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Relaxation time for electron-dislocation scattering for noble and polyvalent metals
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An analysis is presented of the relaxation time for electron-dislocation scattering for the
polyvalent and noble metals. It is shown that for these metals the relaxation time is sig-

nificantly anisotropic, i.e., its magnitude varies markedly with position over the Fermi
surface. This anisotropy of the relaxation time results from the nonsphericity of the Fer-
mi surface for these metals and from the dominance of very-small-angle scattering events

for electron-dislocation scattering. The explicit form of the relaxation time is determined

by a variational solution to the Boltzmann equation. The degree of anisotropy of the re-

laxation time is calculated for Al, Cu, Ag, and Au. The analysis is then generalized to
include the effects of both electron-dislocation scattering and electron-impurity scattering.
It is shown that the large-angle scattering events that characterize electron-impurity

scattering tend to reduce the anisotropy of the relaxation time. Finally, a discussion is

presented of the implications of the present results to the recent theories of the effect of
electron-dislocation scattering on the low-temperature electrical resistivity of the poly-
valent and noble metals.

I. INTRODUCTION

Over the past few years, it has become recog-
nized that the presence of a significant density of
dislocation lines in a metal sample can have a
marked effect on the low-temperature electrical
resistivity. For example, the magnitude of the
temperature-dependent part of the resistivity Ap(T)
depends on the dislocation density ED present in
the sample. It has long been known' that bp(T)
depends on the magnitude of the residual resistivity

po, an effect known as deviations from Matthies-
sen's rule. However, in recent years experimental
evidence ' has been accumulating to show that
bp(T) also depends on the source of po.

The explanation for the dependence of bp(T) on

ED is the following. The calculation of Ip(T)
depends on the electron distribution function and
thus on the relaxation time r(K) for each electron
state K on the Fermi surface. However, r(K) is

determined by aII electron scattering processes that
occur in the sample, including electron-dislocation
scattering. In other words, two samples which
have the same value of po may have quite different
values for r(K) if for one sample, po arises primari-
ly from electron-impurity scattering, whereas for
the other sample, po arises primarily from elec-
tron-dislocation scattering.

The suggestion that r(K) depends on the source
of po was proposed by Dugdale and Basinski' and

discussed qualitatively by Rowlands and %oods.
The first quantitative studies of the effect of dislo-
cations on r(K) were carried out by Bergmann,
Kaveh, and Wiser' ' for the noble and polyvalent
metals and by Kaveh and %iser' for the alkali
metals. However, these previous studies concen-
trated on the calculation of b p( T) as a function of
ND', the form of r(K) was determined empirically.
In this paper, we shall present an explicit calcula-
tion of the K dependence of the relaxation time for
electron-dislocation scattering rd;, (K) for the noble
and polyvalent metals. The calculation of rd ,(K)'
is carried out by means of a variational solution of
the Boltzmann equation, ' based on an approxi-
mate expression for the transition probability for
electron-dislocation scattering. We find that

rd;, (K) has a marked K dependence and is thus
very anisotropic over the Fermi surface. In partic-
ular, rd;, (K) is very small in the nonspherical re-

gions of the Fermi surface near the Brillouin zone
boundaries. It will be shown that this important
result arises from the fact that very-small-angle
scattering events dominate electron-dislocation
scattering.

From the above discussion, it follows that a real-
istic calculation of rd;, (K) for the polyvalent and
noble metals must take account of the following
two features. First, the transition probability for
electron-dislocation scattering is dominated by
very-small-angle scattering. ' ' Secondly, the Fer-
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mi surface of noble and polyvalent metals is non-

spherical. Although the Fermi surface of a noble
or polyvalent metal is overall very nearly spherical,
the small nonspherlcal regj.ons 1n the 1mmedlate vt-

cinity of the intersections of the Fermi surface and
the Brillouin-zone boundaries are of the utmost
importance to the calculation of rd;, (K). This situ-

ation is very reminiscent of the calculation of r(K)
appropriate to electron-phonon scattering at low

temperatures for the polyvalent and noble met-

als. ' ' However, it will be seen that there are im-

portant quantitative differences between the r(K)
for electron-dislocation scattering and for electron-

phonon scattering at low temperatures.
In Sec. II, a discussion is presented of the gen-

eral properties of the relaxation time for electron-

dislocation scattering, and a one-parameter func-
tional form is introduced. In Sec. III„ it is shown

how the value of the parameter is determined for
any given polyvalent or noble metal. The calcula-
tion is carried out for Al and for all the noble met-

als. The analysis is generalized in Sec. IV by in-

cluding the effect of electron-impurity scattering on
the relaxation time. The calculated relaxation
times for Al and Ag samples are compared with

previous empirical determinations. In Sec. V, the
implications of the present results are discussed
with regard to the low-temperature electron-
phonon and electron-electron scattering contribu-
tions to the electrical resistivity. The summary fol-

lows in Sec. VI.

II. RELAXATION TIME

The most convenient framework for calculating
the electron relaxation time for electron-dislocation
scattcrlllg 1d,~(K) ls tllc varlRtlollR1 forIIllllatloll of
the Boltzmann equation. This powerful theoreti-
cal tool enables one to obtain a reliable approxima-
tion to rq;, (K) by means of a calculation that in-

cludes a realistic description of the Fermi surface
of the metal and of the electron-dislocation scatter-

ing transition probability.
We begin by writing the expression for the devi-

ation P(K), caused by unit electric field E, of the
electron distribution function from its equilibrium
value, "

P(K) = —end;, (K)v(K) E, (2.1)

where v(K) is the velocity of the electron in state
K. Tllc subscript dls oI1 'Pd;q(K) llldlcRtcs tllat wc
are considering a sample for which the dominant
scattering process is electron-dislocation scattering.
This applies, for example, to a strained sample at
low temperatures. The interest in measuring the
resistivity at low temperatures is threefold. First,
the electron-electron scattering contribution is ob-
servable only at very low temperatures. Second, at
low temperatures, ihe electron-phonon scattering
contribution has a complex, and hence interesting,
temperature dependence. Third, the deviations
from Matthiessen's rule are very large at low tem-
peratures. At these low temperatures, the dom-
inant contribution to the resistivity is po, which
thus determines the form of r(K). Since we are
here considering a strained sample, electron-
dislocation scattering dominates electron-impurity
scattering and thus the appropriate electron relaxa-
tion t'ime for the sample is rd„(K).

