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Rayleigh waves in anisotropic, prestressed crystals have been investigated by a com-

bination of lattice dynamics and elastic-wave theory. We derive an exact expression for
the Rayleigh velocity as the root of a cubic equation involving the elastic constants of the
prestressed material and the applied stress in the direction of propagation. Numerical

calculations show Shat surface modes are softened by uniaxial tension or compression

parallel to the direction of propagation. For the two-dimensional triangular lattice which

is elastically isotropic in the unstressed state, we have calculated the dispersion of the sur-

face waves by analytic lattice dynamics. We find the remarkable result that the frequency

of the surface waves, at all wavelengths, is proportional to sin(2md„/A. ), where 2d„ is the
nearest-neighbor separation along the prestressed, close-packed x direction. We have

made an estimate of the surface entropy which is in reasonable agreement with other cal-

culations.

I. INTRODUCTION

The study of surface waves in solids has generat-
ed an extensive literature in many branches of
physical science. After the pioneering worg of
Lord Rayleigh, ' early applications and theoretical
developments occurred in seismology. A recent
bibliography can be found in Ref. 3. Modern in-

terest in surface waves has been centered on tech-
nological applications to microwave semiconductor
devices. Recent theoretical developments have ex-
tended the elastic-wave theory to arbitrary direc-
tions of propagation in anisotropic crystals and
studied the effects of simple defects. Numerical
lattice dynamics have been used to study short-

wavelength surface modes and their effects on the
surface properties of crystals. "'

Our interest in Rayleigh waves arises from ongo-
ing studies of crack propagation and dislocation
dynamics. ' The motion of cracks and disloca-
tions in a finite-width strip results in the propaga-
tion of surface waves which are required to main-
tain the zero-stress condition at the free boun-
daries. According to the continuum theory of
dislocation motion, the Rayleigh velocity'is the
limiting velocity for a steadily-moving edge dislo-
cation in a finite-width slab. "

The classical two-dimensional close-packed tri-

angular lattice, with nearest-neighbor Hooke's-law

forces, is a convenient standard material for inves-

tigating the atomic dynamics of crack propagation,
dislocation motion, and plastic flow. s '0 The tri-

angular lattice is a mechanically stable, elastically
isotropic lattice which can support longitudinal
and transverse waves. With nearest-rieighbor
Hooke's-law forces it has a close connection to the
continuum mechanics of materials undergoing
plane-stress or plane-strain deformation. ' This
connection provides a basis for relating the results
of atomic simulations to the established continuum
theories and- suggests that this material is a useful

standard for atomic studies of nonlinear solid
mechanics. Its thermodynamic properties over a
range of densities are now well characterized by a
combination of lattice dynamics and molecular
dynamics.

It has been found desirable, especially for soft
linear interparticle forces, to carry out atomic
simulations of dislocation motion under slight
compression rather than at the stress-free density
in order to inhibit vacancy formation. In connec-
tion with these simulations, we have calculated by
lattice dynamics the surface waves in a semi-
infinite triangular lattice which has been subjected
to a longitudinal stress parallel to the close-packed
surface row. The boundary conditions require that
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any nonzero forces are parallel to the surface.
At long wavelengths, surface waves can be

described by continuum elasticity theory. In this
paper we describe calculations of the Rayleigh
velocity in stressed crystals. The essential modifi-
cation of the anisotropic stress-free theory is to in-
clude the eAects of stress on the coeAicients that
appear in the equations of motion. ' Numerical
calculations of the dependence of the Rayleigh
velocity on initial stress have been carried out for
some idealized but physically realistic crystals.

0
E=O

=2

FIG. 1. Crystal geometry of the triangular lattice
under tension. The top row of atoms is a free surface.
The interplanar spacing d„ is one-half the interatomic
spacing in the close-packed direction. The zero-force
boundary condition requires that d„+d =do.

II. THEORY OF SURFACE WAVES
IN STRESSED SOLIDS

For isotropic materials, the long-wavelength sur-
face waves are linear combinations of longitudinal
and transverse waves. At shorter wavelengths and
in anisotropic solids this is no longer true. Since
the lattice dynamics and continuum mechanics cal-
culations have many features in common, it is in-
structive to describe both calculations in parallel,
thus highlighting the similarities and diAerences.

