed on a relaxation
process described in Eq. (4) which is caused by the
pinning-point motion.

Thus, associated with the two contributions to
dislacation motion, the internal-friction effects for
B~ &&8, consist of two relaxation processes, one
due to the motion of pinning points [Eq. (4)] and

one due to the motion of the in between segments

Ld [Eq (»]:

In Eq. (7) 5—=Q
' is the damping and P—:b,M/M

is the relative modulus change, where M is the
modulus.

The frequency dependence of these internal-
friction effects is plotted in Fig. 2. For case (i)

(Bd «B, ), one has only a single relaxation peak,
given by Eq. (3) and shown by the solid line. For
case (ii) (Bq »B, ), two well-separated maxima oc-
cur, given in Eqs. (4) and (5) and shown by the
dashed lines. According to Eqs. (4) and (5) the
height of the peaks does not depend upon 8~ or
B„and the second peak is smaller than the first by
a factor L~/Ld n. F=or the case of two well-

separated peaks, the total relaxation strength is the
same as that for the single peak, as can be seen in
the figure for the low-frequency modulus limit.
Also, for cases (i) and (ii), the asymptotic value of
the decrement at high frequency is the same. If
one decreases B, towards zero (vanishing continu-
ous drag), r, goes to zero, i.e., the damping peak
5, would move to infinite frequency without
changing its height. This means that no contribu-
tion to the damping but a full reduction of the
modulus occurs at finite frequency for the second
peak. If one increases B~ indefinitely (firm pin-
ning points), rd becomes infinite, i.e., the damping
peak 5d moves to infinitely small frequency. With
decreasing Bd, i.e., increasing mobility of the pin-
ning points, this peak moves to higher frequency
without changing its height. When Bd becomes
much smaller than 8„the two peaks 6d and 5,
must combine in some way to become the single
peak 6z, but the surprising way that this occurs
cannot be seen in this simple way (see Sec. IV).

These results concerning the superposition of
continuous and point-defect drag have again been
obtained directly from the Granato-Lucke for-
mulus without any calculations. They describe
correctly the basic physics of these processes.
Quantitatively, these results are only approxima-
tions, as are the Granato-Liicke formulas them-
selves. In the two following sections a more
thorough investigation of this superposition effect
is undertaken.

III. SUPERPOSITION OF DRAG EFFECTS
IN THE RIGID-ROD MODEL

According to the preceding section, the two drag
effects described there cannot be superimposed
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that the dislocation possesses a constant displace-

ment y (t) over its whole length and that it experi-

ences per unit length a restoring force —Kzy and a

frictional force —B,y. It is here further assumed

that there are point defects which all have the

same displacement yd(t} and which exert an addi-

tional force per unit length —Kd(y —yd ). This

means that the point defects can be thought of as

being continuously distribution along the displace-

ment line yd. In Fig. 3(b} the forces acting on the

dislocation are represented by simple springs and

dashpots. Again neglecting the inertia terms, one

obtains for the motion of the dislocation

FIG. 2. Frequency dependence of the decrement 5
and modulus change p. For Bq «B„there is only a

single relaxation 6~. For Bd ~g8„ there are two peaks

5~ and 5,. The total relaxation strength is the same as
that for the single peak so that the total modulus change

at low frequencies is the same for both cases. Also the

asymptotic value of the decrement at high frequencies is

the same.

simply by superposition of the drag constants

(8 =8, + B~) The re. ason for this fact does not

lie in the discrete nature of the drag due to mov-

able pinning points, but in their influence upon the

restoring force. This will be demonstrated with ex-

act calculations for a simplified model proposed by
Liicke, Schnell, and Sokolowski, for which the

pinning-point drag is also treated continuously. It
is based on the rigid-rod model of dislocation

motion, which, as has been shown recently by Lenz

and Liicke and by Granato and also in paper I
(Sec. V), gives a good approximation to the disloca-

tion behavior resulting from the vibrating-string
model.

