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A calculation of the electron quasiparticle lifetime in a disordered metal due to
electron-electron scattering is given. The calculation takes account of the diffusive nature

of electron motion which leads to enhancement of the diagonal exchange term of the elec-

tron self-energy. The lifetime, as a function of temperature, behaves as T " ' where d is

the dimensionality, in contrast to the T behavior of ordinary Fermi-liquid theory. At
d =2, a logarithmic singularity occurs which leads to {T1nT) behavior of the lifetime

and a failure of the quasiparticle picture near the Fermi surface. The calculated lifetime

agrees in temperature, Fermi energy, and elastic mean-free-path dependence with recent

experiments on silicon inversion layers.

I. INTRGDUCTION

In this paper we calculate perturbatively the ef-

fects of electron-electron scattering on the lifetime
of the one-electron eigenstates in a disordered met-
al. In the pure metal, it is well known that the
electron-electron interaction produces a quasiparti-
cle decay rate 1/r„of order U~K(kgT/Ep. ) ln all
dimensionalities. Here a ' is the screening length
of the electron gas whose Fermi velocity is UF. Re-
cently it has been pointed out that in the presence
of static impurity scattering, the diffusive nature of
the electron density propagation causes important
modifications in the influence of electron-electron
scattering on the thermodynamic and transport
properties. ' In particular, one expects anomalous
behavior in the density of states, the electrical con-
ductivity, the Ha11 effect, and the magnetoresis-
tance. In addition to depending on the degree of
disorder, these anomalies depend on dimensionality
and many of them appear to have been observed
experimentally.

The scaling theory of localization predicts that
for weak disorder in two dimensions (2D), the con-
ductivity depends logarithmically on a characteris-

tic length scale. At finite temperature this scale is
the Thouless length Lz which is determined by
inelastic scattering processes. Lz is the distance
an electron diffuses in an inelastic time ~;„and is

given by L~ ——D~;„where D is the elastic diffusion

constant. Since ~;„~T ~, the extra conductivity
due to the localization effect in 20 may be written
as"

bo =(e /m A')(p/2) lnT/To .

Information on the exponent p is best obtained
from magnetoresistance experiments on 20 sys-
tems. "' The strength of the inelastic coupling,
i.e., the scale To, may be estimated from experi-
ments on thin wires' where the behavior is, in-
stead of ln( T /To ), b o' ~ ( T/To )

From the point of view of the localization
theory, two difHculties arise in connection with Eq.
(1.1). One is that experiments in dirty metal films
and inversion layers and in thin wires appear to
favor p=1, and so far the only process proposed'
for r;„(scattering from two-level tunneling states)
which has p =1 independent of dimensionality is
not strong enough to account for the large To
which is observed in thin wires. ' At the same
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time, contributions from electron-electron scatter-
ing to the 2D resistivity' are not distinguishable
from the purely localization effects since the former
have precisely the form of Eq. (1.1) with, in some
cases, @=1and k&TO ——fi/~ where ~ ' is the elastic
scattering rate from the static disorder.

We have remarked above that electron-electron
scattering gives p =2 for the inelastic rate in clean
samples. In this paper we show that electron-
electron scattering gives an additional contribution
with p = 1 in the dirty 2D case. In fact in thin
metal films, the p =1 contribution dominates the
conventional T (p =2) contribution at low T even

if the films are rather clean.
The question of the electron™electron scattering

rate in the disordered case has been discussed pre-
viously, at d =3, by Schmid' and by Atschuler
and Aronov' who have extracted 1/w„ fronl the
Boltzmann equation for quasiparticle excitations.
From such calculations, or from a simple argument
we oA'er in Sec. II, one expects 1/z„~ T~~ . How-
ever, we shall find that at d =2, logarithmic
corrections have a structure which makes it essen-
tial to calculate the full energy and frequency-
dependent electron self-energy rather than restrict
oneself to the energy shell as in Refs. '17 and 18.
The result becomes 1/~„~ T lnT for d =2.

In Sec. II we formulate the problem in terms of
the eigenstates of the disordered noninteracting
problem. A simple calculation of the density of
states correction is presented. ' The calculation
makes it clear that the origin of the singular
corrections comes from the assumed diffusive na-
ture of density fluctuations, which in turn imply
strong spatial correlations among eigenstates that
are nearby in energy. In Sec. III a more rigorous
treatment of the dynamically screened interaction
is developed, and the decay rate due to electron-
electron scattering is given. We compare our re-
sults to experiment on Si inversion layers in Sec.
IV.