For simplicity we will consider only surfaces
that either are mirror planes or contain mirror
planes. In the latter case the propagation direction
must lie in the mirror plane. On the basis of the
known anisotropic theory we then expect the Ray-
leigh wave to be a plane wave perpendicular to the
surface. In our calculations we take the xz plane
to be the surface plane and the x axis as the direc-
tion of propagation. The positive y axis penetrates
the elastic half-space. The elastic constants defined
in Eq. (A9) in the Appendix refer to this coordi-
nate system which is not necessarily coincident
with the usual choice. The symmetry requirements
imply that C~ and C„yyy are zero.

For a monochromatic wave traveling in the x
direction, the displacements can be written as

(u, v)t z
—(U]p) exp[ qI+i8(—I+2J) i cot]—, (la)

(u, v)=(UiV) exp( —av~ y+ikx idiot) . —(lb)

In Eq. (la) the atoms are labeled as shown in Fig.
1; the wavelength A, =2nd„/8. In Eq. (lb),
vp: Syyzz /Syyyy is a Poisson's ratio for plane strain
in the xy plane. The constants S~t]rs [see Eq. (Al)]
are derivatives of the stress with respect to unsym-
metrized first-order strains, and are related to the
adiabatic elastic constants described in the Appen-
dix. For the triangular lattice vp =d„/dy so
~d„=q and kd„=8. At long wavelengths, all the
quantities in Eqs. (la) and (lb) are real, corre-
sponding to a wave propagating in the x direction
that is exponentially damped in the y direction. At
short wavelengths, q, and consequently U and V,
are complex, corresponding to a damped periodic
disturbance in the y direction.

The equations of motion for the two problems
are

—(m/E)upp — E~/I]. =(2u]e ——up] —u]1 ] )+(d /dp) (4um] —u]p —u ]p —u] ] —u ]1')

—(d/dy/dp)(v10+0 —10 "1—1 "—11)
2

(2a)

—(yn/g)v'00 — F~/K =[1—(dp/—2d„)](2vpp —vo] —vo —] )+(d~/dp) (4vpp —v]p —v ]o —v] ] —v ]1)

—(d„dy/do)(u]0+u ]o—u] ] —u ]]),
B2u $2u 82v

pu =S,+S~~, +(S~+S~x)
~ ~

(2b)
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=cos8(1 —coshq ) —R ' sin8 sinhq,

(m/K)(co coT)—
4(dy/dp)

(3a)

=cos8(1 coshq ) +—R sin8 sinhq,

p(co —coL )
2 2

PhL —— —a —A)R k~,
vpSzyzy

p(co —coT )
2 2

phd —— = —a +62Rka,
Syyzz

(3b)

where coL and coT are the frequencies of pure (q or
K=()) longitudinal and transverse waves parallel to
the surface, and R =v& U/V. The frequencies coL

and mz are

(m/K)coL ——2(1 —cos28)+4(d, /dp) (1—cos8),

(m/K)coT ——[2—('dp/d„)](1 —cos28) (4a)

+4(d~/dp) (1—cos8),
2 2pL =Szzzzk
2 — 2= 2

pco p
'

Syzyz k Szyyz k o

The quantities h~ and 52 are ratios of stress
derivatives,

(S ip +S~i» ) /S»i, y

(4b)

where F is the force on particle (0,0), K is the force
constant, and p is the mass density.

Since there is an initial stress, the antisymmetric

pcs of the strain tensor corresponding to an infin-

itesimal rotation also change the stress tensor. The
symmetry of the stress tensor requires that S ~&~ is
symmetric with respect to permutation of t;he first
two suffixes, i.e., S ~~ ——S~~. The assumption of
mirror symmetry in the xz or yz planes means that

S~, S~~, etc., are zero.
Using the displacements given in Eqs. (1) and

the equations of motion from Eqs. (2), we obtain
two dispersion relations in each case which can be
written as

(m /K)(co coL )—
4(d„/dp)

Surface waves can be constructed from linear corn-
binations of two waves with the same wavelength
and frequency but different damping factors. It
will be seen that a particular linear combination sa-
tisfies the boundary conditions.