It should be mentioned that no approximation is
involved in writing (2.1). Even though the concept
of a "relaxation time" is not always strictly valid,
it is always possible to express {((K)in the form
(2.1) and use the variational method to determine
the function rd;, (K). Exactly under what cir-
cumstances one may interpret the resulting K-
dependent function rd;, (K) as a relaxation time is a
complex question that need not concern us here.
In the present context, it is simply as a matter of
convenient terminology that we refer to the func-
tloll rd, s(K) as Rll Rlllsotloplc IclRXRtloll t1111c.

The variational expression' f'or the contribution
to the electrical resisitivity due to electron-dislo-
cation scattering pd;, is given by

3II[ds(KI)/U(KI)][ds(KI)/U(K2)][/(K2) —p(KI)] Pd;, (Kl, K2)
PdlS = '2

dsKuK K
(2.2)

where 3 is a known constant and the wave vectors
K) and K2 characterize the initial and final dec-
tron states, respectively„of the electron being scat-
tered by a dislocation with transition probability

t

Pd;, (KI,K2). The surface integrals are to be
evaluated over the anisotropic Fermi surface of the
polyvalent or noble metal.

The variation theorem states that the function
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P(K) that solves the Boltzmann equation will yield
a minimum value for the right-hand side RHS of
(2.2). The procedure for finding iI}(K) is the fol-

lowing. One assumes a parametrized form for
rd;, (K), and hence P(K), and then evaluates (2.2) to
obtain pd;, as a function of the parameter (or
parameters). The value of the parameter that
minimizes pd;, gives the best choice for rd;, (K)
from among the family of functions that was as-
sumed. The result will of course not be exact, but
it should be a reliable approximation to the exact
rd;, (K) if the parametrized form was chosen with
care. In particular, it is extremely important to in-
corporate into the parametrized form assumed for
rz;,(K) all the physical features which the exact
rd;, (K) must possess.

One may deduce a parametrized form for rd;, (K)
which has the correct qualitative behavior by
means of a calculation of pd;, based on the incorrect
assumption of a K- independent rd;, (K), to be
denoted vo. The integrand of the numerator of pd;,
in (2.2) contains the factor, to be denoted (hiI'i),

(&p)'=—[$(K2)—$(Ki)]' (2.3)

Inserting (2.1) into (2.3) with rd;, (K)=rp and
averaging over the electric field direction, as is per-
mitted for a cubic crystal, yields

(b$) =
3 (erp) [v(K2) —v(Ki)] (2.4)

For the nearly spherical portions of the Fermi sur-

face, one may use the one-plane-wave (1-PW) ex-

pression v»w(K) =A'K/m. Inserting this expres-
sion for v(K) into (2A) yields

(hP)i pw= 3
(eke'p/m) q (2.5)

where q =
~
Kq —Ki

~

. On the other hand, for K
in the nonspherical portion of the Fermi surface,
near the intersections with the Brillouin-zone boun-
daries, a single plane wave is no longer an adequate
representation of the pseudo-wave-function. One
must use a multiple-plane-wave representation.
This leads to a very different expression for v(K),
and hence (2.5) is no longer the correct expression
for (hP) .

Before proceeding with the analysis, it should be
noted that, thus far, no use has been made of the
fact that we are discussing electron-dislocation
scattering. Everything said so far applies equally
well to electron-impurity scattering. The special
feature of electron-dislocation scattering is that, for
electron transport, very-small-angle scattering

events dominate Pd;, (Ki, K2). Therefore, for
electron-dislocation scattering, the final electron
state K2 always lies very close to the initial elec-
tron state K&. In particular, if K& lies in the non-
spherical portions of the Fermi surface, so will K2.
This implies that for K& in the nonspherical por-
tions of the Fermi surface, one needs to use a
multipleylane-wave pseudo-wave-function for both

K& and K2. In practice, the two-plane-wave ex-
pression generally suIIices. The importance of this
result lies in the fact that for a two-plane-wave (2-
PW) pseudo-wave-function for both Ki and K2
near the Brillouin-zone boundaries, one obtains

(kijtl)2 pw (eA'vp/m ) [fl G /4m
~

N(G)
~ ]

(2.6)

where w(G) is the screened, electron-ion pseudopo-
tential matrix element for the reciprocal-lattice vec-
tor G which connects the two plane waves. The
proof of this important result is presented in the
Appendix. Equations (2.5) and (2.6) differ by the
factor [irt G /4m

~

w(G)
~ ] . This factor is ex-

tremely large, being of order 10 —10 for the noble
and polyvalent metals. In fact, because of the
enormous enhancement of (b,P) in the nonspheri-
cal portions of the Fermi surface, evaluation of
(2.2) for pd;, with a constant rd;, (K) shows that the
nonspherical portions dominate the integral for pd;, .

The situation is entirely diA'erent for electron-
impurity scattering because large-angle scattering
dominates p; ~. Here, "large-angle" scattering
means that the scattering angle is larger than about
10'. For such scattering angles, it is extremely un-

likely that both the initial and the final electron
states will be in the nonspherical portions of the
Fermi surface. Even if the initial state K& does lie
in a nonspherical region, the Anal state K2 will al-
most always lie in a spherical region. For such a
case, (2.6) does. not apply and there is no special
enhancement of (hiI'i) over (2.5). This is the basic
reason why electron-dislocation scattering leads to
such a different result for r(K) than does electron-
impurity scattering.