In the rigid-rod model [Fig. 3(i)J, it is assumed

Bdy +It Ny +Ed (y —yd }=b rroex p ( l cijt )

and for the motion of the line of the point defects

~dyd &d(y y—d) =o—

41+42 2 2 + 2 2
1+cO T~ 1+60 72

(10b)

Here the subscript X refers to the restoring force

due to the loop length L~ and subscript d to res-

toring and drag forces due to point defects with

the loop length Ld. The equations, however, are

set up as if all the forces were of continuous and

not of discrete nature. The solution of this set of
differential equations is given and discussed in Ap-

pendix A. It leads to a superposition of two

Debye-type processes denoted here by the indices 1

and 2.

6 )CO'7) 5260%2
1+ 2 22+ 221+co 7 ) 1+ T2

dislocation

line of point
gdefects

yd KN) BcQi&

LJB1
yl

(b) (c)

FIG. 3. Schematic representation of the displacement y of a dislocation in a rigid-rod model under an applied stress.

The dislocation is subject to a continuously applied (1) restoring force ( —Ezy), (2) viscous force ( —B,y), and (3) drag

force by point defects [ —Kq(y —yq)], where yd is the point-defect displacement. In (b), the forces acting on the disloca-

tion are represented by simple springs and dashpots. Figure (b) is equivalent to (c), where Ei 2 and 8& 2 are given by

Eqs. (18). From (c) one sees that there are two independent relaxations of the system.
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In analogy to the effects occuring during coupled
vibrations, these two processes will be referred to
as thc normal modes of thc 1claxat1on system.
The relaxation times and relaxation strengths are
glvcn by

r, 2
——( [1+p(1+1/)I,)]

+ t[1+p(1+I/&)] —. 4p/&j' )

~o 1+p,(1—I/A, )1+
I [1+p(1+ 1/A, )] —4p/A, j

'

(11b)

A, =Kd/K„, p=Bd/8, .

The quantities

~Go'
To

(12)

(13)

are those which would be obtained without any
point defects (p, =0). For p=8~/8, && 1, one ob-

tains
AGb

~i =~o= — ri =ro=
KX~ pf

They become identical if the following values for
the numerical factors are used:

&~ =g~ = 1 ~ Kg =K& = 1 +1/g,

I
Xe =1+1/A, .

For the usually considered range of A, & 4 (i.e.,I q/Liv & 2), these factors remain near unity, as an-
tlclpated. Values for othcI' limiting cases arc also
given in Table II, cited in Appendix A.

Figure 4 shows ri z/ro and b, i 2/bo as a function
of p for the special case A, =3. One recognizes that
peak 1 is the main relaxation peak. Peak 2, which
is located at higher frequencies, is completely
negllglble for p&&1. For &&1 it is small com-
pared to peak 1 also in the range p gg 1. It is in-
teresting to note that the peaks are not to be asso-
ciated one with continuous drag and the other with
point-defect drag. Instead, peak 1 describes both
cffccts, whclcas peak 2 Icprcscnts only R usually
small correction. For p «~1, peak 1 describes the

10 000—

lQQ—

(14b)

while for @+~1 Q.G I—

K~(1+K~/Kg) K~
0.0001—

G.OOGI 0.01 100 10000 p,

AGb

Kd(1+K~/Kd )
'

Kd(1+K~/Kd )

(15b)

As shown in paper I, the restoring force for a
string fixed at its end is given by

' 0.0001 0.01

-210—
2

10
]

I t

lOO 10000 p,

for the loop lengths I.~ and I.~, respectively. In-

troducing this into Eqs. (14a), (15a), and (15b),
these results closely resemble those of Eqs. (3), (4),
and (5). Thus

6i ——5~ and 52~0 for p&&1,

5|——5~ and 52 ——5, for p&&1.