In the atomic calculations the boundary condi-
tions require that the forces between particles in
the surface row (I =0) and hypothetical particles
in the row above it (I = —1) vanish. In the con-
tinuum calculations the normal and shear stresses
must vanish at the surface, i.e., cozy Hyy:0 at
y =0. (See note added in proof. ) The boundary
conditions can be expressed as

P /K =(d»—/dp) (2upp —u ip
—u ii )

—(d»d~/dp)(v ip —U ii )=0,
(7a)

F~/K =(d~/—dp) (2upp —v ip —. U ii )

—(d»dy/dp)(u ip
—u ii) =0,

au + au 0 au + av 0ay+a» ' "a»+ay (7b)

The boundary conditions cannot be satisfied by a
single wave that has the dispersion described in
Eqs. (3). We therefore take a fixed linear combina-
tion of the two waves that have the same wave-

lengths and frequency. The relative amplitude of
the waves is described by the ratio 8'= Vi, /V2, and
from the boundary conditions we have

R2(e 'cos8 —1)+e 'sin8

Ri(e 'cos8 —1)+e 'sing

R2e 'sin8 —(e ' cos8 —1)

R.ie ' sin8 —(e ' cos8 —1)

triangular lattice [Eqs. (A13), (A14)], it can be seen
that Eqs. (3b) and (4b) are the long-wavelength
limits of Eqs. (3a) and (4a) for this material.

The dispersion relations can be combined to el-
iminate R, resulting in a quadratic equation in
coshq or ~2:

cosh q + [(b L+ b T ) cos8 2—cos 8] coshq

+[bLET—(bL+ET) cos8

+cos 8—sin 8]=0, (6a)

K +[P(EL+ET)+6152k ]K +P KLET=O . (6b)

b,2 ——
(S»y»y +Si,y»» ) /Syi, »» .

Using the expressions for S p~ appropriate to the

R 2]c2+k Ryk —~2

R iz]+k R ik —gi
(8b)
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Thus, in order to have a surface-wave solution it is
required' that

(1+R I R2 )(e ' —e ') sin8

—(R& —R2) [e 'e ' —(e '+e ')cos8+1]=0,
(9a)

(1+R)R, )(s.) —I&2)k —(R, —R, )(x)a,+k') =0 .

Since quadratic equations in co and either H or k
can be deduced for R and q or x from the disper-
sion relations given in Eqs. (3},the conditions ex-

pressed in Eqs. (9) are sufficient to determine the
frequency of the Rayleigh waves as a function of
wavelength. The algebraic steps required to deter-
mine the exact form of the dispersion relation are
outlined below.

An expression for the ratios R
&

and R2 can be
obtained from the second equation of the pairs (3a)
and (3b} and substituted into the surface condition
Eqs. (9). In the continuum case there is obviously
a common factor (K~ —Ic2); in the atomic case a lit-
tle manipulation is required to show that
(e ' —e ') is a common factor. Removing these
factors gives

b r +(coshq~ coshq2+sinhq ~ sinhq2 —2 cos8+ 1)hr+ sinhq~ slnh92

+(coshq~ +coshq2 —coshq~ coshq2 —sinhq, sinhq2 —1)cos8=0, (10a)

(P~T) +(+1++2+~2k +~2+1+2)(P~T)+~2(~2 )k ~1 2 (~2 ) 1+2 (10b)

coshq and a can be most easily eliminated from Eqs. (10}by using the expressions for the sums and prod-
ucts of roots of quadratic equations in Eqs. (6). .Ehminating the square-root term gives an equation for the
frequency of surface waves as a function of wavelength,

I 6z +[2cos 8 2cos8 —cos8( br—+hr, ) +hz bz, ]br —b r51.cos8]

—I(hz EL, )[4cos 8 2cos—8(hr+&~ ),+ hz &1.]](1 cos8—+hr) =0, (1 la)

[(par)(phI„)+(b] —1)k (par)] —[(p&r)(pbL, )][(p&r)+(&2—1)k ] =0. (1 lb)

The reduction of these equations to more tractable expressions is som'ewhat diAerent in the two problems, so
they will be considered separately, taking the atomic case first.