Having seen the results of the calculation for pdjs
based on rd;, (K) =rp, we may readily choose a dif-
ferent functional form for rd;, (K) that will signifi-
cantly reduce the value of pd;, . %e simply elim-
inate the large contribution to pd;, resulting from
the nonspherical portions of the Fermi surface by
choosing a form for r„;,(K) that vanishes in these
portions. Qualitatively, the functional form of
rd;, (K) must have the following features:
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~0 K in spherical portion,
rg;,(K)= '

0 K in nonspherical portion . (27)

is to exploit the well-known fact'" that u(K) in the
nonspherical portions of the Fermi surface is
smaller than the Fermi velocity vF. This suggests
the form

Such a form for rz;,(K) will drastically reduce the
numerator of p~;, by about an order of magnitude.
However, (2.7) will have but little effect on the
denominator of p@„given by (2.2), because most of
the Fermi surface of the noble and polyvalent met-
als is very nearly spherical and because the factor
(b,P} does not appear in the denominator.

The above discussion for the K dependence of
rs, (K) also applies qualitatively to the relaxation
time for electron-phonon scattering rzh(K) for the
polyvalent and noble metals. Indeed, the qualita-
tive similarity between r@,(K) and 1&h(K) for these
metals was originally pointed out by Dugdale and
Basinski' and elaborated upon bg Rowlands and
Woods. We here calculate r@,(K}explicitly and
shall compare our results quantitatively with those
we had previously obtained ' ' for r~h(K). We
find that, in spite of the qualitative similarity,
there are important quantitative differences be-
tween rq;, (K) and r~g(K), as we have previously'
pointed out.

A simple physical interpretation can be given for
the form (2.7) for rz, (K). The factor (b,P) of
(2.3) can be viewed as giving the "effectiveness" of
a scattering event. In (2.2), one sees the well-

known result' that the contribution of a scattering
event to pq;, depends not only on the probability
that the scattering occurs, given by Pq;, (K~,Kz),
but also on the effectiveness of the scattering event
in degrading the current, given by (hP) . For elec-
trons in the nonspherical portion of the Fermi sur-

face, (bP) is so large for very-small-angle scatter-

ing, i.e., electron-dislocation scattering is so effec-
tive in degrading the current that these electrons
are almost immediately scattered back to thermal
equilibrium and thus removed from the current.
In other words, the current does not contain any
contribution from the electrons in the nonspherical
portions of the Fermi surface. That is exactly the
physical content of rq;, (K), as given in (2.7). A
zero relaxation time means no contribution to the
current.

A mathematical statement of the above result is
contained in the variational theorem, ' which states
that the exact rz;,(K) minimizes pz;, . Although
(2.7) gives the general features of the K dependence
of rz;,(K) over the Fermi surface, a still better
choice can be found by introducing into rz;,(K) a
variational parameter. An effective way to do this

ra;,(K)=ro[u(K)/uF]", (2.8)

III. OPTIMIZATION OF THE
VARIATIONAL PARAMETER

Having chosen the parametrized form for
rq;, (K), given in (2.8), we invoke the variational
theorem' to obtain the value of the power n that
serves as a variational parameter. Thus, we calcu-

where the power n serves as a variational parame-
ter. One includes v~ as a normalization factor so
that for the spherical portions of the Fermi surface,
the quantity in brackets equals unity. On the other
hand, a large value for the power n will ensure that
Ts ,(K') 'nearly vanishes, as required, for K in the
nonspherical portions. The "best" choice for n for
each metal is automatically provided by the varia-
tional theorem. One calculates p~;, as a function of
n and finds the value of n that minimizes p&;,.
This value gives the optimum choice for r@,(K).
We shall see that the optimum values are n 7 for
Al and n 1.5 for the noble metals. The signifi-
cant difference in the value of n for these two
classes of metals can be understood in terms of the
very dilt'erent values of

~

w(G)
~

and the different
Fermi-surface topologies. Thus, the variational ap-
proach for determining r~;,(K) automatically takes
into account these important features that distin-
guish Al from the noble metals by requiring dif-
ferent values for n for the two cases.

The functional form (2.8) that we propose for
1g ,(K) is not 'new. We had previously introduced
this same functional form 1~h(K) and used it to
calculate the low-temperature electron-phonon
scattering resistivity for aluminum ' ' and for the
noble metals. This does not, of course, imply
that the degree of anisotropy of rz, (K) is the same
as that of re(K). The degree of anisotropy of the
relaxation time is determined by the value of the
exponent n. We shall see that for every metal con-
sidered, the calculated value of n appropriate to
1g's(K) is considerably smaller than that calculat-
ed ' for r„h(K) at low temperatures. This shows
that r~h(K) at low temperatures is considerably
more anisotropic over the Fermi surface than is
rg;, (K).
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late pd;, as a function of n, to be denoted pd;, (n),
and find the value of n that minimizes pd;, (n), to be
de~oted n;„. This is the value of n that is to be
inserted into (2.8) for rd;, (K). The expression for

pd;, (n) is given in (2.2). To evaluate the integrals,
one needs as input data the electronic properties of
each metal and the expression for Pd;, (Ki,Kz).