In the disordered metal we denote the one-
electron eigenenergies and eigenfunctions by E
1(~ ( r ). We add an electron in the state m and ask
for its time evolution in the presence of the elec-
tron-electron interaction. For the latter, we take
the dynamically screened Coulomb interaction
which we treat in the lowest order of perturbation
theory. The screening is effected by the average
dielectric constant in the presence of impurities. In

the long wavelength, low-frequency limit, at d =2,
we have'

(2m.e /q)(
~

0
( +Dq )

(
i
0

i +Daq)
(2.1)

where fl is a Matsubara frequency mkTn (n is an
even integer) and ~ is the inverse screening length
2fPle

Equation (2.1) is appropriate for inversion layers
and extrenlely thin films. For thicker films, we
need the 3D result

4me
~

0
(
+Dq2

q fQ f+Da.,
(2.2)

Here the symbols are as in Eq. (2.1) except that ~3
is given by 4nze k~/m. Typically, in calculations
only those momen. turn transfers satisfying Bq
~

~
0

~

=kT will be important. Then if the film
thickness r is less than v'D/kT only the smallest
transverse component qz

——0 will enter and a 3D
sun1 over nlon1cntun1 transfers bccon1es

1 I d q
vol r (2'�)2

q q

(2.3)

One then finds that a thin-film 3D calculation is
identical to the 2D calculation except that for each
Coulomb interaction there is an extra factor m/krt
reflecting both the phase space restrictions of Eq.
(2.3) and the difference between a3 and s.

In this paper we focus our attention on the one-
electron properties which are described by the
Green's function for a given electron configuration

6 (co)=(m
~

(co H) '
~

rn) . — (2.4)

The effect of interaction is included in the self-

energy correction X~(~) so that

6 (co)= [ar —E —X (co)] (2.5)

(2.7)

We obtain

6 (co)=Z/[(co F. ) iy ], —— (2.8)

We are keeping only the diagonal terms in the
self-energy because we shall find that it is enhanced
by wave-function correlation. Writing X
+ iI ~, we perform the standard expansion

BA
(a))=h (E )+(co E)—

BN
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Z —1 (2.9)

=-AE+i I F, we see that the average density of
quasiparticle states is corrected by the amount

(2.12)

y =ZI (co=E ) . (2.10)
and the average quasiparticle decay rate is given by

In Eq. (2.8) E is interpreted as the quasiparticle
energy, ym the decay rate of the quasiparticle, and
Z is the fractional weight of the quasiparticle exci-
tation.

To discuss the average energy shift and the aver-
age decay rate we have to study the impurity aver-
age of the self-energy for a fixed E, i.e.,

X~(m)= (+5(E—E )X„(m)),„, (2. )))
Ep

where %0 is the one-spin density of states and

( ),„denotes impurity averaging. Writing Xz

yE
——ZI =I'E, (2.13)

where 1~——(I/Xo)X 5(E E)I—' (a)=E ).
work to lowest order in the screened Coulomb in-
teraction so that we can evaluate ~ at co=I. in
Eqs. (2.12) and (2.13), and set Z =1 as we have
done in Eq. (2.13). (As we shall see, an exception
to the former is in the evaluation of I z in 2D. )

As an illustration we consider a model problem
of electrons interacting via a static interaction u(r ).
Expanding in terms of the one-electron eigenstates
(5(~, we have

H~„, ——J dr dr ' g @(r ')g'„(r)u(r —r ')Pz(r )g&(r ')a~+a+azaq .
mnpq

(2.14)

In the Hartree-Pock approximation, the four-Fermion term is factorized. Let us focus our attention on the
exchange term; the Hartree term can be shown to be small if the potential u(r) has a range larger than the
interparticle spacing. We shall see that the diagonal exchange term is enhanced because of wave-function
correlation, so that we write H;„,=+X a~ a, where

X~ = — g fdr dr 'P" (r)1()*„(r')1() (r ')1()„(r)u(r —r) .
n occupied

(2.15)

Suppose we insert a particle at energy E. Its energy will be shifted on the average by the amount

0
X~= -g(5(E E)X~ ),„=——J dE'F(E, E', r, r ')u(r r'), —

0 m
(2.16)

where

F(E,E';r, r ')=+5lE E)5(E'—E„)g' (r)—g'„(r"')1t) (r ')g„(r) .
m, n

(2.17)

(2.18)

In a metal the density fluctuation decays by diffusion. With this assumption it can be shown that '
r

In Eq. (2.17) we need to know the average of a product of four wave functions. Since we do not have an ex-
plicit solution of the impurity problem, we seem to be faced with a hopeless task. Fortunately we notice
that the combination required in Eq. (2.17) is precisely that which enters in a density-density correlation
function defined as

A(qco)= J dtdr dr 'e'"'e' q '(" " '([p(r, t) p(r ', 0)]) .