Equation (1 la) can be extensively factorized, with the result

hr(b z
—bi )(hr —2cos8)[2(hz —cos8)(bl —cos8)+(b r +bi —2 cos8)(1+cos 8)+2 cos 8]=0 . (12)

Ql (dold )[ , (m——IK)aP si—n8]—
=EL +1—cosH,

Qr ——(do/dy )

)( I , (m/K}co2 [1—(do/2—d„)]sin 8]—
=h, ~+1—cosH,

(13)

and the quadratic term in Eq. (12) becomes

There are four solutions of this equation, and the
one corresponding to a Rayleigh wave is most easi-
ly found by considering the long-wavelength limit
at the stress-free density. In this case, the lattice is
elastically isotropic and cL ——3cr. The Rayleigh
velocity is given by ca ——(2—2/v 3)cz, and from
this it can be seen that the required solution is a
root of the quadratic term in Eq. (12). The final
substitution is

2QIQI (Qr+QI. ) sin—8=0 . (14)

This equation only has solutions if m ~ sin H.

Since the wavelength A, =(2nd /8), we have the re-
markably simple dispersion relation for surface
waves in a triangular lattice,

co=(ca /1„)sin8,

which is the same form as the dispersion relation
for a nearest-neighbor one-dimensional chain. This
dispersion relation has been correctly deduced for
the isotropic stress-free lattice from numerical cal-
culations.

The Rayleigh velocity is the root of a quadratic
equation,

(m IKd0)ca~ 5(d„/do)2 (gg„/gfs)=—
[4(& I&0)'+(&,ld—o)'

2(d„ldo) +(d„ldo) ]'i2 . (16)
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2 2
'YL:Syyyy(pcR Sxxxx') ISxyyx

=(CL) (c„—CL )/(CT)j. 2 2 ll2 II 4

2 2
j T =Sxyxy (pCR xyyx ) xyyx

= (CT ) (CR —CT )/(CT )2 2 II2 . II 4

(18)

2 2
S2 =Syyxx /Sxyyx ~

where the sound speeds are the same as in Eq.
(A7). Then Eq. (17) can be written as

YL(YT+Sl ) YT(3 L+S2)

It is shown in the Appendix that for materials
with pairwise-additive forces at low temperatures
(compared with the melting temperature), S„y„y
=S~z, i.e., S~ ——S2. This is a statement of the
Cauchy relations and as a result the Rayleigh velo-

city if a root of the quadratic equation yl yT
——S i

and is completely determined by the four sound
speeds parallel to and perpendicular to the surface:

II2 II2
CR 2 (CL +CT )

——,[(cL —CT ) +4(cT) /(cL ) ]' (20)

Using the expressions given in the Appendix for
the sound speeds appropriate to the triangular lat-

1

At the stress-free density (d„/do) = —, and

(m/Kdo }cR——( —,)(3—v 3), in agreement with pre-
vious results. At long wavelengths co=c~k and
from Eq. (11b), using the results of Eq. (All), we
obtain a cubic equation for c~ ..

(PCR —
Sxyyx ) [Syyyy (PCR —Sxxxx )+Syyxx ]

2
Sxy—xy Syyyy (pcR —Sxxxx )

X [(PcR —S„yy„}+Sxyxy] =0 . (17)

This equation has the same structure as. the fre-

quency equation derived by Hayes and Rivlin' for
the propagation of Rayleigh waves along a princi-
pal stress direction of an elastically isotropic ma-
terial. Other authors have considered Rayleigh-
wave propagation in stressed isotropic materi-
als, '' ' but some of th~ do not include the ef-

fects of an initial stress on the elastic constants. ' '
The other authors consider small initial stresses by
including the third-order elastic constants. '

It is sometimes convenient to express this equa-
tion for the Rayleigh velocity in terms of the ratios

III. RESULTS

A. Rayleigh velocity of stressed crystals

For a given force law the Rayleigh velocity
depends on the crystal structure, the orientation of
the surface plane, the direction of propagation, and
the applied stress, which can only be in the samp

plane as the surface. Though only the component
of stress in the direction of propagation 0. enters

directly into the calculation of the Rayleigh veloci-

ty, the velocity also depends on the effects of o
and 0. on the elastic constants.