FIG. 4. Relaxation times w~ 2 and relaxation strength
A~ 2 as a function of p=B~/8, for the two relaxations
of the system illustrated in Fig. 3 for the special case of
A, =-Eq/E„=3. wo is given by 8, /E~ and 60 by
AGb /E~. Peak I is the main peak and the total relax-
ation strength is ahvays ho.
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(18a)

so that one obtains with Eq. (13)

AGB
1,2

1,2
(18b)

2 +1,281 2 ——E1 2r1 2 ——AGb
1,2

(18c)

where b, &, 62, ri, and r2 are given by Eq. (11).
This gives a precise answer to the question raised
at the beginning of this section, i.e., to what extent
do movably pinners act as a source of extra restor-
ing force or as extra drag? In general, they do
both and the amounts of each are given by Eq.
(18).

effect of continuous drag, and for p)~ 1 that of
point-defect drag. For @=1 the effects are mixed,
and the relaxation times v1 and ~2 do not cross.
The way in which the peaks combine for 8d +0 —is
illustrated in Fig. 2 by the dotted curves. One sees
that 5, disappears by shifting downward along the
high-frequency asymptote of 5N. The peak 5d
picks up the extra relaxation strength lost by 5, .
From Eqs. (11)—(15) some results anticipated ear-
lier on physical ground (Sec. II) can easily be
derived. The total relaxation strength is always the
same, 51+52——60, i.e., equal to the modulus de-
fect obtained without any frictional forces. In ad-
dition, the high-frequency asymptote for 5 is exact-
ly given by ho/coro, completely independent of A,

and p. This expresses the fact that at sufficiently
low frequencies the dislocation displacement is lim-
ited by E~, and at sufficiently high frequencies the

dislocation motion is limited by the drag force 8,
Finally, it may be seen from this example that

the existence of two relaxations with two different

relaxation times does not depend on whether the
point-defect drag acts continuously or discretely.
It depends only on the fact that the movable pin-

ning points provide forces, restoring and viscous,
which act only on part of the total displacment.
The simple spring circuit in Fig. 3(b) is equivalent

to that of Fig 3(c), whic. h is a series connection of
two simple parallel circuits of springs and dash-

pots. The equivalent restoring and viscous con-
stants E1, E2, B1, and B2 are then defined by the
expressions

IV. SUPERPOSITION OF DISCRETE

AND CONTINUOUS DRAG

FOR THE VIBRATING STRING MODEL

%e now supppose that a continuous drag B, acts
on a dislocation segment length L,& pinned firmly
at its ends, and that n —1 movable pinners are at
points separated by lengths Ld =Lzln (Fig. 1).
The Debye-type response for this system can be
calculated most simply for the zero-order approxi-
mation. This is done in Appendix C, where the re-
laxation times and relaxation strengths are found
to be

(19a)

~o 1+(1—2/n )(p/y)1+
2 [(1+p,/y)' —4(p/y)/n']' '

where

AG& J~ B Lpf

12C 12C
(20a)

=ro( /y),
c y

(20b)

and y=yo(n) =n/(n —1) is a numerical factor [c.f.
Eq. (1)] defined for the zero-order approximation
in paper I. The limit values following from Eqs.
(19) for either 8, «8d or 8, &)8d are listed in
Table I. Since Eqs. (19) are derived using the
zero-order approximation, they are valid for
y(n)=yo(n) =n/(n+1). By comparing Table I
and Table I of paper I, one recognizes, however,
that for both limit cases of p, the quantities r1 and
h, 1 have exactly the form valid for the low-frequen-
cy approximation if one replaces yo(n) by yr(n).
Thus it can be suspected that Eqs. (19) also give a
rather good description of the low-frequency ap-
proximation for finite p. Since the first-term
Fourier approximation is very close to the low-
frequency approximation, Eqs. (19) should also be
rather well applicable for this approximation if one
sets y=yz(n) For the .high-frequency approxima-
tion, however, Eqs. (19) are less useful since there
the value resulting for 61 for B,=0 no longer
agrees with that given in Table I, even for y=y&.

