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The theory of dislocation damping for movable pinning points is developed by using

results found earlier by the authors for the relaxation strength and relaxation time for the

damped vibrating-string model. In this may new formulas are not needed but only a, rein-

terpretation of the constants of the old theory. This is justified by exact calculations for
the case of n equidi. stant movable pinners. It is shown that the results can be represented

in good approximation in the form of Debye relaxations. Pour different such approxima-
tions are considered and compared. It is found that the main dependence of the effects
on the parameters for any number of movable pinning points is the same as that for a
continuously dragged string with only small changes of the order of 30% or less in nu-

merical factors for the relaxation time and strength. These changes are of the same order

as those introduced by, a Debye approximation. The relation of the results to earlier work

is discussed. In addition, the theory is placed vnthin the framework of an even more gen-

eral theory formulated in terms of a rigid-rod approximation.

I. INTRODUCTION

In the past twenty years, the notion that point-
dcfcct drag by dislocations should glvc risc to
internal-friction peaks has been suggested by
numerous authors. Many theories for the process
have been presented independently which are either
for limiting assumptions or in a form which is so
complex that it is difficult to discuss the depen-
dence of the effect on the essential parameters. We
believe that drag effects will prove to be ubiquitous
Rnd that R simpllf lcd but complete RIK1 fcallstlc
form of the theory will be not only useful, but
necessary, for the confrontation of experiments
with theory.

Thc purpose of the present series of three arti-
cles is (l) to present such a simplified theory, (2) to
relate the previous theories to each other and to
show them as part of a unified framework, (3) to
show that in particular the theory of point-defect

drag can be considered to be a limiting case of the
previously existing damped vibrating-string theory,
rather that vice versa as has been suggested, (4) to
calculate the exact solUtlon fof thc case of drRg by
equidistant pinners and to compare this with the
above simplified theory, (5) to find a preferred ap-
proximation among the various possible Debye ap-
proximations for a vibrating string, (6} to place
these results within the framework of an even more
general theory —the rigid-rod approximation, (7) to
consldcr thc cffccts of supcfposltlon of dlffcr'cnt
physical soulccs of restoring Rnd vlscoUS drag
forces, (8) to consider the effects of distributions of
pinning points, and (9) to discuss the dependence
of the decrement and modulus on the different ex-
perimental parameters.

Points (l}—(6) are contained in the present paper
(hereafter called paper I). Paper II contains (7)
above and leads to a fuller understanding of the
basic physics of drag effects. Paper III, to be pub-
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lished in the near future, contains points (8) and (9)
and leads to formulas more suitable for the evalua-

tion of experimental data.
After giving a survey of the theoretical situation

in the field, in paper I two limit cases are treated:
It is assumed that the drag is either only of con-
tinuous or only of discrete nature, i.e., that it is
acting on the full length of, or pointwise at, the
dislocation (pinning-point drag). By using simple

physical arguments it is shown that the damping
due to movable pinning points can also be
described well by the theory derived earlier by the
authors for a damped vibrating-string model with
continuous drag. In this way, new formulas are
not needed, only a reinterpretation of the constants
of the old Granato-Lucke formulas is necessary.

By exact calculations it is shown that for both con-
tinuous and discrete drag the resulting phenomena
can be described to a very good approximation as
simple Debye relaxations. The deviations from
this and their physical reasons are discussed.

In a second paper (paper II) the superposition of
continuous and discrete drag [point (7)] is treated.
Again, the main results are obtained by stressing

physical arguments and simplified models and by
using exact calculations mainly for checking the
accuracy of the approximations. This leads to a
fuller understanding of the basic physics of drag
effects. In contrast to papers I and II where only

equidistant pinning points are considered, distribu-

tion effects of pinning points will be taken into ac-
count in paper III. This leads to formulas more

, suitable for the evaluation of experimental data so
that a useful discussion of the dependence of the
resulting effects upon the experimental parameters
can also be given [points (8) and (9) above].

II. DISCUSSION OF EARLIER WORK

In 1956, Granato and Lucke' derived a theory
for damping and modulus changes due to disloca-
tion motion, which was based on the vibrating-
string model of Koehler. In Koehler's model it is
assum&l tllat tile dlslocatloll ls fixed at certain
places by pinning points and that, under the influ-

ence of external periodic shear stresses, the free
dislocation segments or loops between the pinning
points undergo forced vibration. In the extension
of this theory by Granato and Lucke two kinds of
pinning points, strong and weak, are taken into ac-
count. These are characterized by the phenomeno-
logical parameters Lz and L„which describe the

average distance L~ between strong (or firm) pin-

ning points, and the average distance L, between
all pinning points. For sufficiently large stresses,
the dislocation can overcome the retarding force of
the weak pins, but not of the strong pins.

The inelastic nature of the response of the crys-
tal to the external stress results from the assump-
tion that the motion of the dislocations is opposed
by a viscous force. A number of possibilities for
the physical source of this drag have been dis-
cussed. These can be divided into two groups.

(i) The first group involves a drag acting con-
tinuously along the dislocation line. This has been
assumed in the original Granato-Lucke theory and
results in internal-friction phenomena which, in
first approximation, can be described as a simple
relaxation process. Many experimental observa-
tions have been explained on the basis of.this
"dislocation resonance theory. " The interaction of
dislocations with phonons and electrons and the
losses due to sound irradiation by vibrating disloca-
tions belong in this category. Under many cir-
cumstances the phonon drag mechanism seems to
be the main source of damping. '

(ii) The second group involves a drag action
pointwise at the dislocation resulting from its in-

teraction with point defects. Here several mechan-
isms have been treated, e.g., the breakaway of the
dislocation from defects or the diffusion of the de-
fects along or with the dislocation. The mechan-
ism of principal interest for this paper is the latter
one: The moving dislocation drags the pinning
points with it without breaking away from them.

The process of point-defect drag as a mechanism
for internal friction has been proposed by many
authors. It seems to have been first mentioned by
Kesslers (1957) and by Weertman (1957), who sug-
gested that high-temperature damping could be
treatmi by applying the theory of Cottrell and
Jaswon for dragging of an extended Cottrell atmo-
sphere. Kamel (1961), without any calculations,
tried to explain relaxation effects he observed in
quenched gold by dragging of vacancies.
Schoeck' (1962) proposed impurity drag as the
source of an internal-friction peak observed after
cold work in bcc metals and calculated the decre-
ment under the assumption that the impurities that
could be dragged provide a continuous viscous
drag. The resulting expression for the decrement is
that for an overdamped string with the time con-
stant determined by the diffusivity of the irnpuri-
ties.

