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The virial expression vahd in density-functional theory contains an integral over the
gradient of the effective exchange-correlation potential. The significance of this term in

correcting the noninteracting kinetic and electrostatic energies is discussed in this work.
From the gradient integral in the local density approximation an expression is derived for
the'kinetic-energy part of the exchange-correlation energy density, and its connection
with the derivation of von Barth and Williams is discussed. To illustrate the application
of these developments to the molecular case, results are presented from Gaussian-orbital
cluster calculations for H2. In this study the forces in the dimer are calculated using the
Hellmann-Feynman and virial theorems, and results are compared with the force obtained

by direct interpolation from the binding-energy curve. The usefulness of the various

methods for calculating the force is discussed.
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The Hellmann-Feynman theorem is obeyed by local
density functionals as well, provided the only im-

plicit Xp dependence in E„, is that of n (r ).
In terms of exact quantities T and U (the exact

kinetic and potential energies, respectively, of the
interacting system), the virial theorem can be writ-
ten in the force form

—g Rq VqE=2T+ U .
p

In the density-functional formalism of Hohen-

berg, Kohn, and Sham' (HKS) the ground-state

energy can be written as a functional of the density
n(r) in the form

E[n(r)]=T,[n(r)]+U„+E„,[n(r)], (I)

where T, [n ( r )] is the kinetic energy of a nonin-

teracting electron system with the same density as
the interacting one, U„ is the classical electrostatic
energy, and E„,[n (r)], by definition, is the ex-
change-correlation energy functional. It is easily
shown, e.g., by following the procedure described

by Slater, that the electrostatic form of the
Hellmann-Feynman theorem is rigorously satisfied
in density-functional theory (see also Ref. 5). In
atomic units

These exact energies are those making up the
universal functional F[n]=(g

~

T+ U
~

i)'j), and it
is this functional which Kohn and Sham decom-
posed to define E„,[n]. From the definition in Eq.
(I), E„, contains the exchange and correlation ener-

gy of both kinetic and potential origin. Though
the amount of each is not known, the relation be-

tween the parts can be written

E„,=T„,+U„, , (4)

where T„, and U„, are defined by

T= Ts+ Txc

U=U„+U„, .
(5)

To obtain a working form of the virial theorem in
terms of the quantities defined in the density-
functional formalism, two approaches can be con-
sidered. Firstly, T and U in Eq. (3) could be ex-

pressed in terms of T, and U„using Eq. (5); this
will be addressed later in connection with the
local-density approximation (LDA). Alternatively,
the HKS one-electron equations can be used to
evaluate g Rz VzE with the result taken as an ex-

pression of the force form of the virial theorem
valid in density-functional theory. Subsequently, it
will be shown that these two procedures yield the
same result in the LDA.

Again, following the generalized procedure of
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Slater, it is straightforward to show that for an ar-
bitrary cluster of atoms in the density-functional
formalism. an exact virial relation of complete gen-
erality is obtained:

—pe VqE= 2T, +U„

ground state for the correct density, in the external
potential of the nuclei. Thus, the left-hand sides of
Eqs. (3) and (6) may be equated. It then follows
that

—f n(r)r. Vu„,(r)dr =2(T T,—)+U —U

—f n(r) r. V'u„, (r)d r,

where u„,(r ) is the efFective exchange-corrdation
potential function. This reduces to the expression
derived by Janak for the pressure in a solid if the
left-hand side of Eq. (6) {which holds for arbitrary
dlsplaccIncnts of tllc Iluclcl) ls 1'cstrlctcd to 1101no-

geneous volume changes. Janak discussed the
value of this relation in reducing numerical prob-
lems associated with pressure calculations for
solids.

The significance of the gradient integral in Eq.
(6) is clear from the definitions of T, and U„. It
must be just the proper combination of exchange
and correlation energies in the kinetic- and
potential-energy channels to give the correct in-

teracting quantities as represented by Eq. (3). To
see that this is valid, consider the energy functional
of Eq. (1). For each displacement of the nuclei,
this functional attains its minimum, which is the

From the definition of Eq. (5),

—f n(r) r. Vu„,(r)dr =2T„,+ U„, ,

i.e., the gradient integral represents just the proper
combination of exchange-correlation corrective
terms to produce the sum characteristic of the in-
teracting electron system 2T+ U on the right-hand
side of Eq. (6).

In the local-density approximation, the efFective
exchange-correlation potential becomes

u„(r)= [n(r)~„,(n(r))]
Bn (r)

=p„,(r),

where c„,(n (r)) is the exchange-correlation ener-

gy density derived from electron-gas calculations.
The potential It„,( r) depends on r jmpllcltly
thfollgh n (r) alollc. Frolll tllls, lt ls caslly sllowll

that in the I.DA

—f n (r)r.fp„,( (nr))dr= —3 f n(r)[e„,(n(r)) —p„,(n(r))]dr .

