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Long-range scattering of electrons by phonons at metal surfaces
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We examine the inelastic scattering of electrons by phonons at metal surfaces. A

dielectric-function formulation for calculating the loss probability is first summarized.

Then, using the Bohm-Staver description of a metal's response, we derive formulas for the

spectra of single-phonon losses near the specular electron beam, Both bulk and surface

phonons contribute. Finally, we compare the thermal diffuse scattering predicted in our

model to that due to impact scattering. The former can dominate the latter at low

incident-electron energies.

I. INTRODUCTION

There is at present considerable interest in the ine-

lastic scattering of low-energy electrons from sur-

faces. ' The spectra allow one to study a wide

range of surface excitations, extending from vibra-

tions of adsorbed species to collective motions of the
bare substrate. As has been emphasized by Mills,
one may understand the excitation of' all such losses
as due (at least in part) to a common mechanism:
the long-ranged Coulomb coupling between the

charged probe and the electric field fluctuations as-

sociated with the surface modes. There is, of
course, additional coupling from short-range scatter-

ing as the probe bounces off the surface, but its de-

tailed calculation is quite diAicult and we shall gen-

erally neglect it here. By limiting ourselves to the
effects of the long-range interaction and by further

treating it as a weak perturbation, we can study a
wide variety of systems in a common fashion, allow-

ing us to compare the strength and spectral struc-

ture of various loss processes. In particular, we can
theoretically examine modes that are not easily ob-

served and compare their characteristics with modes
that have often been seen.

Our specific interest in this paper is with phonons
on clean metal surfaces. We use a very simple
model for their description and focus on its implica-
tions for the long-range scattering of electrons out-

side the metal. In Sec. II we derive for complete-
ness our basic approach, which is based on a linear-

response treatment of the loss process. This
dielectric-function approach has been used many
times before and is useful in providing a clear and
common physical picture for a host of model sys-

tems. We apply the formalism in Sec. III to a
Bohm-Staver model of phonons at metal surfaces,

deriving the single-excitation loss spectra of low-

energy electrons to both bulk and surface phonons.
Since such losses involve energies near the limit of
present-day resolution, we also examine in Sec.- IV
the thermal diffuse scattering implied by these exci-

tations, both when excited by the long-range
mechanism of interest here and when excited by
short-range impact scattering.

II. DIELECTRIC-FUNCTION FORMULATION

Now we briefly describe the spirit of our ap-

proach. As noted above the basic method is not
new —see Ref. 1—nor does it directly yield a gen-

eral result. Its advantages are that it is easy to ap-

ply, that it provides a common perspective, and that
with only a little extra interpretation it can be ex-

tended to treat some of its omissions.
The basic scheme is the following. One imagines

that the external charge that is to be (weakly)

inelastically scattered follows in lowest order its

classical specular trajectory. From the point of
view of the metal, this prescribed trajectory of the
external charge represents a dynamic perturbation
to which the metal responds. We treat this response
to linear order, calculating the induced charge den-

sity in the metal and the induced force F that it ex-
erts back on the external charge. The net effect is

that the external charge actually loses energy at the
rate

d8'
v(t) F(t)—

dt

where t is time and v is the velocity of the external
charge. As t runs from —oo to + op, the external

charge completes its specular trajectory and its total
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energy loss is

W = —f dr v(t). F(t) . (2)

We will show below that solving the linear-response

problem using Fourier analysis allows us to reex-

press (2) as

W = f de f d g RcoP(Q,co), (3)

where Q is a two-dimensional vector in the plane of
the (smooth) metal surface and co is a frequency.
With W written as in (3), we may interpret

P(Q,co)d Q d co as the probability that the external
charge is inelastically scattered into the range of en-

ergy losses between %co and A'(co + d co) and into the
range of momentum losses parallel to the surface
between fiQ and fi(Q + d Q). Specifying co and Q
completely determines the actual kinematics of an
electron at the detector.

As is clear from this description the scattering
analysis is not self-consistent. Yet if the losses are
small, this lack of'self-consistency should only be a
higher-order correction to P. Hence the theory we
are constructing only applies to small energy losses
and near-specqlar scattering. From the point of
view of excitations in the metal it only describes the
excitation of single quanta in a system initially in its
ground state. One may construct more general
theories ' ' that allow multiple losses or gains
and, in addition, treat the external charge quantum
mechanically. However these theories in the limit
of weak scattering reduce essentially to what we use
here, so we prefer to continue with our simple but
limited approach.