In these papers (although not always exactly
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specified), the interaction of the dislocations with

point defects was more or less treated as having a
continuous nature, and the activation energy of
damping was taken to be that of lattice diffusion.
A calculation assuming the point defects to be si-

tuated directly at the dislocation core and acting
pointwise at the dislocation (movable pinning
points) was given by Schiller" (1964), but he al-

lowed for only a single diffusion jump for the
point defects in each direction. This is correct
only for very high frequencies and otherwise leads
to grave errors. Blistanov and Shaskolskaya'
(1964) derived the decrement arising from the
sllrlllltRlleolls Rctloll of plnnIng-point drag and of
phonon drag, but only for a limited frequency
range (below the phonon drag peak and above the
point-defect drag peak). Bauer' (1965) noted that
the diffusion of pinning points occurring near the
dislocation core should be facilitated, but he was
thinking only of diffusion parallel to the disloca-
tion line and thus considered only the effects on
the string model of the corresponding loop-length
changes.

A rather general discussion of the problem of
lntcrnal frlctlon duc to plnnlng-point dlffusioQ was

glvell lly Lllcke Rlld Scllllpf (1968). In pRrtlclllRr:

(i) They included a discussion of perpendicular and

parallel diffusion and of the distribution of pinning

points under the influence of entropy forces. (ii)
As special examples, they treated, among others,
the cases of perpendicular diffusion of a single
movable plnQlng point pcI' dlslocatlon loop and the
case of many pinning points per loop, in the latter
case reducing the problem to the continuous case.
They found that these processes could be described
in the form of Debye relaxation processes, and

gave expressions for the relaxation strengths and
relaxation times. (iii) They pointed out that, as
with the parallel motion, the diffusion of such pin-

ning points perpendicular to the dislocation line is
also facilitated, since the dislocation immediately
follows the motion of the pinning point by slip so
that the pinning point always remains close to the
dislocation core. In this way activation energies
smaller than that for lattice diffusion could be ex-

plained. Work along this line was continued by
Schlipf, Winkler-Gniewck, and Schindlmayr'
(1973), who found that the process becomes ampli-
tude dependent at high enough stress amplitudes;

Simpson and Sosin' ' (1972) published a series

of papers in which the problem of internal-friction
phenomena due to pinning-point dragging was

treated again. Their work differed from previous

treatments, mainly by (i) considering the simultane-

ous action of continuous and pinning-point-defect
drag for all frequencies, (ii) considering additional

special cases including some questions concerning
loop-length distributions, (iii) assuming the drag
mechanism to be athermal, while it was supposed
in all previous treatments that the pinning points
I'. ove by diffusion, and (iv) attempting to interpret
irradiation-induced changes of internal friction by
an increase of the number of dragged pinning
points in frequency and temperature ranges, where
in previous treatments (e.g., for copper in the kHz
range at and below room temperature) changes in

the number of firm pinning points had been mostly
assumed.

More recently, Qgurtani' claims to have ob-
tained the complete solution of dislocation damp-

ing for the equally spaced multidragging point-
defect case, from which he finds that the
SlrnpsoQ-Sosln dragging Inodcl ls cqulvalcnt to thc
daInped vibrating-string model. However, his solu-
tion appears to be that for a continuously distribut-
ed drag, and does not display the existence of a
second component to the response which is shown
in paper II to be an essential feature of a complete
solution for drag produced by discrete point de-

feqts. For the continuous drag case, the equiv-

alence of the models is self-evident.
Although the considerations of Simpson and

Sosin were independent of some of the earlier

work, the model that they refer to as the SS model
ls exactly thc saInc and thell results aI'c ln quanti-
tative agreement with those given earlier. Also,
it has been claimed' that the dragging model is a
more general formulation of the dislocation damp-

ing problem with the damped vibrating-string
model as its high-frequency limit. We will follow
here the opposite viewpoint, according to which
the defect dragging model is a special case of the
damped vibrating-string model. The advantage of
the latter viewpoint is that the old string theory
can be used as is by simply reinterpreting the con-
stants of the theory. This also emphasizes the
underlying unity of the subject.

The damped string model theory given earlier by
the writers is not limited to phonon drag and fixed

pinning points, as implied by Simpson and Sosin.
It is a phenomenological theory, with no specific
mechanism specified for the viscous drag. Dif-
ferent mechanisms have been considered before, re-

quiring only a reinterpretation of the parameters.
For example, at high temperatures the phonon

drag dominates in many cases; at low temperatures
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the electron drag takes over in metals '; in super-
conductors at low temperatures, the electron drag
goes to zero, but a radiation drag remains, which
can be taken into account by allowing the drag
constant to be frequency dependent. ' Other
frequency-dependent drag constants have also been
considered, and kink motion has been taken into
account by reinterpreting dislocation-line tensions
in terms of kink densities. ' As mentioned ear-
lier, the dragging of point-defect atmospheres has
also been included in this scheme. In Secs. III and
IV of this paper it will be shown that in a good

approximation this description even holds for a
pointwise-acting pinning-point drag.

The solutions given by Simpson and Sosin for
the combined action of continuous and pinning-
point drag are very general, but are complicated
mathematically and difficult to discuss. They have
therefore only been applied to the limit cases al-

ready known before, namely that either only con-
tinuous or point-defect drag is effective and, in the
latter case, only for simple situations. Therefore,
in paper II another treatment is given which is
again based on simple physical arguments and the
old Granato-Lucke theory. The greater tran-
sparency of this treatment makes it possible to dis-
cuss more clearly the influence of different param-
eters and also to discuss parameters not considered
by Simpson and Sosin.

III. SIMPLIFIED DESCRIPTION OF
CONTINUOUS AND DISCRETE DRAG

BY THE GRANATO-LUCKE FORMULAS

The basic process considered in the Granato-
Lucke theory of dislocation resonance is the forced
vibration of a dislocation segment of length L~
firmly and unbreakably fixed at its ends under ex-
posure to a periodic external stress o.=&roe'"' (Fig.
I). The dislocation displacement y (x, t) is a solu-
tion of Koehler's equation of motion:

(a)
LN-

FIG. 1. Displacement y vs x for continuous drag on
a dislocation of length L~. (a) No stress applied. {b)
Displacement at low frequency. (c) Displacement at in-
termediate frequency. {d) Displacement at high frequen-
cy.
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where 6 is the shear modulus, b is the Burgers
vector, and A is the total dislocation length per
unit volume. (To reduce the number of super-
scripts and letters the symbol 6 is used here instead
of Q ', P instead of hM/M, and b instead of b,z
for the relaxation strength. ) In Eq. (2) an orienta-
tion factor 0 giving the resolved shear stress on
the slip planes for a given external stress should
appear, but has been set equal to unity, as this fac-
tor will not be considered here.