It is easily noted that the structure of Eqs. (19)
are similar to those of Eqs. (11) for the rigid rod.
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They become identical if one makes the following
replacements in Eqs. (11):

12C 1 —1/nK~~ 2, A~n —1, pg ~p
yo(n)

Because of this correspondence, the discussion
given in Sec. III for the rigid-rod model is likewise
valid for the string model. Thus Fig. 4 for a=3
represents the double-loop n =2 case. Equation

(17a},giving a correlation between the rigid-rod re-

laxation and those relaxations described by Eqs.
(3)—(5), is also valid for the string model. Howev-

er, instead of the numerical factors in Eq. (17b),
the following factors derived by comparison of
Table I and Eqs. (20) with Eqs. (3)—(5) apply:

These factors agree with those listed in Table I of
paper I for the zero-order approximation [Eq. (22a

for the continuous case n = ao and Eq. (22b) for
the discrete case]. They do not agree, however,

with those given by Eq. (17b) if A, is expressed sim-

ply by Eq. (16) and B~ by Eq. (6). This is due to
differences in the geometry of the rigid-rod and the

string vibration, similar to that found in Sec. V of
paper I.

A very useful approximation covering the whole

range of n and p can be derived by expanding Eqs.
(19) and introducing p/y=r~/ro [Eq. (21)] to give

The largest value the second term in the curly

brackets can have is when n =2 and ~d/'Pp=1 and

is —„.Similarly Eqs. (19b) gives

1 ——
1 0 + 0 0 ~

n (ro+rd)

2 2
rd /ro

~2=~O 2 2+
n (1+ra/ro)

(24b)

Bi ——AGb
7p

&d «o —&d )

n (ro+rd)~

Here the second term is always ~ —,. This means

the curly brackets can be taken as unity with a
maximum error of 7% or 25%, respectively.

The partial relaxations 5& and 5~ (normal modes)

can also be calculated for the string case according
to Fig. 3(c). The corresponding restoring force and

drag constants are again obtained from Eqs. (18),
where now Eqs. (19) must be used for r) 2 and b, ) 2.

In particular, for the main relaxation peak 5~ one
recognizes that E~ ——AGb /6] changes relatively
little with varying p: For the limit case n = ac, E&
is independent of p, and for other limit case n =2,
K& increases by factor of —, when p goes from 0 to

For the drag constant 8~, however, large
changes are obtained. Good approximate descrip-
tions for these quantities, valid over the whole

range of p and n, are found by introducing Eqs.
(23a) and (24a) into Eqs. (18). In particular, for 8&
one obtains

1 1 1
2

= +
&o n (ro+rd)

(23b)

8, +
y .

' y.
2

2 Bd
n 8, +

TABLE I. Limit values for relaxation times and strength for a string saith n —1 movable
pinners. so=&eI.~/12C~ ho= AGb'I. ~/12C p =Be/8. go=1/(1+1/n)

r2/ro

71 —12

n

1 2cn —1) ~
Pl Pf P
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For n = oo (i.e., y= 1), this gives

8) ——8,+8g,
and for the other limit case n =2,

3

3 Bg(8, ——,Bg)
Bi (8,——+ , Bg)—1——

(8, + —,Bg)'

(26a)

(26b)

For general n Eq. {25) leads to the three limit cases

8, +(1—1/n ), 8, &&B~
8g

y
8 i .28„8,=Bu /Y

1 —3/n' 1

,8,+, ~ 8, «8g~y .
1 —1/n2 1 —1/n

(27)

V. SUMMARY

By superposition of continuous drag and drag
due to movable point defects, a dislocation
response characterized by the sum of two Debye-
type relaxation processes is obtained. They can be
considered as the "normal modes" of the relaxa-
tional system. The values for the corresponding
relaxation strengths and relaxation times are
derived by physical arguments in an approximate
manner {Sec.II), by exact treatment of a model in
which restoring and drag forces are assumed to act
continuously along the dislocation (Sec. III), and
by approximate treatment of a model in which
these forces really act pointwise (i.e., the

It can easily be recognized that for these three
cases the approximate equation (25), in fact, gives
the exact values. This means that Eq (2S).
represents an extremely good interpolation formula
for the main drag constant 8~ over the whole

ranges of n's and 8's. From the calculations in

Appendix C, one can also obtain the displacements

yi (x) and y2(x), corresponding to the two relaxa-
tions. One finds that each of y i and yz contains,
in general, a mixture of the dislocation displace-
ment, corresponding to pinning-point motion and
motion of the segments between pinning points.
Only for p =8&/8, » 1 does yi represent the
pinning-point displacement. The sum of y~ and yq
always gives the same full parabolic displacement
function at low frequencies.

vibrating-string model with pinning-point drag,
Sec. IV). All three treatments lead to very similar
results.