The electronic properties of Al that we used in

the present calculation are based on the piecewise
two-orthogonalized-plane-wave (2-OPW) scheme. z'

The central idea is that for each point K on the
Fermi surface, a linear combination of the two
plane waves

~
K) and

~

K—G) is taken to calcu-
late the pseudo-wave-functions and the Fermi sur-

face. For each point K, one chooses the recip-
rocal-lattice vector G that produces the greatest
distortion of the Fermi surface from sphericity.
This is clearly the most important G for that par-
ticular point K. For the values of the screened
pseudopotential matrix elements, w(6), we used
those deduced by Ashcroft from his analysis of
the de Haas —van Alphen data. For Al, both
w (Gi i i ) and w (Gzaa) must be included in the cal-
culation. Complete details have been given by Ka-
veh and Wiser. '

For the noble, metals, the Fermi surface was ap-
proximated by the 8-cone model of Ziman. The
central idea is that the free-electron sphere is re-

placed by the intersections of a sphere and the
eight cones whose axes lie in the eight {111{direc-
tions. One then computes the distortion of the
Fermi surface from sphericity arising from the re-
latively large screened pseudopotential matrix ele-

ment w(Giii). Unlike Al, for the noble metals,
only w(6»& ) need be included in the calculation of
the Fermi surface and the pseudo-wave-functions.
The magnitude of w (6i i i ) for the noble metals is
so large that the Fermi surface makes contact with
the Brillouin-zone boundaries at the hexagonal
zone faces to form "necks." The valu'e of w (6 i i i )

for each of the noble metals is given by the radius
of the neck at the point of contact, as measured by
the de Haas —van Alphen experiment. For the
pseudo-wave-function, one uses a linear combina-
tion of two plane waves

~

K) and
~

K—6), where
G is the [111]reciprocal-lattice vector appropriate
to the cone associated with the point K on the Fer-
mi surface. Complete details have been given by
Ziman.

For the electron-dislocation scattering transition
probability Pd;, (Ki, Kz), we adopt a simple model
which contains the salient physics. The principal
dependence of Pd;, (Ki,Kz) on the electron states

K2 and K2 is through the scattering angle or,
equivalently, through the magnitude of the
momentum transfer q =

~
K& —Kz

~

. Thus,
Pd;, (Ki,Kz)~Pd;, (q). The existence of a sharp
peak in Pd;, (q) for very-small-angle scattering' '
suggests the q dependence of Pd;, (q) can be sensibly
replicated by a Gaussian of narrow width. Thus,

Pdi ('q) {exp[ ——,(q~qo)'] j (3.1)

where q0 gives the half-width of the peak. The
result for n;„, and hence for rd;, (K), was found
not to be sensitive to the value assumed for q0 pro-
viding its value is small enough to correspond to a
scattering angle of less than 1'.

The form of Pd;, (q) given in (3.1) is appropriate
only if one assumes that very-small-angle scatter-
ing events dominate electron-dislocation scattering.
Therefore, it is in place to review the evidence sup-
porting this assumption. A clear summary of the
experimental evidence has been given by Chang
and Higgins. ' Their main point is that the meas-
ured effective scattering rate for electron-dislo-
cation scattering is about 30 times larg|;r for the
de Haas —van Alphen effect, which is sensitive to
electron scattering through angles as small as
-0.01', than for the radio-frequency size effect,
which is not sensitive to electron smttering unless
the scattering angle exceeds —1'. It follows, there-
fore, that the angular dependence of the electron-
dislocation scattering cross section must have a
sharp peak that is very much narrower than 1'. In
other words, these data imply that the electro@-
dislocation scattering rate must depend on the
scattering angle in a way that is quite similar to
that given by Eq. (3.1). Indeed, Fig. 17 of the pa-
per by Chang and Higgins, ' in which an "experi-
mental" curve for Pd;, (q) is plotted scheinatically
as a function of q (scattering angle), might almost
be a plot of our Eq. (3.1).

The theoretical basis for the dominance of very-
small-angle electron-dislocation scattering events
has been provided by several recent mlculations. '

However, it is clear from these calculations that
the problem of electron-dislocation scattering is
rather complex, and has in fact been the subject of
controversy. The consensus that seems to be
emerging' ' is that very-small-angle scattering
events are certainly very important and probably
even dominate the electron-dislocation scattering
rate. This is the view that we adopt here.

The form of Pd;, (q) given in (3.1) assumes isotro-
pic scattering and thus ignores the fact that a
dislocation line is an anisotropic scattering center.
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pd, ,(0) 10 for the noble metals

&,,(n, ) 5 for Al (3.3)

with a factor-of-2 uncertainty in the above values
due to their variation with 8. It is not unexpected
to find that the calculated values of the ratio

pd;, (0)/pd;, (n;„) have a much greater uncertainty
than the calculated values of n, „,because pd;, (n) is
much more sensitive to the details of Pd;, (K~,K2)
than is rd;, (K).

IV. REAL SAMPLES

0.0
I

0.2

C0S 8

I

0.4
I

0.6

FIG. 3. Calculated values of n,„ for Al as a function
of cosO for two different values of qo.

summarized as follows:

1.5+0.5 for the noble metals
min —7+1 for Al . (3.2)

It is instructive to compare these values for n;„
for electron-dislocation scattering with the corre-
sponding values for electron-phonon scattering at
low temperatures. We have already mentioned that
the functional form (2.8) for the relaxation time is
also appropriate to describe the low-temperature
electron-phonon scattering relaxation time r~h(K)
for Al and the noble metals. However, because of
the properties of the electron-phonon scattering
transition probability, the K dependence of r~h(K)
is much more pronounced than for rd;, (K). This
implies a much larger value for the power n, as is
confirmed by the explicit calculations. The calcu-
lation of r„q(K) yields that for aluminum, ' n;„
varies from 50 at about 20 K to 10 at about 50 K,
whereas for silver, n;„varies from 10 at about 5
K to 6 at about 20 K. The values of n;„ for
r~h(K) are higher for Al than for Ag for essentially
the same reasons as given above for 'Td', (K).

Another quantity of interest is the magnitude of
the reduction in pd;, (n) upon using rq;, (K), given

by n =n;„, rather than using the simple relaxation-
time approximation of a constant 7o given by set-
ting n =0 in (2.8). In other words, we consider the
magnitude of the ratio pd;, (0)/pd;, (n;„) Unlike.
the situation for n;„, the value of this ratio
depends significantly on the value assumed for H.