To illustrate these effects we have calculated the
Rayleigh velocity for the (100) plane of a face-
centered-cubic lattice, for propagation in both the
[100] and [110]directions. The stress in the xz
plane is hydrostatic, i.e., o =0 =0. . For sim-

plicity we consider only nearest-neighbor pairwise-
additive forces. We have used the soft harmonic
potential

PH(r) = , Kdo2[(r Ido) 1—], —(22)

and the hard and very anharmonic Lennard-Jones
(12-6) potential,

A.J(&)= Kdo[(do«)' —2(do/&) ] . (23)

The sound speeds as a function of stress are shown
in Table I for the Lennard-Jones potential, and
graphs of the Rayleigh velocities are shown in Fig.
2.

The Rayleigh velocity has qualitatively the same

tice, the expression for the Rayleigh velocity given
in Eq. (16) is obtained again.

In an unstressed material the stress derivatives
are equal to the elastic constants, and the equation
for Y=pcR /C~ reduces to (in Voigt notation)

Y (Y—C11/C44) = (C22/C44)(Y —1 }

X [Y—C11/C44+ C12/(C22C~)]

(21}

which is identical to an expression given by
Dobrzynski and Maradudin. '

The damping factors q and a can be determined
from the roots of the quadratic equations (6) once
the Rayleigh velocity is known. Then, from Eqs.
(3) and (8), the displacement ratios R1, R2, and 9F
can be obtained, which together with 0 and q or ~
describe the displacements produced by a surface
wave.
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TABLE I. Sound speeds in a face-centered-cubic lattice with nearest-neighbor Lennard-
Jones (12-6) forces. The stress o is applied hydrostatically in the surface xz plane. The
nearest-neighbor sparing in the surface plane is d. The sound speeds are in units of
(scdp/m)'

d/dp 0 V/scdp

II2

[100] [110] II2
CT

l2
Cl.

l2
CT

2

[100] [110]

0.88
0.89
0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10

—0.4139
—0.3394
—0.2765
—0.2233
—0.1784
—0.1406
—0.1086
—0.0817
—0.0591
—0.0401
—0.0242
—0.0110

0.0000
0.0091
0.0166
0.0227
0.0276
0.0316
0.0347
0.0371
0.0388
0.0401
0.0410

3.8599
3.3564
2.9279
2.5634
2.2535
1.9902
1.7668
1.5777
1.4180
1.2836
1.1711
1.0774
1.0000
0.9367
0.8857
0.84S4
0.8144
0.7915
0.7757
0.7662
0.7623
0.7632
0.7684

7.6839
6.5816
5.6403
4.8358
4.1481
3.5598
3.0566
2.6262
2.2581
1.9434
1.6747
1.44S4
1.2S00
1.0839
0.9430
0.8240
0.7237

.0.6398
0.5699
0.5123
0.4653
0.4276
0.3978

0.0607
0.1390
0.20S4
0.2619
0.3098
0.3503
0.3846
0.4135
0.4378
0.4581
0.4750
0.4888
0.5000
0.5089
0.5158
0.5208
0.5243
0.5263
0.5270
0.5266
0.5250
0.5224
0.5189

1.5021
1.4590
1.4161
1 3733
1.3308
1.2885
1.2463
1.2045
1.)629
1.1217
1.0808
1.0402
1.0000
0.9602
0.9208
0.8819
0.8435
0.8055
0.7681
0.7312
0.6949
0.6592
0.6241

0.4746
0.4784
0.4819
0.4852
0.4882
0.4909
0.4932
0.4952
0.4969
0.4983
0.4992
0.4998
0.5000
0.4998
0.4992
0.4981
0.4967
0.4947
0.4924
0.4895
0.4862
0.4S23
0.4780

0.0420
0.11S8
0.1767
0.2263
0.26S8
0.2961
0.3182
0.3325
0.3400
0.3411
0.3370
0.3285
0.3170
0.3035
0.2893
0.2751
0.2615
0.2491
0.2380
0.2283
0.2200
0.2130
0.2072