To derive an explicit formula for the loss proba-
bility function, P(Q,co), we need the results of linear
response. Imagine the metal is located in x & 0
and describe the external charge's trajectory by

x(t) = (U
i
t i,Vt) (4)

where v sgnt and V are the components of velocity
perpendicular and parallel, respectively, to the sur-
face. Here we ignore any refraction of the trajecto-
ry due to ari image potential and also assume specu-
lar scattering occurs just outside the metal. This
last assumption is the extent of our treatment of
short-range impact scattering. Since specular
scattering is in general not the only possible scatter-
ing process at the surface, we should view our
derived P as a relative probability.

The perturbing potential the metal sees is

or

y,„((Q~;c0)= ' e&"
Q gv +(Q V —co)2

(5)

where e & 0 is an electron's charge and x lies in the
metal, i.e., x & 0. In the second line we have car-
ried out a Fourier transform in order to simplify the
response calculation. Presuming a smooth metal
surface, we find that the metal's response leads to
an induced potential outside the metal of

(Q )
2me g„E(Q,a)) —1

QeQ, co) + 1

2gv

Q~U + (Q V —co)
(6)

where x ) 0 and

dq 2 2
e( q,co), (7)

1 2

VQ,~) ~ ' Q'+ q'

F(t}= —e VP;„g l -„-„(,)

with q = (q,Q). In deriving this result we have re-
tained only the linear response and, furthermore,
have used a common approximation for it wherein
the surface response of the semi-infinite metal is ex-
pressed in terms of the bulk dielectric function
e( q, co} via (7). Since we ignore retardation eA'ects, e
is the metal's longitudinal dielectric function. The
approximation that leads to (7) has been labeled

quasiclassical or step density. It arose originally in

surface-plasmon theory, but has had a widespread
use in surface response problems since then.
Although it has several interpretations, we prefer to
view it as an approximation to the susceptibility that
appears in the random-phase integral equation, '

roughly replacing a surface-sensitive kernel by its
bulk limit. Note that if one can ignore the q
dependence of e, then Y has no Q dependence and

7(co) = e(co). The derivation of (6) from (5) in this

case is trivial.
To complete our formal development is now

straightforward. We calculate the induced force
acting back on the external electron,

,„,(x,t) = e

[x —x(t)
[

and then integrate (2). The result implies (Im
denotes "imaginary part")
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P(Q, co) =
n fig g2u + (Q V —co)'

and expand as no, d ~0,
e(Q,co) = (1+ 4rrnpa)/gd (15)

)& Im
—1

1 +Y(Q,co)
(9)

Im ( gd)(47m p Ima) (16)

e(co) = 1 —co~/co (10)

where co& is the bulk plasma frequency. Then for
co+0,

P(Q,co) =
2

e cos 2gu
2

6(co —co, )
47TAg g2u2 + (Q P co)2

The squared factor strongly favors losses in the for- '

ward direction while the dielectric-function term
determines the relative strength of various possible
contributing modes. We stress that an evaluation of
(9) does not first require a derivation of surface-
mode eigenfunctions and eigenvalues. The relevant
information is contained in Y, which is often easily
calculated from e via (7).

Before treating phonons at metal surfaces, for
which the q dependence of e is crucial, we close
this section with several examples of the application
of our approach which only use an e(co). First con-
sider surface-plasmon losses. The appropriate e for
this possibility is

Identifying the surface density of the adsorbate as
n, = nod, we find

4e n,2

P(Q, co) = Ima(co)
2gu

g2u2 + (Q, P )2

(17)

which is the standard result. Notice the extra fac-
tor of g between (17) and (11).

III. PHONONS AT METAL SURFACES

In this section we apply a crude description of
coupled electron and ion motion to the loss formu-
las just derived. There has been considerable work
on phonons at surfaces, ' but we could find none
that for metals retains the fluctuating fields outside
the surface. Our model is essentially a Bohrn-Staver
theory applied at a surface. ' Following a textbook
description, ' we write the total bulk dielectric con-
stant as

where co, = co&/.v 2, which is the standard result.
One can just as easily treat losses to Fuchs-Kliewer
modes on ionic crystals. "

Next consider a metal of dielectric constant eb(co)
on top of which is a surface layer of thickness d of
a material characterized by e, (co). Although (7) is

not relevant, one can still solve in straightforward
fashion for P;„d, given P,„,. The result has the same
form as (6) but with

~ = (&, —eb)/(e, + eb )

These formulas were first obtained by Mills who
subsequently used them to describe losses to surface
electronic excitations on semiconductors. ' Here we
use them to describe losses to vibrational modes of
adsorbed species on metals. To this end we set
eb ——ap so 6 = —1. Then treating the adsorbed
species as independent we write

e, (co) = 1 p 4wrn pa(co) (14)

e(Q,co) = e, (1 —he ~ )/(1+ b,e '2~), (12)

where

where we set

e' = 1+ kg /I q I

(18)

(19)

(20)

(21)

Just as easily we can calculate Y(Q,co) from (7)

1 a co g
Y(Q,co) co —fl& gp

(22)

We are treating the electronic response as if it were
static; the k, in (19) is the square of the Thomas-
Fermi screening wave vector. On the other hand,
the ion response is dynamic but is taken to be local
in space; the fez in (20) is the square of the (bare)
ion plasma frequency.