Now using Eq. (4) to replace U„„Eq. (8) becomes [with the I.DA replacement of u„,{r ) by p„,(n (r))]
n r r' Qp~~ n r dr =T~~+E~~

From thjs, a kjnetjc-energy density t„( (rn)) is defined which gives the kinetic contribution to the
exchange-correlation energy in Eq. (4), i.e., Eq. (11) can be written

—f n(r)r V~ttt„,(n(r))dr= —f n(r)[t„,(n(r))+e„,(n(~))]dr .

(10)

(12)

Identifying this with Eq. (10), an expression for

t„,(n(r)) is obtained:

t„,(n(r))= 3p„,(n(r)) 4e„,(n(r)), —

defining the exchange-correlation contribution to
the kinetic energy of the homogeneous i'nteraeting

electron gas in the I.DA. This expression has also
been derived by von Barth from considerations
that e„,(n(r)) satisfies the virial theorem. This
analysis is discussed by Williams, Kubler, and
Gelatt and by Williams and von Barth. ' Thus,

(14)

so that t„,{n ( r))=0. It is then readily apparent
that Slater's demonstration that the Xa model sa-
tisfies the virial theorem is valid, for he included
all exchange-correlation contributions in the
potential-energy term and used T, as the kinetic
energy. In this case, Eq. (6) reduces to

r

the t„, derived directly or through Eq. (6) are
equivalent in the LDA.

It is interesting to observe that for the statistical
(Xa or p'i ) exchange model,

p,.(n(r)) = —,
' e„(n (r)),
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TABLE I. Total energy and forces (in a.u. ) in Xa and GL models, using a [8s 3p/4s 3p] Gaussian basis. The forces
are determined from the virial expression Eq, the Hellmann-Feynman theorem FHF, and differentiation of E, I'F.

1.20
1.30
1.40
1.50
1.60

-1.0576
—1.0671
—1.0712
—1.0714
—1.0688

0.1295
0.0656
0.0198

—0.0132
—0.0369

0.1326
0.0681
0.0219

—0.0112
—0.0349

0.1290
0.0653
0.0193

—0.0136
—0.0376

—1.1455
—1.1545
—1.1580
—1.1576
—1.1544

0.1232
0.0594
0.0137

—0.0192
—0.0428

0.1265
0.0621
0.0161

—0.0169
—0,0405

0.1229
0.0592
0.0133

—0.0194
—0.0433

—g R~ .Vp F.=2T, +U„+U„,=2T, +U,

as derived by Slater.
Relative to the number of force calculations in

Hartrcc-Fock and configuration-interaction molec-
ular studies, rather little attention has been directed
to this important problem in applications of the
LDA to molecules. In the remainder of this paper,
some results are given of a study of the force in the

H2 molecule employing some of the previous
developments for the virial and Hellmann-

Fcynrnan theorems.
Calculation of the force from the Hellmann-

Feynman theorem requires well-converged solu-
tions determining the density n (r) in Eq. (2), and
the integral in the expression must be evaluated
with precision. The calculation is more difncult
than that required for the total energy, since the
latter obeys a minimum principle, whereas the
force does not. To remove the problem of sensi-

tivity of the electrostatic potential to the density
representation, a Gaussian basis set was adopted
for this study. In this basis, the electrostatic (r t2 )

interactions are evaluated analytically. The prob-
lem of achieving a high degree of convergence
remains; however, for the light atoms good Gauss-
ian basis sets are available, and procedures for ex-
tending the basis to improve convergence are well

known. In this study, computatioral procedures
were developed for solving the spin-polarized one-
electron equations and evaluating the total energy
and electrostatic forces. The integral algorithms of
McMurchie and Davidson" were used to evaluate
the overlap and Coulomb integrals and matrix ele-
ments, and exchange-correlation-dependent terms
were evaluated numerically using three-dimensional
(Diophantine) numerical sampling. ' In this study,
a contracted [Ss 3p/4s 3p] Gaussian basis set was
used for the dimer calculations, where one s func-
tion was that of the free H atom. This 1s atomic
solution was obtained from the cluster calculation
in a single-site mode, using exponents from the Ss
Gaussian basis set for hydrogen given by Clementi
and Mehl. ' In this atomic calculation, all Gauss-
ian functions were free, so the resulting eigenvector
defines thc minimum cnclgy wlthln the prescribed
eight-Gaussian basis set. The supplementary basis
orbitals are those corresponding to the most diffuse
(three) s Gaussians of the atomic basis. A limited
total-energy optimization in the dimer calculation
served to define the exponents of the three p
Gaussians in the molecular basis. These uncon-
tracted s and p Gaussians provide the variational
freedom for the molecular states to respond to the
environment.

In Tables I and II, results are presented for two

TABLE II. Comparison of calculated and experimental equilibrium separation (R, in
a.u.), binding energy (E~ in eV), and vibrational frequency (co in cm ).