0.0513
0.1273
0.1909
0,2438
0.2871
0.3220
0.3491
0.3689
0.3816
0.3873
0,3857
0.3765
0.3596
0.3352
0.3043
0.2685
0.2301
0.1912
0.1537
0.1189
0.0874
0.0597
0.0358

dependence on compressive stress as the velocity of
transverse waves propagating parallel to the sur-
face. The reason for this can be seen by expanding
the square-root term in the expression for the Ray-
leigh velocity given in Eq. (20),

ca =(cr) —[(cT}]/[(cL, ) (cz, —cz' ))+2 lt2 I 6 L 2 tt2 tt2

(24)

The second term is typically —10 ' K/m and de-

creases as the crystal is compressed. In fact c~ is a
rigorous upper bound to the Rayleigh velocity, as
can be seen from the requirement that the product
of the roots a~a2 in Eq. (6b) is positive. The
transverse sound speed cT decreases monotonicallyIt

under compression until the onset of a mechanical
shear instability. Consequently all the Rayleigh
velocities have the same qualitative behavior under
compression, vanishing just before the onset of this
shear instability. The maximum compressive
strains are about' 10% for the Lennard-Jones poten-
tial and about 40% for the unrealistically soft har-
monic potential. The stresses required for signifi-

cant surface-mode softening are generally large, i.e.,
10 —10" N m, but these are quite easily realized
in shock-loaded solids.

Under tension the Rayleigh velocity is no longer
governed by cz-, and in anharmonic crystals thefl

velocities of waves propagating in the [100] and
[110]directions are qualitatively different. Surface
waves in the [110]direction propagate a little fas-
ter than those in the [100] direction when the lat-
tice is compressed, but under tensile stress the velo-
city decreases very rapidly. The softening of
modes under tension is qualitatively difFerent from
the compressive case in that it is not directly asso-
ciated with a bulk instability, although the longitu-
dinal sound speeds are about one-half of their
stress-free value. In a stress-free face-centered-
cubic crystal there is a softening of the surface
modes when C~t -C&2 [Rq. (21)], which occurs, for
instance, near the structural phase transition in
N13Sn (Ref. 20). It would seem that in a stress-
free crystal, surface-mode softening is always asso-
ciated with bulk-mode softening but this is not
necessarily true in a stressed crystal. The strains
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0.8—
CT

C,(IIO)
CR(IOO)

bastens the onset of the instability. For tensile
stresses the results are quite different, which is to
be expected since his calculation neglects the
softening of the longitudinal modes.

B. Dispersion and displacements
in the triangular lattice

0.0

0.8—

I

-0.2
I I I

-O. I

va. oz(Kd ')
I

0.0

CT

CV

C40
0.4—

E

CR(IOO)

CR(IIO)

0.0
I I I I I

-0.4 -0.2
VO 0/(Kd ~)

FIG. 2. Sound speeds in a face-centered-cubic lattice
as a function of the applied stress in the surface plane
o . The results. are qualitatively the same for uniaxial
stress o =o. and hydrostatic stress o~=o~=a . The
results for hydrostatic stress are shown here. (a) Har-
monic forces, (b) Lennard-Jones forces.

I

0.0

involved are again of the order of 10%, which is
slightly less than the theoretical yield strain of the
Lennard-Jones crystal but this requires much less
stress (-10s Nm ) than equivalent compression.
In the earth's crust, the typical deviatoric stresses
of about 3)& 10 Nm might change- the Rayleigh
velocity by a few percent. For the purely harmon-
ic potential, the surface modes do not soften under
tension.

It is interesting to compare these results with the
calculations of Brunelle, ' who considered surface-
wave propagation in stressed isotropic materials,
ignoring the effects of stress on the elastic con-
stants themselves. He found an essentially linear
relation between the square of the Rayleigh veloci-
ty and the unaxial stress leading to an instability at
large compressions, which he suggested might pro-
vide mechanisms for earthquake initiation and
prehistoric land-mass formation. Our results for
compressive stresses are in qualitative agreement
with his, though the change in elastic constants