In all that follows, the drag 8 will be assumed to
be large enough so that the dislocations are over-
damped. Then, according to the above theory,
such dislocation motion causes damping and
modulus changes whose frequeA. cies dependence is
described to a very good approximation by a sim-
ple Debye relaxation process. This means that P
and 5 have the form

A is the dislocation mass per unit length, 8 is a
viscous drag constant, and C is the dislocation-line
tension. With solutions in the form y (x, t)
=g(x)e'"', where rt is the (complex) displacement

amplitude, the modulus defect P =b,M/M and
damping 5 are then given by the real (rex ) and im-

aginary (gt ) components of the average displace-
ment amplitude g as

with

p=b. 2, 5=6
I + (a)r) I+ (d'or)

=1
Mm = and 5m 17l—

as the frequency and magnitude of the damping at
its maximum value. The relaxation strength 6 and
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the relaxation time ~ are given as

1 Gb 1BL
AL

v 12C '
y 12C

(5)

(~) =i

with

m4 =1.015=1, y= =0.822=1 .
96 '

12

(b) (

"N(x)

(These factors i~ and y differ from those introduced
in Ref. 22 as discussed in Sec. V.)

Equations (3)—(6) are approximate relations,
corresponding to the first term of a Fourier series
expansion of g. Exact solutions can also be given,

but these are in general much more complicated
expressions which are only slightly more accurate
than those given above. Furthermore, the form of
the exact solutions obscures the important physical
fact that the process is basically of a simple relaxa-
tion form. Small deviations from the simple
behavior given by Eqs. (3)—(6) will be discussed in
the following section. In fact, none of these have
been detected experimentally so far in investiga-
tions of strongly overdamped dislocation motion.

The drag &orce 8 may have many sources. Two
models for the type of 8 will be considered here.

The first is the old continuous Granato-Lucke
model. It is assumed that the dislocations are di-
vided into network segments of length LN with
firmly fixed ends [Fig. 1(a)] and that the drag is of
a continuous nature. Combining the different con-
tinuously acting drag sources, e.g., phonons (B„h),
electrons (B,i) or re-radiation (B„),into a single
continuous drag called 8, =8&h+8,]+8 +
one obtains the relaxation strength AN and relaxa-
tion time r~ directly from Eq. (5) and (6) by using
L =LN and 8=8, :

1 Gb'
N 12C N t N

In a second model it is assumed that the con-
tinuous drag is zero, but movable pinning points
act on the dislocation at discrete places. Thus it is
assumed that each network length LN contains

p =(n —1), where n =Lz/Ld, equidistant movable
pinning points [Fig. 2(a)], each of which has the
mobility m. [The length in earlier work' called L,
(c standing for concentration) will now be denoted
by Ld, indicating the discrete nature of point-
defect drag. The subscript c (e.g., in B,) will be
used to characterize continuous drag effects. ] Re-
lated to an infinite dislocation, this leads to an

Y„Y~+)

average drag constant for discrete drag of

1
Bd ——

mLd

n . D
with m=

Pl kT '

where D is the diffusivity of the movable pinning
points.

It can easily be recognized that such a pointwise
concentration of drag simply corresponds to the
well-known textbook topic of replacing a continu-
ous string by a linear chain of mass points (except
that here the emphasis is on the frictional instead
of on the usually considered inertial features).
This insight allows one to conclude immediately
that, from the qualitative-physical point of view,
there is no basic difference in the vibration
behavior of both models so that the general predic-
tions of the string model (concerning the resonance
and damping behavior) remain unchanged. Thus
Eqs. (5) and (6) should give an approximation of
the damping behavior in the case of pinning if one
sets L =LN and 8 =B~, i.e., it is

2

v 12C '
12yC

(9)

For large enough numbers of participating "mass
points, " i.e., for p » 1, Eq. (9) is also quantitative-
ly correct, and it should be a reasonable approxi-
mation even for values of p comparable to one.

Thus the results for point-defect drag are direct-
ly obtained from the Granato-Lucke formulas
derived for continuous drag without further calcu-
lations. They correctly describe the basic physics

Ly

Yd&x)
c(x)

FIG. 2. Displacement y vs x for discrete drag by pin-
ning points at x„spaced a distance I.d apart. (a) No
stress applied. (b) Displacement at low frequency. (c)
Displacement at intermediate frequency. (d) Displace-
ment at high frequency.
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of this process and are quantitative approxima-
tions, as are the Granato-I iicke formulas them-

selves. There is, however, also a basic difference
between the continuous and discrete case. In the
discrete case one has in reality a superposition of,
two processes and thus two terms ii.n the disloca-
tion displacement: y =y~+y, . The displacement
of the dislocation due to the motion of the pinning
points is y~ and is given in Fig. 2 by the polygon.
Jpq 1s the superimposed displacement of the 111-

between loops. yd is drag controlled, and thus is
responsible for the relaxation effects. In the
present case of 8, =0, y, is always in phase with
the applied stress and does not depend upon the
displacement of the pinning points (i.e., on yq) or
on frequency. It thus contributes only a
frequency-independent modulus defect and can be
forgotten for the relaxation effects considered in

the present paper. (This does not hold for the case
where 8,+0, as will be shown in paper II.) With
growing n, this modulus defect decreases and
disappears completely for the continuous case
Pf = 00.

To provide a better understanding of the physi-
cal meaning of these effects the vibrations of the
dislocations are illustrated in Figs. 1 and 2
schematically. Figure 1 represents the case of con-
tinuous drag. At very low frequencies [Fig. 1(b)]
the displacement is essentially controlled by the
restoring force and thus is parabola shaped and
practically in phase with the external stress. At
medium frequencies [Fig. 1(c)] a phase lag builds

up, and at high frequencies [Fig. 1(d)] where the
motion is essentiaBy drag controlled, the phase lag
is nearly 90'. In this case all points of the disloca-
tion except near the ends have the same displace-
ment (rigid-bar-type motion). One recognizes that
at low frequencies the displacement is nearly com-

pletely in phase with the stress and mainly contri-
butes to the modulus defect, ~hereas at high fre-
quencies where it is nearly completely out of phase,
it contributes practically only to the damping.
Thus the low-frequency modulus defect and high-
frequency damping are zero-older effects since, in
these frequency ranges, the other property
represents only a correction to the displacement.