The reason that superposition of continuous and
point-defect drag does not result in a simple addi-
tion of the drag constants but in two separate De-

bye peaks is that the movable pinning points influ-

ence not only the drag force but also the restoring
force. As can be derived, especially from the res-
ults for the continuous model, this behavior is not
caused by the pointwise action of drag and/or res-

toring forces due to the point defects, but by the
fact that they act on only part of the dislocation
displacement.

The two resulting Debye-type relaxation pro-
cesses are not attributed as one to continuous drag
and the other to point-defect drag. Instead both
are mixed. One of them, however (here character-
ized by the subscript 1), is always the main process
while the other (subscript 2), which always lies at
higher frequencies than the first, plays the role of
a correction. The main peak 5~ always represents
the motion of the whole loop length. The second

peak 52 can be recognized individually only for the
case 8~ ~8„and then represents the relaxation
due to the vibrations of the dislocation segments

L~ between the movable pinning points. For
8~ &~8„the second peak disappears.

Very good analytical approximations [Eqs. (23)
and (24)] can be derived for the relaxation
strengths and times of these peaks. This confirms
the results of Sec. II obtained by physical argu-
ments that only the old Granato-Lucke formulas
have to be applied to describe these peaks. In par-

ticular, one obtains for the main peak 4& -+o=
AGb LN /12C, and for the drag constant an ex-

pression which, in a very crude approximation,
leads to 8~ -8,+8~. The possibility of an analyt-

ic description of the effects can be exploited, as

will be done in paper III of the present series of
paper, to simplify considerably the discussion of
the influence of such external parameters as fre-

quency, temperature, or pinning-point number of
internal-friction effects.

Of the various treatments of the drag effect (see

paper I), only Simpson and Sosin tried to combine
the action of continuous and point-defect drag.
However, their treatment resulted in a complicated
formalism not well suited to a simple discussion of
the effects of the above parameters. For this
reason, the present, more transparent treatment of
the superposition of the two types of drag effects is
not only useful for understanding its physical na-
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ture, but is required for its application to the
evaluation of experimental data.
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As shown in Appendix 8 such an expression can
be expressed as a superposition of two relaxation
processes with the relaxation times z& 2 and
strengths b

& 2 given by Eq. (11). Some limit values
for these quantities and short indications of the
physical meaning of these cases are listed in Table
II.

APPENDIX B: FORM FOR THE SUM OF TWO
DEBYE RELAXATIONS

The equation of motion of a dislocation

By +Ky bao—exp(i cur)

APPENDIX A: SUPERPOSITION OF DRAG EFFECTS
IN THE RIGID-ROD MODEL

The solution to the system of differential equa-
tions, Eqs. (8) and (9), is found by inserting

y =g exp(idiot ), yd gdexp——(icot)

in Eqs. (8) and (9) and eliminating gd. This leads
to the complex displacement amplitude q:

r

bo.o
1+leo

KN Kd

(K= restoring force constant) leads with y =q
exp(icot) to

b +0/+ 1 —l C07g, —g
1+icoB/K

This describes a simple Debye relaxation (cf. equa-
tions of paper I) with

~=8/E, E=GbAa/o. =Gb A/E .

Let us consider the sum of two Debye relaxations:

&c &d
1 —co +i&0 + + +E d d

'g =a
~ /( 1 +IN1

~ ) +a q /( 1 +i co'r2 ) .

This can be written as

I

(83!