At short wavelengths, surface waves can be
described by numerical lattice dynamics. The tri-
angular lattice is of some interest since it encom-
passes many of the features of surface-wave pro-
pagation in three-dimensional crystals, but is suffi-

ciently tractable for us to find an analytic solution
to its dispersion relation. We were able to show
that the dispersion relation was a remarkably sim-

ple sine wave, regardless of the initial stress.
For a given wavelength and frequency, the dis-

placements are determined, to within an arbitrary
amplitude, by the damping factors q or ~ and the
ratios R ~, R2, O'. We have computed the displace-
ments corresponding to various values of 8=kd„
for a triangular lattice subjected to a range of long-
itudinal stresses. Since the displacements are qual-
itatively independent of the applied stress, we show
only a selection from the stress-free density in Fig.
3. For small values of 8 the damping factor q is
real and the wave-like displacements are similar to
those deduced from continuum mechanics. The
damping of these waves is relatively slow, there be-

ing noticeable displacements nine layers into the
crystal for 8=n /20 As 8 .incr.eases, the damping
of the displacements becomes more rapid and at
sufficiently large values of 8, about m/8 at the
stress-free density, q becomes complex. There is no
qualitative change in the displacements during the
transition from real to complex values of q, which
takes place at progressively larger values of 8 as
the lattice is compressed.

When the wavelength is of the order of the in-

teratomic spacing, i.e., 8=1, the displacements are
no longer wavelike. At the highest frequency when
8=rr/2 the displacements in successive rows alter-
nate between purly y and purely x components.

C. Surface entropy of the triangular lattice

In the bulk crystal, waves propagating parallel to
the close-packed direction can be separated into
longitudinal and transverse modes. In the presence
of a free surface, half of these modes become sur-
face waves and the other half form some unknown
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bulk excitations. An estimate of the surface entro-

py can be obtained by assuming that these latter
excitations have the same entropy per mode as the
bulk crystal. The surface entropy per atom S, is
then given by (in units of ka)

Sg ——(In(tot toy/top) )

—( In(cog /top) ) —( In(cog /Np) ) (25)

where cop ——(K/m)'~ . The expressions for the
longitudinal and transverse frequencies at the
stress-free density can be obtained from Eqs. (4a).
The average entropy per mode in the bulk lattice
has been calculated by Huckaby, ' and combining
these results gives

S,= —, ln3 ——, In(3/4 —v 3/4)

—0.412 6784 0.711 . (26)

The Brillouin-zone average is 0(0& ~ and the
required integrals, which are of the form

n ' I In(o+bcos8)d8 are listed in Ref. 22.
0

This result (S, =0.71) is in reasonable agreement
with numerical lattice dynamics (S, =0.66) and
cell cluster theory (S,=0.62).

The dominant contribution to the surface entro-

py comes from the region of the Brillouin zone
around 8=m. where co~ ——0 and coLcoT is a max-
imum. This suggests that a calculation based on
the low-frequency elastic waves will be a very poor
approximation to the surface entropy.

Note added in proof. The boundary conditions
require that the stressers in a co-moving, or
Lagrangian, coordinate system vanish at the sur-
face. Equation (7b) only involves the symmetric
components of Sap'.
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FIG. 3. Surface-wave displacements in a triangular
lattice at various reduced wave vectors H=kd . The
wavelength dependence of the displacements is discussed
in the text.

APPENDIX: STRESS DERIVATIVES,
SOUND SPEEDS, AND ELASTIC CONSTANTS

In this section we consider the relationships be-
tween the stress derivatives Sap' that appear in
the expressions for the Rayleigh velocity, Eqs. (17)
and (20), the speeds of longitudinal and transverse
sound waves, and the adiabatic elastic constants.
These relations have been discussed by Wallace, '

but we use a slightly different approach and con-
sider mainly the case of initial stresses that are
purely in the surface xz plane.

Hooke's law for a prestressed material is

0
Nap —cTap+ Sap' hays (A I )

+eap=&ap+eap~ cap= 2 (&ap+epa) ~ (A2)

and Hooke's law Eq. (Al) becomes

0 + ++ap= +ap+Sapyf~yf+Sapyf~yfi ~

Sapys= z (Sapys+Sapsy) ~

(A3)