In the case of pure point-defect drag (Fig. 2), the
continuous drag at the dislocation segments I.~ is
zero so that these will be able to follow the exter-
nal force without delay, i.e., they wiH always be
parabola shaped and will transmit the external
driving force to the pinning points exactly in phase
with the applied stress. At low enough frequencies

[Fig. 2(b)], the pinning points are also able to fol-
low the dislocation motion without delay. This
means their displacements y~(t) are nearly in phase
with the stress and given by the same parabola that
would be formed by the dislocation without pin-
ning points [Fig. 1(b)]. At medium frequencies

[Fig. 2(c)], the pinning points move, but with an
amplitude smaller than that of a free dislocation
and with a phase lag. At very large frequencies
[Fig. 2(d)], finaHy, one has mainly the vibration of
the in between (J.~) dislocation segments and only
very little motion of the pinning points. Since the
pinning point motion is mainly drag controlled, the
displacements y~(t) of the different pinning points
are nearly 90' out of phase and are all of the same
size (rigid-bar-type motion).

IV. QUANTITATIVE DESCRIPTION OF
CONTINUOUS AND DISCRETE DRAG

In the preceding section, dislocation motion ex-
posed to a, continuous or discrete drag has been
described by expressions corresponding to a
Debye-type relaxation [Eqs. (3)—(9)]. This
description is only approximately correct. An ex-
act description had been given for the continuous
case by Granato and Lucke' in the form of an in-
finite Fourier series. It follows from the solution
of the equation of motion (1) and is given (for the
mass A =0) in Appendix A. The case of point-
defect drag has so far been discussed in the litera-
ture only numerically. ' In Appendix C an exact
analytical description not previously presented
(again for A =0) is derived in the form of a finite
Fourier series. It is obtained by solving a set of
difference equations, which replaces the differential
equation (1) and represents the equations of motion
of the movable pinning points under the influence
of the line tension of the dislocation loops L~.

These exact expressions, however, are diffjcult to
discuss, and, as will be shown, differ in only minor
respects from the above Debye-type expressions. It
is therefore useful to approximate the exact solu-
tion with a Debye form. This can be done in
several ways. We consider four different such ap-
proximations, each of which gives a fair overall
approximation for the correct expression while ap-
proximating especially well certain features of it.
(These are illustrated for the continuous case in
Fig. 3.)
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(o)

(c)

(ii) As described in Appendix 8, the approxima-
tion can be obtained without solving the full dif-
ferential equations [Eq. (I)]; only a simpler dif-
ferential equation need be solved. This makes it
possible to solve problems in this approximation
which are intractable in other approximations, for
example, many questions concerning distributions
of pinning points (paper III).

(iii) The zero-order approximation is closely re-
lated to a more general formulation, the rigid-rod
approximation, described in Sec. V. In the rigid-
rod approximation, no differential equation need be
solved at all, but a certain kind of useful Debye fit
is obtained again by considering the modulus at
low frequency and the decrement at high frequen-
cy.

0
log cu/fdb

PIG. 3. Schematic illustration of four Debye approxi-
mations to the decrement and modulus of a dislocation
with continuous drag. (a) Exact modulus and decrement
versus log frequency. (b) Pits of Pourier (E), low-

frequency (L), high-frequency (0), and zero-order (0)
approximations to the modulus. (c) Same fits to the de-
crement.

(1) The loio frequenc-y approximation is obtained

by fitting a Debye form accurately to the decre-
ment and modulus at low frequencies.

(2) A high-frequency approximation is obtained

by fitting accurately the decrement and modulus at
high frequencies.

(3) Fourier approximation by using—the first
term of a'Fourier expansion an approximation is
obtained which is rather similar to the low-

frequency approximation but gives a somewhat

better overall description, especially near the max-

imum of the decrement.
(4) The zero-order approximation is obtained by

fitting accurately the modulus at low frequency
and the decrement of high frequencies. Although
this is "mixed" in the sense of not being best fitted
for both modulus and decrement in a definite fre-

quency range, the approximation has a number of
advantages.

(i) It is a natural approximation in the sense that
the first-order effects at low and high frequency
are the modulus and decrement, respectively.

For all these reasons, the zero-order approximation
becomes preferred over the others.

These four different approximations are con-
sidered in detail for the continuous case in Appen-
dix A and for the discrete case 1n Appendix C. It
is found that for all approximations, the depen-
dences upon the main parameters and thus Eqs. (5)
and (9) for b, and r are retained and that only the
numerical factors ~ and y differ from those given

by Eq. (6). Thus it is possible to describe rather
completely but simply the internal friction due to
continuous and point-defect drag by giving the K

and y values corresponding to different n and dif-
ferent approximations. For this reason these fac-
tors have been calculated and listed in Table I as a
function of n including the continuous case with
n = ao. The subscripts L, H, E, and 0 are used to
represent the value of a and y for given n of the
low, high, Fourier, and zero-order approximations,
respectively. The fact that for a given value of n,
~ and y differ for different approximations indi-
cates that there are deviations from the exact
Debye-type frequency dependence, Eq. (3). These,
however, are rather small ( &33%). Similar differ-
ences occur if n is changed from 2 to oo. Some of
these differences in the ~ and y values of Table I
can be predicted without further calculations.

(I) For n =2 and 3 there is only a single even
mode and, correspondingly, an exact Debye-type
frequency dependence. This shows itself in the
fact that ~ and y are the same for all approxima-
tions.

(2) The change of sL, (n) is rather simple to
understand. Here at low frequencies the pinning
displacement is in phase with the stress and thus
the area swept out by the corresponding dislocation
gives the modulus defect P. Since, in this frequen-
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cy range, P ~ 1/~ [Eqs. (2)—(5)], 1/Ic is propor-
tional to this area which, for n = ao, is parabola
shaped. For finite n, however, the area given by
the polygon formed by the pinning points must be
used [Fig. 2(c)]. [The additional area included by
the I., loops is a constant independent of frequen-

cy and thus does not contribute to the relaxation
peak under consideration (compare paper II).]
This is obtained by deducting the parabolic dis-
placement of the Ld loops from the (parabolic) dis-

placement of the I.N loop. Since the average dis-
placement of the parabola-shaped dislocation is
proportional to I. , one obtains

r

2 -2

ICI (n) n
(10)

in agreement with Table I for both yH/~Jr and

yQ/KQe

So far, the n dependences of KL, , KQ, y&/KH, and

yQ/KQ are accounted for. These are zero-order ef-

fects. A physical discussion of the remaining K's

and y's, which depend on second-order effects, is
more difficult but still possible.

(4) The reason yz/~~ differs from yH /icH is

simply that the higher-order terms in a Fourier ex-

pansion are neglected for yz/KF. For large n these
terms increase the damping by a factor 6/g, ac-
counting for the difference. yL, /Icl, differs only

slightly from y+/Kz, and this difference can be un-

derstood in the same way.
(5) It is especially interesting to understand the

dependence of K and y on frequencies in the high-

frequency approximation for n = oo. This arises
from the fact that the modulus defect is not

in agreement with Table I for both KL and KQ.