A (q, co) =—Im
Bn

Bp
Dq

—t cu+Dq
(2.19)

where D is the diA'usion coefficient. The diffusive behavior is evident in the denominator in Eq. (2.19) and
will be referred to as the diAusion pole.
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To make the connection to Eq. (2.17), we expand the operator p in Eq. (2.18) in terms of the exact eigen-
states. Restricting ourselves to T =0 for simplicity, for m & 0 only one ordering of the commutator is non-

vanishing and Eq. (2.18) becomes

A (qadi)=g fdr dr 'e'q'' " '(1t (r)1(t*„(r)+(r')f„(r ')6(E„E—ro)—),„,
m, n

(2.20)

(2.21)

where the sum is restricted to n occupied and I unoccupied. We convert the sum into an energy intergra-
tion and compare with Eq. (2.17). We have

A(q, co)= f dE f dE'F(E, E', r, r ')e'q '" " ''5(E E' m—) . —

We expect F(E,E', r, r ') to be dependent on E E'—
and r —r ' (the latter because we have translational
invariance after impurity averaging). Then
F(E,E'; r, r ') =F(co, r r') and—Eq. (2.21) becomes

A(q, co)=cofF(cv, r)e'q'dr .

Comparing with Eq. (2.19), we have

D
Bp ~2+ {Dq2)2

(2.22)

(2.23)

where v(q) is the Fourier transform of v(r) and
d the dimensionality. According to Eq. (2.24) the
exchange interaction between the added electron
with energy E and the electrons in the Fermi sea
depends strongly on the energy separation. As a
result the self-energy is also dependent on E. This
will give rise to a change in the density of states,
given by

5N=
~&z dq Dq v(q)
BE (2n)" E +(Dq )

(2.25)

The integrand in Eq. (2.25) is singular in the limit

q, co~0. We can therefore replace v (q) by v (0).
Just from power counting we immediately see that
6N is logarithmically divergent in 20 and goes like
v E in 30. Equation (2.25) agrees with results
given elsewhere based on summation of diagrams. '

Equation (2.23) is remarkable because it is diver-
gent in the limit q, m~0. Going back to the defin-
ition F(co, r ) we see that the seemingly innocent as-
sumption of diffusion implies a certain correlation
between wave-function overlap for eigenstates that
are nearby in energy. We are now in a position to
calculate the self-energy using Eqs. '(2. 16) and (2.23)

XE —— f dE'

2

(E —E')'+ (Dq')'

(2.24)

The above model example is particularly simple
in that for a static interaction, XE is purely real
and independent of ~. This means that y=0 and
Z = 1. If the dynamically screened interaction [Eq.
(2.2)] is used, X is complex and depends on co. If
we compute X using Eq. (2.15) with a complex v

given by Eq. (2.1) or Eq. (2.2), we obtain a decay
rate I E which varies as E . However, the sim-

ple argument described here is not suAicient to
yield the full co dependence. This is done with the
more powerful method described in the next sec-
tion. Nevertheless, the simple method does pro-
duce the correct answer for the 5%~ defined i'n Eq.
(2.12). Specific-heat measurements are insensitive
to the quasiparticle fraction Z and are controlled
by X&, as can be checked by direct computation.
Qn the other hand, the single-particle density of
states, as measured by tunneling for instance, is
given by

E(co)=m 'QImG ~(co) (2.26)

and is sensitive to both Z and BEE/BE. At d =2,
Z has logarithmic corrections that diverge at the
Fermi surface. This in itself signals the failure of
Fermi-liquid theory in disordered 20 metals.
Furthermore, we shall find in the next section that
the decay rate I has a logarithmic singular be-
havior in co at finite T. This singularity will be
cured by including the real part of the self-energy
in the determination of E~ as shown in Eq. (2.7).
The result in decay rate for a quasiparticle is thus
proportional to T lnT which exceeds the width of
the thermal distribution at suAiciently low tem-
peratures.

III. CALCULATION OP COULOMB LIFETIME

We begin with a description of a method for the
calculation of the impurity configuration average of
any diagonal operator in the disordered energy-
state representation. The procedure is to write an
expression for the desired matrix element as a func-
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tion of the disordered eigenstate m. Since upon
configuration averaging, the eigenenergy E~ is not
fixed, an appropriate quantity to study is the
operator averaged over states m at energy E. At
this point, everthing can be written in coordinate
representation and impurity averaged in the con-
ventional manner.