Equations (18)—(20) are sufficient to specify our
model. For the bulk metal we have a Bohm-Staver
theory as can be seen by setting e(q, co) = 0 to find
the bulk dispersion law



24 LONG-RANGE SCATTERING OF ELECTRONS BY PHONONS AT. . . 689

where

1/2

2 s tO

Qo= Q+
p

&0 . (23)

where

Q2 2to Q /k,
A, =m 1+g2 p2 g2 2

p s p
—N

(26)

The parameter a depends on where one is in the
ro —Q plane, as shown in Fig. 1. In region I,
m ~ Op, one has a = 1 and Y is real and positive.
In region II, 0 & co ~ Qz[Q /(k, + Q )], again
a = 1 but now Y is real and negative. Lastly, in re-

gion III a = i, so Y is positive imaginary. With re-

gard to the loss formula (9) we will get contribu-
tions only from regions II and III. Those from the
latter region are due to bulk phonons which still

produce fields outside the metal. In region II there
are contributions only along the dashed line in Fig,
1 which is the solution

ofhce

Q,to) = —1:

Im
+ ~ ~~@(Q)

= A,5(to —co(Q)), (25)

l.4-

l.2—

l.O

co(Q) Q 1 Q 1

p S S

The dispersion of this surface phonon begins linear-

ly with Q and saturates for large Q at Qz/&Z.
Combining (9) and (22) one can readily calculate

the loss spectrum. Note that the surface phonon
loss at any fixed angle of observation (i.e., fixed Q)
is a 5 function lying below the bulk phonon losses:

The rapid decay of A, at low frequencies is remark-
able.

We shall not present model calculations of the
loss spectra at various angles for several reasons.
First, one should realize that these modes are at
rather low energies; e.g., for silver surface we esti-

mate (see Sec. IV) A'0& —20 meV. There have, in

fact, been few reported observations of substrate
phonons on metals, and even these have used either

stepped surfaces' or overlayers' ' to enhance the

coupling and to see phonons at the zone edge or
above the bulk bands. Second, our modmel of the
phonon dispersion is quite crude. A better treat-
ment in connection with loss spectra was done some
time ago by Roundy and Mills, ' ' using. fprce-
constant models; Yet their calculation wM, rather
sensitive to parameter choices and more irriportantly

did not allow for the long-range coupling used ex-

clusively here. The utility of our results is, in fact,
not the shape of the spectra but rather the estimate
of its strength.

An attempt to bring out this point is made in the
next section, but before presenting it we wish to dis-

cuss work on a related surface model by Wanser. '

His paper deals with the influence of surface distor-
tion on the static image potential. He uses classical
elasticity theory to describe atomic distortions near a
metal surface and finds a nonlinear correction to the
image potential law, tending to strengthen the at-

traction. Our model is quite different from his but
can be applied to the same problem. In linear
response the image force is for a charge e at R
above the metal

0.6

gy 2 d —2QR
0 ~+1

(27)

0.4

0.2

0.5 l.O l.5
0/ka

FIG. 1. Phonon dispersion at a metal surface versus
wave vector Q parallel to the surface. The bulk phonons
lie in region III, the surface phonon (dashed line) in re-
gion II. The parameter a of equation (22) is / in regions
I and II and is i in region III.

where Y is to be evaluated in the static limit, co = 0.
For our choice (18) of e, one has e(Q,co = 0)
= —oo, and hence an image force of e /4R

directed towards the metal. This diverges as R ~0
because we have assumed a spatially local ion
response, but compared to its value when only the
electron response (19) is included, we, too, have
found a strengthening of the image interaction. This
qualitative feature is reasonable since the ions, if al-
lowed to move, will certainly act to lower the
system's energy.
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IV. THERMAL DIFFUSE SCATTERING

A further implication of our electron-loss formu-
las is a new mechanism of thermal diffuse scatter-
ing. One need only at each Q to integrate over the
possible loss energies to derive a prediction for the
strength of thermal diffuse scattering due to long-

range scattering. This contribution will be an addi-
tion (if we neglect interference) to that which arises
from impact scattering. The latter mechanism has
been studied extensively before, both theoretically
and experimentally, and we will try to compare
the two.