(3) The change of y/Ic with n at high frequencies
is also simple to understand. Here the pinning
point displacement is nearly 90' out of phase and
the area swept out by the corresponding dislocation
displacement gives the damping 5. Since, in this

frequency range, 5 ~ y/Ic [Eqs. (2)—(5)], y/ic is
proportional to this area. For n = oo, this area is
rectangle shaped [Fig. 1(d)]. For finite n, however,
deviations from the rectangle occur [Fig. 2(d)], and
the area to be used is thos obtained by deducting
that of the two triangles at the first and last Lq
loop from the rectangle. Since their area corre-
sponds to the fraction L~/LN of the rectangular
area, one obtains
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described well at high frequencies by a Debye
form, but shows a (coy) ~ instead of an (ny)
behavior. This can be understood simply with the
help of Fig. 4. Each Fourier coInponent to the
displacement contributes a term to the modulus of
Debye form with a& dependence at high frequen-
cies as given in Eq. (A4). For a frequency
e~ gizmo, all modes of frequency ~J &m* make
equal contributions to 4, as seen in Fig. 4. The
sum of the contnbutions in the I'eglon falls with

(coy) ~, i.e., more slowly than (roy) . Nonethe-

less, the n and frequency dependence of x and y in
the region can be understood easily and is dis-
cussed in Appendix C.

V. THE RIGID-ROD MODEL

In the foregoing sections it has been shown that
the damping due to movable pinning points can be
considered as a special case of the original vibrat-

ing-string model and that it can be described by
the old Granato-t. iicke formulas with slight
changes of the factors y and a.. In this section a,

further simplification and, at the same time, gen-

eralization of the dislocation resonance theory will

be given. It mainly concerns the restoring force.
The treatment is based on the rigid-rod model of
dislocation motion which has recently been dis-
cussed by I.enz and Lucke and Granato. "

In this model the dislocation is assumed to be
straight and to have a displacement that is con-

stant along its whole length [Fig. 5(a)]. Then, in-

stead of Eq. (1) the equation of motion reads

Here Ky is the restoring force per unit length and
K is a force constant. As can easily be found (and
as is shown in paper II), this equation leads to a
pure Debye-type relaxation with relaxation strength
and relaxation time given by

AGb 8
7

K ' K

In Eqs. (13), K and 8 are assumed to act continu-
ously. It will now be shown that Eqs. (13) can also
be applied if these quantities are of discrete nature,
i.e., if the restoring force is supplied by firm pin-
ning points [vibrating string, Fig. 5(b)] and/or the
drag force by mobile pinning points [point-defect
drag, Fig. 5(c)]. In these cases the quantities K
and 8 must only be replaced by properly chosen ef-
fective quantities E,«and 8,«.

The most natural way to obtain these effective
quantities is to consider an infinitely long disloca-
tion under constant stress 0.. For the case of
discrete restoring force [Fig. 5(b)], one may set the

drag term in Eq. (12) to zero (8 =0) and calculate
the mean displacement of an dislocation loop of
the length I.~. According to Appendix A one has

(y ) =boLN /12C a.nd obtains with y = (y )

ho. 12C
KQ

For the case of discrete dragging force with mobile

pinning points separated from each other by the

distance Ld [Fig. 3(c)], one may set the restoring

term in Eq. (12) to zero and obtain

By+Ky =ho. =ho.oe'"' . (12)

-2
)

( c) 0

d

FIG. 4. Contributions to the dislocation modulus
change for continuous drag as a function of frequency
on a log-log scale. For a frequency ~~ && coo, all modes
of frequency cij)(co make equal colltnbutlons 'to P, so
that the frequency dependence is changed from (mz)
to (~w) ~ in the high-frequency range where the total
modulus change is small.

FIG. 5. Dislocation displacement under stress for dif-
ferent applied forces. (a) Continuous restoring and
viscous forces (rigid rod). (b) Discrete restoring forces
from fixed p1nnlng points. (c) D1screte v1scous forces
from dragable pinning points. {d) Discrete restoring and
viscous forces.
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using (y) =y in agreement with Eq. (8).
Now let us consider the case where both restor-

ing and pinning forces are discrete, i.e., a vibrating
string with point-defect drag [Fig. 3(d)]. If one
then would replace E and B by E& and B in Eq.
(13), one would recover the Granato-l. ucke formu-
la equation (4) except for the numerical factors a.

and y. This means, that, although the average res-
toring and dragging forces are taken into account
correctly by Eqs. (14) and (15), some differences
are still left between rod motion and string motion
which reveal themselves in these factors. Thus, if
one choses the effective quantities

K,rr =aK~, B,rr =PBBS (16)

VI. SUMMARY AND DISCUSSION

Summarizing the results of this paper, it is
shown that the old Granato-Liicke-type equation
(9) gives a good approximation for the description

to replace K and B in Eqs. (13), a complete agree-
ment with Eq. (5) is obtained where y=a. /P.

This all shows that all the dependencies upon
the essential parameters for the considered model
(here a vibrating string with point-defect drag) can
be predicted without solving the general differen-
tial equation with its boundary conditions for this
case [Eq. (1)]. Instead, the expressions for Kz and

Bd, which according to Eqs. (14) and (15) can be
found rather simply, have to be introduced into the
rod equations (13). However, the exact values of
the numerical factors a and y cannot be derived
from the rigid-rod model but must be found by
treating the considered geometry directly. These
factors, however, are close to unity, as has been
shown in Sec. IV and as can be seen in Table I.
This means that a good approximate description of
damping and modulus would be obtained even by
neglecting these factors completely.

According to the above it follows from the
rigid-rod equations that ~=y= 1 if the correct
average values Kz and Bd as given by Eqs. (14)
and (15) are used. According to Table I the same
values ~=y=1 are obtained for the zero-order ap-
proximation. This is because for this approxima-
tion, ~ is determined by fitting the low-frequency
modulus, i.e., by also using only the first term of
Eq. (12) and by fitting the high-frequency damp-

ing, i.e., by using only the second term. Thus the
zero-order approximation resembles the rigid-rod
approximation.

of damping and modulus defect not only for the
case of continuous drag but also for the case of
drag caused by movable point defects. The cases
for various pinning-point numbers (including the
continuous case n = co) and for various ways of
approximating the exact solution by a Debye form
differ only in the values of the numerical parame-
ters ~ and y of the equation. These parameters are
closely related to those introduced earlier by Lenz
and Lucke in a similar form of writing the gen-
eral relations. They are found to change with fre-

quency up to 20% (leading to a broadening of the
Debye-type damping peak) and by a similar
amount as n is changed from 2 to ao. This means
that this is the range of validity of this simplified
theory. However, these small variations, i.e., the
frequency and n dependence found in Table I, can
be understood in simple physical terms.