The calculated results are

Thus far, the discussion has been limited to sam-
ples for which one may ignore the contribution to
the residual resistivity due to electron-impurity
scattering p; p, i.e., pd;, g~ p; p. For a real sample,
of course, this is rarely the case. Therefore, we
shall generalize the analysis to make it appropriate
to samples having an arbitrary value of the ratio

pd;, /p; p. The expression for p; p is given by Eq.
(2.2) with pd;, (K~,K2) replaced by the transition
probability for electron-impurity scattering
P; z(K~, K2). For P(K), we insert the expression
given by Eq. (2.1) with rd;, (K) replaced by the
electron-impurity scattering relaxation time
r; p(K).

The determination of r; z(K) is simple because
one may use the relaxation-time approximation of
a constant r, z(K). It has been shown that this
approximation yields very accurate values of p; „,
in spite of the fact that the relaxation-time approx-
imation is not exact even for a spherical scattering
center because of the nonsphericity of the Fermi
surface of the polyvalent and noble metals. Sorbel-
lo has calculated p;m„by iterating the Boltzmann
equation to convergence and found that the results
are within a few percent of the values obtained
from simply assuming r; ~(K) =const. Moreover,
this result was found to apply to a wide variety of
impurity atoms. This confirms the well-known
result' that v; „(K) in insensitive to the details of
P; p(Ki, K2).

We may exploit this insensitivity by using the
simple model of Eq. (3.1) for P; ~(K&,K2) with the
magnitude of qo being & kz to take account of the
fact that large-angle scattering is important for
p' p In fact, we find that there is no significant
difference between assuming qo kz and assuming
p~ 00. For the present discussion of electron-

impurity scattering, the only requirement is that
the magnitude of qo be sufficiently large to permit
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The value of n appropriate to rRs(K) for a real
sample, characterized by a given value of the ratio

pdjs/pimp~ Is dctermIncd by thc varlatlonal theorem
One writes the total residual resistivity as a func-
tion of the variational parameter n:

po(n) =pd;, (n)+p; (n} . (4.2}

For a given value of the ratio pd;, Ip; ~, one calcu-
lates the value of n (to be denoted nRs) that min-

imizes pp(n) The lim. iting cases are clear. For a
SR1Tlple fOI Which pjm p& pdjsp OQC hRS nRS —n jm

=0 and rRs(K)=r;m~(K) =ro. On the other hand,
for R saIQple for which pd;, &g p; „,one has

nRs-nd;, (=1.5 for the noble metals and =7 for
Al) and rRs(K)=rd;, (K). For the general case, for
which p p and pd;, are the same order of magni-

tude, one has:

nimp & nks &ndis ~ (4.3)

with the value of nRs being determined by the out-
come of the "competition" for any given sample
between the dislocations and the impurities for the
role of dominant electron scatterer.

The explicit determination of nRS requires calcu-
lating the n dependence of both p;m„(n) and pd;, (n)
%'e have already discussed in Sec. III the calcula-
tion of the n dependence of pd;, (n). Our results
were summarized in Eq. (3.3), where it is seen that

pd;, (n) increases by about an order of magnitude as
n decreases from ndjs to njmp Thc res
calculation of the n dependence of p; ~(n) can be
summarized Rs follows:

scattering events for which the scattering angle is
larger than about 10.

The functional form given in Eq. (2.8) to
describe ~d;,(K) can also be used to describe

~;m~(K) is one sets n =0. This suggests introduc-
ing the notation n;m~( =0) for the value of n that
minimizes p;m„(n) and the notation nd;, (previously
denoted n;„) for the value of n that minimizes

pd;, (n) T.his notation permits us to describe the K
dependence of the relaxation time of a real sample
(RS) within the same framework of Eq. (2.8).
Thus, we write:

(4.1)

tegral by as much as an order of magnitude,
whereas the use of rd;, (K) to calculate p; z in-

creases the resistivity integral by only 30—40%.
This iBustrates once again the fact that the calcu-
lated value of p; p is relatively insensitive to the K
dependence of the relaxation time.

Having calculated the n dependence of both

pd;, (n) and p;~~(n), and hence of po(n), we can ob-

tain the value of nRs for any given value of the ra-
tio pd;, /p;m, . It should be noted that the value of
the ratio pd;, /p; p refers to its value for n =nRs.
Our results for A1 are given in Fig. 4, where we

PlOt nRS RS R funCtIOn Of Pdjs/Pimp. The CurVe gives
the calculated results; the circles are "experimen-
tal" points which will be discussed presently. The
calculation of pd;, (n) was based on the values

qo ——0.003 and 0=90' for Pd;, (q). As indicated in

Eq. (3.2), the dependence of the results on qo and
on 9 implies an uncertainty of —1 in the calculat-
ed value of nRs.

%e now turn to the circles in Fig. 4, which coIl-
stitute a sort of "experimental" test of our theory.
The "experimental" points, which were taken
from Pig. 7 of Ref. 12, were obtained as follows.
For a, sample of Al with a given value of pd;, /p; p,
the relaxation time rRs(K) determines not only the
calculated residual resistivity po but also the calcu-
lated temperature-dependent term of the resistivity
hp(T}. Th'e magnitude of hp(T) at low tempera-
tures is so small compared with po that Ap(T) does
not affect the relaxation time. Low-temperature
calculations' ' of hp(T) based on rRs(K) have re-

cently been carried out for Al and compar'ed with

Al

p,. (nd, , ) 1.3 for the noble metals

(0) 1.4 for Al. (4.4}

Note the dramatic contrast between the results of
(3.3) for pd;, (n) and of (4.4) for p;m~(n) The use of.

r; &(K) to calculate pd;, increases the resistivity in-

~dis ~~imp

G. 4. Calculated values of ~„s fo«l as a functio
of the ratio pd /p p The circles are the values previ-
ously deduced by empirical means from the low-

temperature hp(T) data (see Ref. 12}.
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experimental results, both for cold-worked samples
and for annealed samples. ' It should be em-

phasized that the calculation of bp(T) contains no
adjustable parameters, ' other than nRs. The

alue of nRs was determined empirically i e nRs
was an empirical parameter in the calculation
whose value was chosen for each sample to give
the best overall fit between the calculated and the
measured results for hp(T) for the sample. This
procedure yields a value for nRs that is accurate to
within 0.2.