This comparison is not completely straightfor-
ward because of differing theoretical approaches.
The loss function P(Q,co) that we use represents a
probability relative to that for the specular beam
and we have not discussed how one should estimate
the strength of the elastic specular beam. On the
other hand, theories that use only short-range
scattering can calculate the elastic and thermal dif-

fuse spectra simultaneously, but there is a simple re-
lation between them only in a crude kinematic
model which allows only one scattering event on the
surface and limits it to the top layer of atoms. Yet
since our interest is merely to estimate roughly the
relative strength of the two mechanisms, these dif-

ferent approaches can be forced to a common basis.
The quantity we will examine in each case is the ra-
tio a of the thermal diffuse strength to the elastic
specular scattering strength.

For our long-range-scattering model

the single-atom-scattering amplitude and electron-
momentum change depend only weakly on angle.
With this last assumption the scattering amplitude
drops out of the ratio a, and we obtain

k, 'fdga

= (2ik; icos8;) g coth
2MN co

q

(29)

f d2g f1 d
(2m. )'n~

(30)

I.O

where k; is the incident electron wave vector and 0;
its angle of incidence with respect to the normal so
2~k;

~
cos8; is the change in the electron wave vector

after specular scattering. The other parameters in
(29) are M, the mass of an atom, and N, the
number of atoms in the crystal. The frequency
co = co(q ) will be computed from the bulk disper-
sion relation (21) and the sum on q done by the re-
placement

00 %co
k,-'a = f d~P(Q, co) coth

0 2
(28)

IO-'

where p = 1/kT with T the surface temperature.
The coth factor has been inserted in (28) to account
for the fact that whereas our derivation in Sec. II
only included the spontaneous creation of surface
excitations due to the external charge, one expects
stimulated losses and gains to also occur. Hence
(28) estimates the total single-phonon-excitation
strength at fixed Q and T, relative to the specular
beam.

To develop an analogous expression from a
short-range-scattering model, we simplify further the
kinematic model discussed above. Specifically, we
assume that incoming electrons scatter in first Born
approximation from the short-range potentials of a
single layer of atoms whose vibrations may be
described as if they were in bulk. ' Thus we ignore
any change in phonon amplitudes at the surface.
We also neglect polarization effects and assume that

IO2
Q/ks

I.O

FIG. 2. Thermal diffuse scattering by various mechan-
isms. We plot the function o.'times Q/k, versus Q/k, .
The dashed curve describes impact scattering, while the
solid curves come from long-range scattering. The angle

P is that between the surface projection of the electron
velocity before and after scattering. See text for other
parameter values.
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where nz is the bulk density of atoms.
Since most of the experimental work was done on

silver, ' we chose our model parameters to be
those appropriate to silver, ' taking AQp 20 1

meV and k, = 1.71 A '. To make the q integral in

(30) well defined we use a Debye cutoff. In Fig. 2
are plotted some typical results for the one-phonon
thermal diffuse scattering using an incident energy
of E; = 5 eV and an incident angle of (9; = m/4.
The surface temperature is 300 K. %ith several
assumptions —high temperature, linear dependence
of co on

~ q ~, and no cutoff—one can show that a
for impact scattering should scale as Q '. ' We
have consequently plotted out results as a(Q/k, ).
The impact-scattering case is indeed nearly constant,
falling off only when Q approaches the Debye cut-
off', which here has the value QD/k, = 0.885. Such
large Q values are not properly treated by our
models, which are reasonable only near specular
scattering, i.e., for Q/k, « 1.

For the smaller values of Q the interesting feature
of Fig. 2 is that the thermal diffuse scattering for the
long-range coupling mechanism aD lies well above
that for impact scattering cxq. The growth of nD is
roughly as Q as Q decreases, at least until the
squared factor in (9) forces a saturation of uQ,
which here occurs near Q/k, —10 for all orien-

tations of Q in the plane. This change in depen-
dence is probably at too small an angle with respect
to the specular direction to be presently resolved.
Note, too, that the relative strength of uD and al
depends sensitively on the incident energy. If we
use instead an E; = 100 eV, which was a typical
value in past experiments, then the ratio of o.l/eD
would be roughly enhanced at intermediate values
of Q by a factor of (100/5) = 400 and al would

dominate, as has in fact been observed. ' The pri-
mary distinguishing dependences of nl and cxD are
E;Q ' and E; 'Q, respectively, for 0.01
& Q/k, & 0.1. Hence evidence for the presence

of aD would require the observation of a stronger
dependence of u on Q as E; is lowered. We hope
that such experiments might be done soon. They
would establish that the long-range-scattering
mechanism is operative and allow one to check the
estimates of its strength that have been given here.
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