Thus, by listing these parameters (Table I) a
complete and extremely simple description of the
different cases of drag by equidistant pinning
points could be given. Also, the question about the
meaning of the different values a. and y, about
which a certain confusion existed in the literature
(e.g. , the question of which is the "corrmt" value),
has been clarified in this way. The more practical
question of which values of a and y should be used
in Eq. (9) is deferred until paper III, in which also
the statistics of the pinning-point distribution is
considered.

Furthermore, it has been shown that the expres-
sions for the relaxation strength and time, Eqs.
(13), can also be obtained by reference to the resu-
lts for the rigid-rod model for continuous restoring
and continuous drag. The quantities E and B have
simply to be replaced by the quantities Ez and B~.
These are obtained by keeping one of the two
quantities continuous and averaging the other one
along the whole (infinite) dislocation line for con-
stant stress [Eqs. (14) and (15)]. The results for
the relaxation strength and relaxation time differ
from the exact calculations only by the factors v
and y given in Table I, i.e., factors of the order of
1.

This agreement suggests a further simplification
and generalization. There is no question that
under the influence of periodic external stresses the
dislocations will vibrate, but often it will not be ex-

actly clear what the exact geometry of the vibra-
tion is and what types of restoring and driving
forces are acting. Then, according to the above,
the rigid-rod equations can simply be used to ob-
tain approximate numerical values for these quan-
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tities from the measurements. Furthermore, if the
types of restoring and drag forces are known, ap-
proximate analytical results can be obtained again
without integrating the correct equation of motion.
Only the averaged quantities K~ and B; (the ones

corresponding to K~ and Bd) must be found by the
procedure corresponding to that in Eqs. (14) and

(15) and must be introduced into Eq. (13) for K
and 8. In order to get a correct description of a
given case, instead of E; and 8; the effective quan-
tities K,tt =a;K~ and B,tt=P;B; would have to be
introduced. However, these numerical factors a;
and P; can again be expected to be = 1.

In this way it seems to be possible to reduce all

possible dislocation vibration geometries to the
rigid-rod case, which leads to an exact Debye-type
behavior. The deviations from the rigid-rod
behavior due to the different geometries of other
modes of vibrations or due to a non-Debye
response can be accounted for by factors of the or-
der of 1. The error introduced by this simplifica-
tion (i.e., by these factors) will be smaller than the
accuracy with which the other parameters entering
these equations are known.
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In the following, the differences between the ex-
act solution for the continuous case and the dif-
ferent Debye-type approximations hsted in Sec. IV
will be discussed. For this purpose the trial solu-
tion y(x, t) =ri(x)exp(icot) is introduced into Eq.
(1). With A =0 it transforms Eq. (1) into the ordi-
nary differential equation

i toBri —Cq"=o ob (Al)

with the boundary conditions ri(0) =ri(L) =0.
Exact solution The exact so. lution of Eq. (1)

was given in the form of a infinite Fourier series

by Granato and t.ucke. ' For A =0 one obtains

APPENDI& A: RELAXATION EFFECTS CAUSED
BY CONTINUOUS BRAGGING

(2p y 1)mxg(x)= g a2&+~sin
p=O Lx

Determining the coefficients a2„+& by inserting
Eq. (A2) into Eq. (Al) and forming

NI ri(x)dx
LN

00

o (2@+1)rr
(A3)

one obtains for the real and imaginary parts

8 L~
bao g

o (2@+1)

1

[1+(corp) /(2@+1) ]

8Lw " 1
2

be g
o (2@+1)

(A4)

X
[cur/(2@+1) ]

[1+(corp) /(2@+1) ]

Here rp BL /rr C is th——e relaxation time for the
first Fourier component. Because of the neglect of
the inertial term 3, the possibilities of resonance at
the frequencies to =(2p+ 1)coo, where

coo ——(~/L~)&C/2, are suppressed in the above.
This is a good approximation for B~ v'gC /2L~.
Also, even for the overdamped case, the inertial
term would have led to a reduction in the decre-
ment 5 at high frequencies as 1/co instead of the
1/co given by Eq. (A4). This frequency range,
however, lies above coo and is normally not
reached. Now the four approximations mentioned
in Sec. IV will be apphed.

(i) First term Fourier app-roximation

(tr=ap, y=yp). Using only the first term of the
Fourier expansion in Eq. (A4) leads to the values
of ap and yp of Eq. (6). This is a good overall ap-
proximation, especially near the damping max-
imum. This is shown by the fact that to describe
the height and the frequency of the damping max-
imum following from the exact solution, the values
a = 1.012 and y=0. 825 must be used in Eq. (5).
These differ from those of Eq. (6) by &0.3%%uo.

(2) Low frequency approxim-ation

(a =aL, , y=yz ). This approximation follows
directly from the exact solution equation (A4) by
neglecting the terms co v.+ with respect to one.
Since g„" o 1/(2p+1)"=m /96 and n. /960 for
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k =4 and 6, one then obtains from Eqs. (A4) and
5

(10) the values KL, ——1 and yt.
———, for b, and r.

This is more accurate in describing the response at
low frequencies than that given by the values in
Eq. (6), but the deviations are small ( & 1.5%%uo) and
originate in the fact that for low frequencies the
displacement of the dislocation is better described

by parabolas than by the first Fourier term sine
function of Eq. (A2).

For comparison purposes lt is useful to dcrivc
these values of «and y directly from the differen-
tial equation (Al). For low frequencies, the first
term of Eq. (Al) becomes small with respect to the
others and can be considered as a perturbation.
Thus, with a perturbation-type trial solution

g ='g(p)+'g(~)+ ', onc obtains

g(0) ~0'0 i

C'g(
& )
= l ct)8'g(p) ~

Solving these equations for the above boundary
conditions leads to

bo.p
i)(os= x (Ltc x) i—

SLY 1
9R

I+2(cori ) ~b&p (A8)

Vo VH

Kp KH

Since this is not of Debye form, the decrement and
modulus can be fitted at only one frequency, and
the values of Kn and yH become, therefore, fre-
quency dependent with the values listed in Table I.
It should be noticed that the m region develops
only after about ~s~ & 5 so that the modulus is al--

ready only a few percent of its maximum value.
Since the maximum modulus changes observed are
of the order of a few percent, this dependence
would be difficult to observe experimentally, and
in fact has never been detected.