1+i I [a &/(a &+a2)]cor2+ [a2/(a &+a2)]cor~ Ig=(a)+a, )
(-1 co r~r2)+l—co(1]+%2)

(B4)

TABLE II. Limit values for relaxation times and strengths for the rigid-rod model. (PD
denotes point defect. )

/wo &2/&o

Physical
meaning

p 1+—1

P

1

1+iE

mobile PD

immobile PD

p, /A,

(1+@)'
only PD drag

(many PD)

only continuous drag

(no PD)
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Th1S Incans that an cxplcsslon of thc form

a {I +ibis)
21=

(1 ca—P)+2idtji
(85)

proximated by the zero-order approximation I)0(x),
its average value is given by

Iia{co)=I)1/(1+icoB, I)t /boa)
can always be written in the form of Eq. (83) with

(86)

as shown by Eq. (89) of paper I. Here Iit (x) is
the solution of

—CqL' ——boo . (C2)

It does not mean, however, that an expression of
the form (85) always represents the superposition
of two Debye relaxations. Its physical meaning
depends upon the values of thc constants. %e con-
sldcI thI'cc examples.

(i) To have the sum of two relaxations, one needs
dI —c y 0 (real relaxation times), c & 0 and d ~ 0
(two positive relaxation times), and 2bd —b —c y 0
(two positive relaxation strengths).

{ii) Damped resonance is described by

Ay+By+Ky

=booexp(idiot)

.

A is a mass per unit length. With F00 K//I, th——is
leads to

I.et us consider first a single pinning point that
could be dragged in the middle of a loop Lz. In-
stead of tllc boundary coIldltlolls Y/(0) =0,
I)(LN) =0 (Appendix 8 of paper I), Eq. (C2) must
then be solved for the boundary conditions

L~
I)(0)=0,

2
2'C ~E

LCD 2
fj (C3)

Equation (C3) follows from the condition y =mF,
where E is the dislocation tension force at the
point defect given by F= —2Cy'. With the abbre-
vlatlons

bo.o'9=
2 2(1 to /t0—0)+itjIB/3t00

(89) rjjt 4 Cj t 0 12C
t (C4)

i.e., a =btJD/K, b =0, c =2 /K, d =B/2K. For
d —c = (B /4K —3 /K ) g 0, one has two ima-

ginary relaxation times. This is characteristic of
underdamped resonance with a damping maximum

at 6) =No.
(iii) For overdamped resonance, i.e., for

(B /4K A/K) ~0, on—e has two real and positive
relaxation times, but one negative relaxation
strength. This can be seen especially clearly for
large overdamping, where

Eq. (C2) is solved by

glvlng for thc lntcrval x =0—Lg/2

I)q —&0+31/4 —
A I /12 .

The boundary conditions (C3) lead to

(C5)

(C6)

ri B/K, ai ——1——,

rI ——A/B, az —— KA/B'. — (810) 32 2+ 1 COVd

Ao ——0, 3) ——
2 1+6)Td

Thc ncgatlvc second IdaxRtlon stI'cngth leads to a
dlop off of dalllplllg at lllgll frcqucnclcs fl'oII1 tllc
Debye curve corresponding to the first relaxation
process, and thus causes the 1/u instead of a 1/co
relationship occurring for overdamped resonance at
high frequencies.

(bcr0L~/12C)(1+i cord /4)
go—

(1 to rdra/4)+iso—(r()+rg)
(C8)

Inserting Eqs. (C4), (C6), and (C7) into (Cl) finally
glVCS

APPENDIX C: SUPERPOSITION OF
CONTINUOUS AND DISCRETE DRAG

FOR A STRING

According to Appendix 8 this corresponds to a
sum of t&o rclaxatlons. VAth

Equation (2) can be solved by the trial solution

y(x, t) =I)(x)exp(itot). If the amplitude 1)(x) is ap- o
(C9)
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the relaxation times and strengths are given by

Eqs. (86) and (87) as

0 &o+&a/2I+
2 I/2[(&o+rg ) rory—]

2
&p+

5
1/2

ro+ rg ) 1 org
Pf

(Cl lb)

(CIOb)
where now rg has been redefined to be [cf Eq (9)
of paper I]

From this derivation, it may be inferred that for
n —1 pinners (n + I)L~

12~yo(n) 12m C' (C12)

1
&(,2=

2
(&o+&u)+ «o+&a) —,&o&u

7l

(Cl la)

with Bg given by Eq. (6) and yo(n)=n/(n+1) as
given by Table I of paper I. With Eq. (C4) for ro
and Eq. (C12), Eqs. (Cl 1) lead directly to the Eqs.
(19) and (20) in the text.
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