The value for the ratio pd;, /p; p for each sample
was determined in the following way. For the
cold-worked samples, the value of pd;, /p; „was
obtained by assuming that for the initial unstrained
annealed sample, pd;, is negligible and p; p equals
the measured residual resistivity po. Subsequent
cold-working increases pd;, without affecting p p.

Thus, the increase in the measured po upon cold-
working is ascribed to an increase in pd;, . For the
annealed samples, ' the ratio pd;, /p; ~ was taken to

1

be —
4 for the sample that was annealed for 2 h at

270'C (see Ref. 12 for justification). This fixes p; „
for all the samples. Since annealing reduces pd;,
without aAecting p; p, the measured reduction in

po upon annealing is ascribed to a reduction in pd;, .
We now estimate the uncertainty in the resulting

value of pd;, /p; . I.et us assume for the cold-
worked samples that even in the annealed un-

strained state, up to 20% of po may be due to pd;„
thus introducing an uncertainty of 20% into the
value of p; p Similarly, let us assume for the an-

nealed samples' that the value of p; „is uncertain

by up to 20%. These assumptions lead to the un-

certainties in the values of the ratio pd;, /p; ~ that
are indicated by the horizontal bars in Fig. 4.
Since the uncertainty varies with the value of
pd /p p we have included two horizontal bars in
two different regions of the figure.

In summary, we may use the data for hp(T) on
cold-worked and annealed' samples of Al to
deduce values of nRs as a function of pd;, /p; „.
The results may be regarded almost as "experimen-
tal" data points, which are plotted as circles in Fig.
4. The agreement between the calculated curve for
n ps vs pd' /p p and the "experimental" data points
is evident from the figure.

The calculated results for the noble metals are
presented in Fig. 5, where we plot nRs as a func-
tion the ratio pd;, /p; p for Cu, Ag, and Au. The
calculations were based on the values qo

——0.003
and cos8=0.6. As indicated in Eq. (3.2), the un-

certainty in the calculated values of nRs is -0.5

Cu

Ag

0
I

~d ts~~ mp

FIG. 5. Calculated values of nRs for the noble metals
as a function of the ratio pd;, /p; ~.

due to the dependence of the results on the values
chosen for qo and 0.

Although we have not included any "experimen-
tal" data points in Fig. 5, as we did in Fig. 4 for
Al, there does exist evidence regarding Ag that
supports the magnitude of the calculated values for
n~s given in Fig. 5. The same procedure that led
to the "experimental" data points for Al of Fig. 4
was also used' ' to calculate hp(T) for Ag. It
was found that empirical values of -1 for n Rs led
to good agreement between the theory' ' and ex-
periment ' for bp(T) for the unstrained samples
of Ag that were measured, in agreement with the
calculated curve of Fig. 5. However, we cannot in-
clude these "experimental" results in Fig. 5 because
there is no clear method for determining the value
of pd;, /p; „for these samples. Nevertheless, the
empirical values of n~s for these samples of Ag is
certainly about what one would expect from the
calculated curve of Fig. 5. Moreover, we note that
the large difference in the values of nRs for Al as
compared to Ag that results from the theory (com-
pare Figs. 4 and 5) is reproduced in the empirical
values of n Rs that are deduced for these two me-
tals from the low-temperature calculations of
bp(T). This close correlation between theory and
"experiment" for the different metals certainly
seems to be significant.

V. ELECTRON-PHONON SCATTERING AND
ELECTRON-ELECTRON SCATTERING

We now discuss some of the implications of the
present analysis of rd;, (K). Of particular interest is



the effect of rd;, (K) on the sample dependence of
the low-temperature electron-phonon scattering
contribution p~h(T) and the electron-electron
scattering contribution p,i(T) to the electrical resis-

tivity. At low temperatures, all samples corre-
spond to the "dirty limit, "by which one means
that the residual resistivity po dominates the other
scattering process, po»p~h(T)+p, i(T). Therefore,
the appropriate relaxation time is given by rRs(K)
of Eq. (4.1), with the value of the exponent nRs be-

ing determined by the value of the ratio pd;, /p; „
characterizing the particular sample under con-
sideration. The essential point is that in the dirty
limit, rRs(K) is the relaxation time that determines
al/ scattering processes, including both p~h(T) and

p,i(T). Hence, the values of both p~h(T) and p,i(T)
dcpcnd on MRS which in turn dcpcnds on th.c ratio

pd;, /p; p
for the sample. For this reason, two sam-

ples with diferent values of pd;, fp; p will have dif-
ferent values for p h(T) and for p,i(T), even though
both samples may have the same residual resistivi-

ty.
The calculation of the sample dependence of

pzh(T) and p,i(T), based on Eq. (4.1) for rRs(K),
has recently been carried out. ' ' ' ' The most
interesting result of the calculation is that the effect
of straining the samples, and thus increasing

pd;, /p; ~, leads to opposite effects for p~„(T) and for

p,i(T). An increase in pd;, /p; decreases (Ref. 15)

p&h(T) but increases p, i(T). Of course, annealing
the samples reverses the effects, increasing p„h(T)
while decreasing p,i(T).