(4) Zero order ap-proximation (K=Ko and y=yo).
Since the zero-order approximation fits the low-

frequency modulus (P), one obtains for «o the same
value as for the low-frequency approximation, i.e.,
Kp=KL, [Eq. (A5)]. Since it also fits the high-
frequency decrement, which is determined by
p= y/«, one obtains

&Ca)8bop
9(&)

24C
[LIcx(Ltc x)+x (Ltc—x) ], —

i.C. » (A9)

and A more thorough discussion of this approximation
is given in Appendix B.

ri(o) =icoPbooLtc/120C .

Equations (A7) wltll Eq. (2) yield Kt = 1 Rild

a

(3) High frequency -approximation
(K=«H, y=yrt ). For high frequencies, the higher
terms in the sum in Eq. (A4) increase rit (and
therefore the decrement and the quantity y j«) over
the value given by the first term of the sum by a
factor of g„" o 1(2/u+1)2=m /8. Hence,

yII/KH ——1. However, q& and therefore the
modulus change P are more stro'ngly affected.
There are now two high-frequency regions. For
co && 3/rF, the higher-order terms contribute
equally to the modulus for ms~ &2p+1 and even
change the frequency dependence. It has been
shown by Wire and Granato that an expression
which describes g~ adequately is given by

APPENDIX 8: THE ZERO-ORDER
APPROXIMATION

According to Eq. (Al), the displacement ampli-
tllde v)(x, co) of R dlslocRtloll is glveil Rs R solutloil
of

C'n~ =&oo (82)

~&c'90 =&O.
O (83)

sco8, g —Cq"=bo.p

for the appropriate boundary conditions. Instead
of the complicated true solution ri(x, co) of Eq.
(81), however, simpler (but similar) functions
rt(x, co) are often useful which no longer satisfy Eq.
(81) but satisfy simpler equations instead. Thus
the functions r)L (x) and r)H(co) can be introduced
satisfying the equations
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Since these equations follow from Eq. (81) either
for very low or very high frequencies, qL and gH
are good approximations only in one of the two
frequency ranges. For this reason Eq. (Bl) will be
modified here in such a way that the solution
which will be called gp(x co) approximates the true
solution q(x, co) of Eq. (81) over the whole fre-
quency range.

This is done here by replacing Eq. (81) by

0—CrlO =b0

where g0 is again the average displacement. One
recognizes the following.

(i) For very low frequencies Eq. (84) goes over
into Eq. (82) so that in first order, qp(x) gives the
correct low-frequency solution of Eq. (Bl) and thus
the correct low-frequency modulus (i.e., also the
correct relaxation strength).

(ii) For very high frequencies Eq. (84) goes over
into Eq. (83) [since g~ is independent of x, i.e.,
qH(x) =qH] so that, in first order, qp(x) gives the
correct high-frequency solution of Eq. (1) and
thus the correct high-frequency damping.

With the trial solution

go(x, co) =f (co)gL (x),

Eq. (84) leads to

gL (x)
gp(x, co) =

1+icoB,gL /b0. 0
(87)

By averaging over x, one indeed obtains g0 ——gL
for low frequencies and rjp hero/icuB fo——r high fre-
quencies. From qp(co), with Eqs. (2), (3), and (5),
the expressions for relaxation strength 6 and time
v are found. For the boundary condition

p (0)=y (L )=0, Eq. (82) gives [cf. Eqs. (A6) and
(A7)]

b~A' x x
g {x)= -- 1—

2C L~ L~

booL~.
12C

(86)

Here gL (x) is the solution of Eq. (82) and f (co) is
a factor depending on co but not on x. Inserting
f (co), which is determined by Eq. (86), into (85)
gives ~ ~~C 9A C 9Axx ~&0 ~ (89)

Here, however, any function gz (x) satisfying the
boundary conditions also satisfies Eq. (89) so that
choosing the displacement function g„(x) becomes
a question of intelligent guessing. By trying
g"=A sinn(x/L) the values a=n /12, y=m /12
are obtained, while for a triangle-shaped dis-
placement function, ~=, and y= —,. This will

always give the correct high-frequency decrement
but will only give the correct low-frequency
modulus when the correct low-frequency
displacement function has been chosen. In the
latter case, this becomes the zero-order

approximation.

mation value y/a= 1 is preserved).
It is to be noted that this is a simple Debye

form, whereas a much more complicated expres-
sion would result using the correct differential
equation (81). The advantage of the first-order ap-
proximation is then that we have obtained a simple
Debye-form approximation, which has the correct
first-order features of the response, while not hav-

ing had to solve the whole differential equation
(Bl), but only the simple case for ABC ——0.

One can try to find solutions of Eq. (Bl) by per-
turbation calculations. For the low-frequency
range the first term is small compared to the
second one so that as a zero-order approximation
7/p(x) =r/L (x) is obtained. By introducing

g=q0+g~ ——gL, +g& with g& &&qL, and simple in-

tegration, the first-order approximation g~ can be
found, which gives the expression for the damping.
The resulting factors ~ and y come out to be the
same as the ones given in Appendix A for the
low-frequency approximation.

In the high-frequency range the second term is
small and g0 ——ga is the zero-order approximation.
In this case, however, the introduction g =gH +q~
with g& « gH does not lead to a second-order ap-
proximation and to an expression for the modulus
if the drag is continuous (n = ao ). The high-
frequency perturbation calculation also works only
for the case of finite n (cf. Appendix C).

Another way of simplifying Eq. (Bl) is to con-
sider only average values and to replace Eq. (81)
by

(88)

Introducing this in Eq. (87) then leads directly to
the relaxation strength and time given by Eqs. (5)
with a =1 (as for the low-frequency approxima-
tion) and y= 1 (so that the high-frequency approxi-

APPENDIX C: RELAXATION EFFECTS
CAUSED BY DISCRETE DRAG

We consider a dislocation of length L~ with
p =n —1 equidistant pinning points separated by a
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distance Ld =Lzln as in Fig. 2, with each pinner
having the mobility m =D/kT. The continuous

dragging force 8, acting between the pinners and
all inertia effects are neglected. Then, each pin-
ning point experiences two types of forces [Fig.
2(c)].

(i) A force due to the adjacent pinning points oc-
curs if these have a different displacement than the
pinning point under consideration. It is represent-
ed by the vertical component of the line tension of
the in between dislocation segments for an external
stress o.=0 when these segments are straight and
form a polygon-shaped dislocation line. The force
acting upon the pinning point is then given by

F,=C(siny„+ i
—siny„)

Exact solution. The displacement g„may be
developed in a finite Fourier series. It is also
necessary to express bo.o in terms of its Fourier
components:

i)~= g o2~+isinv(2)M+1)ir/n,(n)

@=0
(C6)

where

det sin[v(2m '+ 1)n /n]
det sin[v(2m + 1 br/n]

(C8)

n/2 —1

bop bo()——y b'p2'~ s(i nv(2p+1)m/ n. (C7)
p, =O

The expansion coefficients b2&'+] are given as the
ratio of two determinants

C
(y -i —2y +y +) )

d
(Cl)

@=0,1,2, ..., ——1,
with y being the displacement of the ~h pinning
point.