If the initial stress is nonhydrostatic, it is rotated
by the antisymmetric component of the strain ten-
sor. Thus S p„~ can be obtained from the rotation-
al properties of the stress tensor. Consider a ma-
terial that is prestressed in the xz plane and sub-

jected to an antisymmetric strain —F„y Ey

This corresponds to an infinitesimal counter-
clockwise rotation e about the z axis. ro first or-
der only the shear stress is affected,

o~ = —(S„y„y—S„yy„)e=o. (A4)

and from this it follows that S~„=—S~~ = —,u
with all other components of Sapys (not including
z) being zero. This is in agreement with the gen-
eral expression in Ref. 14:

o o 0 0
Sapys =

2 (&as~py &ay6ps+&p56ay &py6as) ~

(A5)

The linearized equations of motion describing

where the coefficients Sary~ are derivatives of the
stress with respect to unsymmetrized strains
evaluated at the initial prestressed state. The strain
tensor e p ——Bu /Bxp can be split into symmetric
and antisymmetric parts,
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elastic-wave propagation in a prestressed material
are

8 Qy
pua ——Vscrap ——Sap„~ Bxpox g

(A6)

It is sometimes useful to relate the stress deriva-

tives Sa~& to the adiabatic elastic constants Capyp

which are usually defined as derivatives with

respect to symmetric Lagrangian strains,
1

') p= i("p+'p +'y 'rp) (A8)

since the energy is rotationally invariant. For a
small but finite strain, the internal energy can be
expanded in a power series of Lagrangian strains,

1p+( a p) g p+ —,(VC prs) i) pi)

(A9)

where the subscript 0 indicates the initial pre-
stressed state. A11 the strains are measured from
this state. The relation between the stress and the
internal energy can be obtained from a considera-
tion of the work done during a finite deformation'
with the result

Vo'~p= +e~p +6~ +0(E )+aE aE aE
9aP 9' Qae

The symmetry properties of the coefficients Sap'
are not the same as those of the elastic-wave pro-
pagation coefficients derived by Wallace. ' This is
due to the differences between differentiating in Eu-
lerian and Lagrangian coordinate systems, but it
will be shown that the equations of motion for u

are exactly the same, as would be expected in the
linearized case. Some of these coefficients are
directly related to the propagation velocities of
bulk acoustic waves parallel to [k =(k,0,0)] and

perpendicular to [k =(O,k, O)] the surface:

II2 i 12
p S~~~~ =cL, p S~——cL

(A7)

t(2 ) 12
p Sxyyx =cT, p Sxyxy

where we have used the relation V = Vo(1+@«).
This agrees with the stress-strain coefficients de-
rived by Wallace, ' but is different from the
elastic-wave propagation coefficients A p„s
=a ps5~„+C~p„s for the reason discussed earlier.
The equations of motion, though, only require a
symmetric combination of Sa~~+Sapyp:Hapl
+A ~~ and are thus identical.

If the solid is at sufficiently low temperatures,
the fluctuation contributions to the elastic con-
stants can be ignored. If, in addition, the forces
are pairwise additive, the Cauchy conditions are sa-
tisfied and the elastic constants are symmetric with
respect to any permutation of suffixes. The expres-
sion for the Rayleigh velocity then reduces to the
root of a quadratic equation (20). In general, the
static lattice contribution to the stress and adiabat-
ic elastic constants for pairwise additive forces is

raf PVa p
——g (rP'), r =r~ r~~-,

t)J r

(A12)

VC~~=g (r P" rP') . —

0
yyyy yyyy»~

0
Sxxyy +c xx =Syyxx =Cxxyy =Cxyxy

0=S
yxy =Sxyyx oxx

(A13)

These expressions together with (Al 1) were used to
calculate the stress derivatives in the triangular and
face-centered-cubic lattices. In the case of the tri-
angular lattice the stress derivatives were also cal-
culated from the velocities of elastic waves using
the equations of motion (2a). The results agree,
and are summarized below,

The stress derivative is then given by

(A 10) Vo =Kdo[4(d /do) —2(d„/do)],

VC....=Kd0 [2(d„/do)+ 2(d„/do) ],
0'aP 0 0 0

Sapys = =c ag5~+(Tgg5ay —c ap5g+Ca
BE'~ 0

(Al 1)

(A14)
VC~=Kdo[2 4(d, /do) +2(d„/d—o) ] .

VC~ r =Kdo[2(d /do) —2(d /do) ]
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