These results can be understood qualitatively in
the following way. We first discuss p„h(T). If one
considers a sample without dislocations, then

pd;, ——0, po pimp~ and one has the usual deviations
from Matthiessen's rule. ' The essence of this
phenomenon is that, at a fixed temperature, the
value of p„h(T) is larger for samples having larger
values of po. The explanation for this pheno-
menon is that in the pure hmit [po « p„h(T)], the
appropriate relaxation time is rph(K), whereas in
the dirty limit [po»yah(T)], the appropriate re-
laxation time is v; z(K). The sample dependence
of p&h(T) at a fixed temperature arises solely from
the change in relaxation time. The calculation
shows that at low temperatures, the relaxation time
v; z(K) yields a value of p~h(T) that is very much
larger than that obtained with the, relaxation time
rsh(K), in complete agreement with experiment. '

Now consider samples that contain a signifIcant
density of dislocations. For such samples, the ap-
propriate relaxation time is rRs(K), given by Eq.

(4.1). Moreover, as the ratio pd;, /p;~ increases,
the relaxation time approaches rq;, (K). But, as we

have already remarked, rd;, (K) resembles r„h(K)
qualitatively, although with a much smaller value
of the exponent n. In other words, the eiTect of in-

creasing the dislocation density of the sample, and
thus increasing pd;, /p; ~, is to make the relaxation
time resemble r~h(K) more closely. Thus, straimng
the sample has the same effect as partially driving
the sample toward the pure limit, with a corre-
sponding decrease in the value of p~h(T).

These ideas have served as the basis for explicit
calculations of the effect of dislocations on p~h(T)
at low temperatures for polyvalent and noble met-
als. For Al, the calculations' ' have explained
quantitatively the observed decrease in p~h(T)
upon cold-working the samples and the observed'
increase in p„h(T) upon annealing the samples. For
Ag, the calculations' ' ' have explained quantita-
tively the marked sample dependence observed '

for p„h(T) for samples having almost the same
value of po.

We now discuss the effect of electron-dislocation
scattering on p,i(T). First, consider a sample
without dislocations. Then, pd;, ——0, po

——p; p, and
r(K) =rim~(K) =const is the appropriate relaxation
tlIDc. As discussed earlier, this is thc case cvcn
though the Fermi surface of the polyvalent and
noble metals is not spherical. It is su%cient that
most of the Fermi surface be very nearly spherical.
For electron-impurity scattering, nothing special
happens because of the small regions of nonspheri-
city of the Fermi surface near the Brillouin-zonc
boundaries, and these regions therefore have no ef-

fect on the determination of r, ~(K). A very simi-

lar situation prevails for electron-electron scatter-
ing. Here, too, nothing special happens because of
the small deviations of the Fermi surface from
sphericity. Therefore, a spherical Fermi surface
and the one-orthogonalized-plane-wave (1-OPW)
approximation to the electron wave functions con-
stitutes a reasonable first approximation. Before
exploring the consequences of this approximation,
wc emphasize that this approximation is totally in-
valid for discussing electron-dislocation scattering
or electron-phonon scattering, for which the small
deviations of the Fermi surface from sphericity are
of crucial importance.

For an isotropic (K independent) relaxation time
and I-OP% wave functions, it is well known' that
normal electron-electron scattering does not contri-
bute to the resistivity. A normal electron-electron
scattering event merely involves an exchange of
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momentum between the two electrons being scat-
tered, without any net momentum loss to the sys-
tem and hence is not a resistive scattering process.
Moreover, for a 1-OPW electron wave function,
umklapp electron-electron scattering events do not
occur because of translational invariance. ' There-
fore, pd(T) vanishes. Only when the multiple-
OPW character of the wave function is taken into
account does one obtain a nonzero p,~(T).

A recent analysis' has shown that this situation
is fundamentally changed when the relaxation time
is not isotropic, but rather depends on K, as occurs
in the presence of electron-dislocation scattering.
Then, even for 1-OPW wave functions, normal
electron-electron scattering events do increase the
resistivity by scattering the electrons into regions of
the Fermi surface of strong scattering. The in-
creased resistivity implies a nonzero p,~(T) even for
1-OPW wave functions. Therefore, the presence of
dislocations increases the total p,~(T) by adding a
normal-scattering 1-OPW contribution to the usual

umklapp-scattering multiple-OPW contribution
that is always present, even in the absence of
electron-dislocation scattering.

Although a quantitative calculation of the
enhancement of pd(T) due to electron-dislocation
scattering has not been carried out for noble and
polyvalent metals, it is not difficult to estimate the
magnitude of the eff'ect. From the calcula-
tions of the anisotropy factor 6 for polyvalent
and noble metals, it follows that the unklapp term
is roughly half as large as the maximum value of
the normal term. Thus, the maximum possible
normal contribution would enhance p,~(T) by
roughly a factor of 3 over its umklapp value. Since
the anisotropy of the dislocation relaxation time
enhances the normal contribution to about 10% of
its maximum value, ' we should expect that pd(T)
would be enhanced by about 30%, with something
like a factor-of-2 uncertainty in the value. In other
words, the magnitude of p,~(T) for a sample con-
taining primarily dislocations with few impurities
should be about 20—60% larger than for a sample
containing primarily impurities with few disloca-
tions.

We now consider the experimental evidence for
this predicted enhancement of pd(T) for polyvalent
and noble metals. There are recent, accurate low-
temperature resistivity data available for Al and for
Ag. For Al, the data of Ribot et al. ' exhibit a
sample dependence of -0—15% for p,~(T),
whereas the data of Sinvani et al. ' exhibit a sam-

ple dependence of -20—30% for p,~(T). For Ag,

the analysis' of the various recent data ' ' show
about a 50% enhancement in p,~( T) for samples
with a larger value of pdis/pimp. These results afe
certainly consistent with the above estimate of the
enhancement factor of p,~(T) due to electron-
dislocation scattering. Moreover, note that the
enhancement factor of Ag is clearly larger than for
Al. Other quantitative difFerences between Al and