Experiment (Ref. 18)
Xo; GL

This work DCS {Ref. 19) This work LCMTO {Ref. 20)

1.40
4.75

4K6

1.46
3.59

4110

1.46
3.59

4110

1.44
4.76

4227

1.44
4.76

4200
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FIG. 1. Force on the hydrogen nucleus in the H2 di-

mer as a function of internuclear separation in the
LSDA of GL (Ref. 1S). The virial force (dots) is calcu-

lated from Eq. (6) and the Hellmann-Feynman force (tri-

angles) from Eq. (2).

popular exchange-correlation models, the Xu with
a=0.7 and the local spin-density approximation
(LDSA) of Gunnarsson and Lundqvist' (GL). A
summary of force calculations by three different
methods appears in Table I.' The quantity Fz is
the force determined from the virial theorem, Eq.
(6), and EHF is the Hellmann-Feynman force, Eq.
(2). The third force I'E is determined by differen-

tiation of a Lagrange polynomial fit to the total en-

ergy dependence on internuclear separation. ' All
three forces in each exchange-correlation model are
seen to be consistent with one another, with FE
and Fv being in best agreement. The accuracy of
Eq. (6) for determining the "virial" force is ap-
parent from these results. The forces FHF and Fz
in the GL model are plotted as a function of inter-
nuclear separation in Fig. 1.

Spectroscopic parameters calculated with the

two exchange-correlation models are compared
with experiment and with results from other works
in Table II. The Xa results are from Dunlap,
Connolly, and Sabin, ' who treated the total energy
as a functional of n(r ) and n(r) (charge fit densi-

ty). Similarly, the results obtained using the GL
model are in excellent accord with those reported
by Gunnarsson, Harris, and Jones using the linear-
combination-of-mufiin-tin-orbitals (LCMTO) ap-
proach. Since the same method was used in the
present calculation for both Xn and GL models, it
can be definitively stated that the differences be-
tween the Xu and GL models in Table II are due
to the treatment of exchange and correlation alone,
and not ascribable to methodology.

The relative convergence rates of the kinetic and
total energies, eigenvalues, and forces are apparent
from Table III. For the various basis sets noted,
calculations were carried out at the equilibrium
separation using the Xa model. In this case, Eq.
(14) holds (for the exact solution) and at equilibri-
um 2T, + U = 0, i.e., —U/T, converges to 2.0.
Comparison of E and T, (especially with the small
basis sets) shows the behavior expected in that E
obeys a minimum principle, whereas T, does not.
This would favor determination of FE were it not
for the necessity to carry out total-energy calcula-
tions for (in principle) arbitrary displacements in
each coordinate for each of the N atoms in the
cluster. On the other hand, Fv and FHF are
evaluated at a single separation, but the expression
from which the virial force is determined, Eq. (6),
does not obey a variational principle (e.g. , in the
Xa case Fv is determined from 2T, + U=E+ T, ),
although the convergence is considerably more ra-
pid than that of FHF. The computation of Fz is

TABLE III. Convergence of total energy E, kinetic energy T„eigenvalue e~, and viri-

al and Hellmann-Feynman forces (I'v and I'"HF, respectively) with basis size in H~. The
Xa exchange-correlation model is used; all quantities in a.u.

Basis
set

1$

2$

3$

4s
5s

(4s, 1p)
(4s, 2p)
(4s, 3p)
(4s,4p)

(4s, 3p, 1d)

—0.998S
—1.0614
—1.0685
—1.0688
—1.0688
—1.0716
—1.0717
-1.0717
—1.0718
—1.0718

0.6739
1.0017
1.0643
1.0704
1.0702
1.0719
1.0722
1.0722
1.0722
1.0721

—0.4116
—0.3441
—0.3422
—0.3428
—0.3428
—-0.3405
—0.3405
—0.3403
—0.3403
—0.3403

+v

—0.2231
—0.0411
—0.0029
+ 0.0011
+ 0.0010
+ 0.0003
+ 0.0003
+ 0.0003
+ 0.0003
+ 0.0002

+HF

+ 0.1889
+ 0.0760
+ 0.0573
+ 0.0598
+ 0.0597
+ 0.0091
+ 0.0060
+ 0.0023
+ 0.0002
+ 0.0020



24 VIRIAL THEOREM IN THE DENSITY-FUNCTIONAL. . .

further restricted to systems of particular sym-

metry. On the other hand, FHF can be calculated
for systems of arbitrary symmetry at a single
separation and is conceptually useful in its connec-
tion with the gradient of the classical electrostatic
potential at the nucleus. The diAiculties in con-

verging FHF are well known. A first-order error
in the wave function, which gives a second-order
error in the total energy, produces an error of first
order in FHF. The requirement for large basis sets
to describe accurately FHF is a consequence of po-
larization effects in the bond density. Since FHF is

computed as the diA'erence between the force of nu-

clear repulsion (exactly represented) and the force
of attraction between electrons and nuclei, a precise
representation of the electronic density shifts is re-

quired. Studies in the present approach are under

way to explore the usefulness of force calculations

based on the valence part of the electronic density.
A novel approach for circumventing the limitations
of the Hellmann-Feynman force calculation by
treating a valence-only energy functional has also
been recently suggested.
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