(ii) The force due to the external stress
o =crpexp(itpt), which is given by

F =bLdo=bLdopexp(itot) .

This force is transferred to the pinning points by
the additional bowing out of the in between loops
which is completely in phase with the external
stress, since these loops are assumed to have no
drag acting upon them. The velocity of the vth

pinning point is then given by y„=m (F„+F ) or,
with Bd =1/mLd [Eq. (8)] by

CBqy„, (y„ i
—2y—,+y„+i) =bcrpexp(itpt) . , (C3)I 2

n&= 1~2~" ~ ~

n
m =0, 1,..., ——1,' ''2

2m +1, m+)M2m'+1= '
n/2, m =p,

and the rows and columns of the determinant are
given by v and m or m', respectively. The first
few coefficients are

n

" v=i
(CS)

represents the area of the polygon of Fig. 2(c). Fi-
nally, by introducing the real and imaginary part
of i) into Eq. (2) the modulus change and decre-

ment are obtained.

%'ith yo ——y„=0 this is a set of n —1 equations

corresponding to the equation of motion [Eq. (1)]
in the continuous case. With y„=rt~xp(itpt) the
form

C
lp)Bd7fv 2 (7/ —i 2' +rt +i)=bop (C4)

d

corresponding to Eq. (Al) is obtained. After solv-

ing for the different g, the average displacement

=1 (p=O),

b i =2/V 3 (p —O)

b(4) 2+v 2 (4)
b3 2~ ()M=0, 1),

('+ 3» b3"= (v3/2),

b5
' —— ( —2 +~3) (((4=0, 1,2),

3 3

s. (n) 1
c/2@+ ]n» & 2p+1
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Substituting Eqs. (C6) and (C7) into (C4) determines the expansion coefficients as

2 (n)
(„)

4C n sin[(2@+1)lr/2n]+ia]BLN /4c

Then, taking the average over all pinning-point positions [Eqs. (CS)], one obtains

n/2 —i

l)(n) = g a '2"„'+] cot [—(2p, + 1)m/2„)]
p=o

and

«2 —' (bo pLN /4C)(1/n)cot[(2p+1)n /2n]b2"„'+,
ri(n) =

[n sin (2((]+1)lr/2n +icQBLN/4c]

(C9)

(C10)

(Cl 1)

(I) First term-Fourier approximation

[y=yz(n), K=Kp(n)]. This is obtained by using
only the first term of Eq. (Cl1), as in the continu-
ous drag case.

(2) Lo]afrequency approximation
[K=KL, (n), y=yL, (n)]. For low frequencies again
a perturbation calculation (compare with Appendix
B) will be made. With 7)„=l) '+l)'„" one obtains
the equations

e=c/Q]BdLg nc/cQBd——LtI .

Then, with

(C16)

I

[r=l H(n) K=KH(n)]. A perturbation calculation
can be applied to Eq. (C4), leading to

])~+le(v~+] 27)y+T/y ])—]boplcoBs

(C1S)
where the expansion parameter is given by

2 ('qv-] —2rt& +'q& +])= b(TQ»
(0) (0) (0)

d

(&) (]) (i) ~

q (Tiv ] 2r)0 +—gv—+])=icQBd,
d

(C12)

( ) (0)+ (1)+. . .

one obtains

= —ibcro/coBd, &= 1,2, ...,n —1

(&) ~ (0) ~ (0) (0)(]g„+—] ~g +Tt, ])

(C17)

(C18)

(C19)

which are solved by the expressions

2
(p) bo'QLe

v(n —v),
2C

l a]Bdb cTQL~—

24C

(C13)

boo/coBd, v= 1,n —1

0 otherwise .

Thus, the zero-order displacement gives the decre-
ment and is the same for all pinners, while the
first-order correction giving the modulus is
nonzero only for the movable pinners adjoining the
strong pinning points. Then using Eq. (CS), one
finds

&([(n +1) (vn v)+v (n —v) ] . —

The average values according to Eq. (CS) are

—(0) ~d
(

2 1)
12C

(C14)

—l coBgf b 0QLd'
(n 1), —

120C

which, introduced into Eq. (2), lead to the yL, (n)
and KL (n) values listed in Table I.

(3) High frequency approx-imation

2nC . n —1 1

co BdL~
(C20)

Equation (C20) leads, with Eq. (2), to the values of
KH(n) and yH(n) listed in Table I. One sees from
Eq. (C16), that for fixed frequency, the condition
e & 1 will eventually be exceeded as n increases and
this approximation will then no longer be valid.
When this occurs, the behavior is closely described
by the high-frequency string limit described in Ap-
pendix A. There are thus three high-frequency
ranges. For frequencies just above the maximum
of the decrement when only the first normal mode
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of the string is excited, the first-term Fourier ap-
proximation is valid. The "high-frequency" limit
can be described approximately by
carr(n) &coB(n)Ltt/m c =n /4 T.he "high-
frequency string limit" is then given approximately
by 4(tort (n) (n l4 W.hether measurements are
begun at frequencies greater or lower than I/rr,
one always eventually moves into the high-
frequency string limit as n grows indefinitely. For
n =2 and 3, there exists no high-frequency string
limit since for these cases there is only one term in
the Fourier series, and the Debye representation of
the response is therefore exact for all frequency
ranges.

For high frequencies, the modulus defect (()tt is
proportional to (A/BdLtt )(y /tc) [Eqs. (3) and (5)].
At high frequencies, the only part of the displace-
ment that is in phase with the applied stress is that
part close to the firm pinning points since the velo-

city there is low. The modulus change must,
therefore, be proportional to the number of firm
pinning points as a function of n, i.e., PH cc A/L~.
But n =LN /Ld and can be varied either by chang-
ing L~ or Lz. Since for large n, yH/~H becomes
independent of n (see Sec. IV), one has

PH ~ Ay&/B'LNttH or PH ~ AyH/L~ for fixed Ld
(and therefore Be). Thus yH must increase linearly
in LN or n,. This is the dependence given in Table
I for large but finite n (coBLtt/C » n ). For the
limit of n~ oo, the string equation is valid, and
this contains n only implicitly through the depen-
dence of B~ and LN on n. The only function of
torz toBdL—N—/tr C which is then linear in n or L
for fixed Lz is Qcorz.

(4) Zero order ap-proximation. Again
tto(n) =ttt, (n) and yo(n)ltto(n) =ytt'/tcH"' by the de-

finition of the first-order approximation (cf. Ap-
pendix A).
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