Ag have previously been noted in this paper.
Finally, a few words should be said about the al-

kali metals. Although the calculation of rd;, (K)
for the alkali metals does not lie within the scope
of this paper, it is nevertheless in place to point
out that the results for the alkali metals are very

different from those of the polyvalent and noble

metals with regard to both p~h(T) and pd(T).
First, the enhancement of p,~(T) due to electron-

dislocation scattering is very much larger for the
alkali metals than for the polyvalent or noble me-

tals. This difference is due to the fact that the
alkali-metal wave functions are primarily 1-QPW
in character. This fact explains the order-of-
magnitude enhancement factor for pd(T) observed

for K in recent experiments. ' ' It also explains
the anomalously large value for p,~(T) recently ob-

served for Li. Second, the effect of electron-
dislocation scattering on pzh(T) is to increase

p„h(T) for the alkali metals, in direct contrast to
the situation for the polyvalent and noble metals.
The reason for this totally different behavior for
p„h(T) for these two classes of metals is due to the
phenomenon of phonon drag. ' Phonon drag is an
important effect for p„h(T) only for the alkali me-

tals, but not for the polyvalent and noble metals.
A complete discussion of these various ideas will

be presented in separate publications.

VI. SUMMARY

A calculation has been performed of the relaxa-
tion time for electron-dislocation scattering for
polyvalent and noble metals, based on a simple
model for the transition probability for electron-
dislocation scattering. Our principal results are the
following.

(i) The marked K dependence of rd;, (K) for
polyvalent and noble metals was shown to arise
from a combination of two factors, viz. , the non-
sphericity of the Fermi surface and the predomi-
nance of very-small-angle scattering events for
electron-dislocation scattering.

(ii) A large quantitative difference was found be-



6818 A. BERGMANN, M. KAVEH, ANI3 N. O'ISER

tween the rd;, (K) calculated for Al and that calcu-
lated for the noble metals. Reasons for this differ-
ence were presented.

(iii) The analysis was generalized to real samples

by including the effect of electron-impurity scatter-
ing on the relaxation time. The important parame-
ter characterizing a sample was found to be the re-
lative strengths of electron-dislocation scattering
and electron-impurity scattering.

(iv) The results of the explicit calculation of
rd;, (K) were compared with previous empirical
determinations. Excellent agreement was found be-
tween the theory and the empirical determinations
of rd;, (K) for measured samples of Al and Ag.

(v) The present results are shown to provide sup-
port for the recent theories of the efFect of elec-
tron-dislocation scattering on the low-temperature
electron-phonon and the electron-electron scatter-
ing contributions to the electrical resistivity.

FIG. 6. Schematic plot of the cross section of the
Fermi surface of a noble metal, showing the intersec-
tions of the Fermi surface (solid curve) with the
Brillouin-zone boundaries (dashed lines) which are
separated by the reciprocal-lattice vector G. The initial
and final electron states K~ and K2 lie in the nonspheri-
cal portion of the Fermi surface ("neck") near the
Brillouin-zone boundary.
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AppENDIx

We want to justify Eq. (2.6) by showing that

[v(K2) —v(K, )]'=(A'/m)'[A G2/4m
~
w(G)

~

]'q',

(A 1)

for the case for which K& and K2 lie very close to
each other and also very close to the Brillouin-zone
boundary of a polyvalent or noble metal. Thus,

q =K2—K~ is a small quantity. The relevant
geometry for a noble metal is given in Fig. 6. The
geometry for a polyvalent metal is quite similar.
The solid curve in the figure is the Fermi surface
and the two dashed lines are the Brillouin-zone
boundaries. The reciprocal-lattice vector G con-
nects the two plane waves needed to represent the
pseudo-wave-function of both electron states K&
and K2, and ur (G) is the corresponding screened,
electron-ion pseudopotential matrix element. It is
convenient to choose axes in K space such that 6
points in the z direction.

Since the velocity v(K) of the electron is given
by the derivative of the energy E(K), we begin by
writing down the standard two-plane-wave expres-
sion' for the energy of an electron in state K,

E(K)= —,[—,(K—6) + —,K ]
——, I[—,(K—6) ——,K ] +4tc I'

(A2)

where the minus sign before the square root shows
that we are dealing with the lower band. %e have
used atomic units (A'=m =1) and introduced the
abbreviated notation w =—

~

tU(G)
~

. Since G is in
the z direction, the components of v(K) in the x
and y directions are unaffected by the nonsphericity
of the Fermi surface. Diff'erentiation yields

U„(K)= =E„,BE(K)
BE„

Uy(K)= =Ey .BE(K)=
BE,

(A3)

=K,—2 G+ —,GBL K (6K + 16M )

(A4)

b x =(K—G) —E

We need v(K2) —v(K&). The x and y com-

However, in the z direction, the effect of the non-
sphericity of the Fermi surface is crucial. Differen-
tiation yields

(K) .BE(K)
BK,
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ponents are trivial:

u„(K2}—u„(Ki }=E2„—Ki„——q„,

uy(Kq) —uy(Ki) =K2y —Eiy ——
qy .

For the z component, we exploit the fact that q, is
a small quantity and make a Taylor expansion
around E&, to obtain

u, (K2) —u, (Ki) q, [Bu,(Ki)/BKi, ]

This reduces (A7) to

u, (K2)—u, (Ki) q, (1—G /4w) .

Combining (A6) and (A8) yields the 6nal result

[v(K2) —v(Ki)]

(iri/m) q

(A8)

=q, [1—16G w (b, z+16w ) / ] .

(A7)

Thus far, the results apply to any initial electron
state K&. We now specialize the results to the case
at hand for which K~ lies near the Brillouin-zone
boundary. Thus, E~, —,6, implying that kg=0.

where we have ignored a small term and restored A

and m. Since the factor in brackets appearing in
the q, terrr1 is of the order 1O, one may ignore the

q term unless q happens to lie entirely in the x-y
plane. Similarly, for a general direction of q, the
magnitudes of q, and q are comparable. Ignoring
the first term in (A9) and replacing q, by q in the
second term leads directly to Eq. (Al).
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