%e apply the method to the self-energy of state
m which in the lowest order is given by the dia-

gram of the figure where the wavy line is the
Coulomb propagator V, (q, Q) of Eq. (2.1) and the
solid line is the Matsubara Green's function for an
intermediate state n. The steps described above
leading up to the impurity averaging are in the
Appendix. From Eq. (A6) we have the energy
averaged self-energy XE, it is ready to be impurity
averaged:

&s(co)= QV, (q, A) fdv . fdr

dr�

'e'q'" " '((G —G")„„.,(G —G")„„.z),„. (3.1)
(2m'i) Eo nq v i (co ——0)

The angular brackets indicate the impurity average;

6, 6 are retarded and advanced Green"s func-

, tions of the disordered Hamiltonian at coordinates
r and r ' and at frequency v or E. As discussed in

the Appendix, we have already separately averaged
the Coulomb interaction to obtain V, . Here, the
remaining impurity average makes the product of
the 6's translationally invariant; it is then con-
venient to proceed in momentum space. The aver-

age in Eq. (3.1) becomes

GR GA GR gA
k

%'e look for the terms which are large for small q,
where V, is large. These come from

(G (v)G"(E)),„and vice versa. In fact, for ex-

ample,

Gk+q &6k E i/~
v —E+iDq

(3 3)

The Q sum may be performed in the standard
manner after introducing Eq. (2.1) for V, . We con-
tinue the Matsubara frequency iu to the real axis
and take the imaginary part, ImX~(i co~co+i 5)
= I (co,E). The result is

Equation (3.3) and its complex conjugate go into
Eq. (3.1). The result is

V, (q, O, )
Xs (co) =kTQ

o ~i (co fl) E—+iD—q sgn(co 0)—
(3.4)

I (~,Z)= e'yD—'~q'f dy coth
2kT

hg
—6) g 1

y +eDq (y co+E)2+D2q—~ (3.5)

where e =De . A complete evaluation of Eq. (3.5)
is not feasible so we investigate separately the re-

gions Tg~u, E and T=o.
For large T, the square bracket in Eq. (3.5) may

be replaced by 2kT/y and the integral cut off for

~y ~

=0(kT). The last factor is rapidly varying so

FIG. 1. Lowest order self-energy diagram for an elec-
tron in a state n scattered to an intermediate state m
{straight line propagator 6 ) by the Coulomb interac-
tion V, {wavy line).

that elsewhere y may be replaced by ~—E. For
~co E~ ~&kT and—Dq ~kT, they integral sim-

ply gives a factor m/Dq . Thus we cutoff the q in-

tegral at Dq =kT. VA'th these simplifications we

find

—ex kT
1n(co E) /kTe . —

2
(3.6)

(kT/e) .
2

(3.7)

If we pass now to the energy shell to find the
quasiparticle decay rate, we need to cure the loga-
rithmic singularity at co=E. This can be taken
care of in a higher-order calculation which includes
the first-order shift of the quasiparticle pole 6
which is evidently
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The final result is then

r= —e ~- lnr/r, ,
kT

(3.&)

1 = [co+(E——co)ln(E co)/EJ —.8K 1

4 e

On the energy shell u=E we recover the result of
Schmid. "

%'e assume the quasiparticle renormalization Z
to be unit, so that the decay rate I is the ~ceded
quasiparticle width yz [Eq. (2.13)]. The Coulomb
correction to Z is of first order in the screened in-

teraction, though logarithmically dependent on T
and co. Thus in an approximation where only the
leading term in interaction is retained, I z ——yz.

where kTi ——De /e .
At T =0, the square bracket in Eq. (3.5) restricts

the y integral to the range (O, ro). The integrals are
most easily approximated when E —co ~0. Then,
as at finite T, we may replace y in the denominator
of the second to last factor by its value where the
rapidly varying last factor is largest, in this case
zero. %'ith this simplification the integrals can be
done with the result

In the case of thin wires, two factors of 1/k~t
will suppress the mechanism further and give a
temperature dependence of 1/~;„~ T' . This leads
to disagreement in magnitude with the recent
direct experimental determination of the 10 inelas-
tic rate at one particular temperature. Further-
more, the T'~ dependence of ~;„' leads to a T
behavior for resistivity based on the scaling theory,
in disagreement with the T ' behavior measured
experimentally. ' The explanation may be either
that the inelastic scattering rate is dominated by
other processes or that one is observing interaction
effects. Further experiments, possibly magne-
toresistance measurements similar to those per-
formed in 20, should clarify the situation.
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IV. DISCUSSION APPENDIX

Recent detailed measurements of negative and
positive magnetoresistance in 20 Si inversion

layers, ' when combined with theoretical analysis,
lead to accurate numbers for 1/~;„. Typically, for
films with resistances in the range 200—2000 Q
per square, 1/r;„=(10' to 10")Tsec

Our results for 20 systems may be expressed,
from Eq. (3.8), as

%e begin with a formal derivation of the starting
equation (3.1). The method here is appropriate
for the calculation of any operator in the disor-
dered energy-state representation.

For a given configuration of impurities, the self-

energy of state m in lowest order is given in the
figure where the wavy line is the Coulomb propa-
gator V, (q, Q) of (2.1) and the solid line is the
Matsubara Green's function for the eigenstate n:

r/r;„=(kT/EF—)lnT/T& . (4.1)
X (co)=kTQQV, (q, Q)G„(co—Q)l. „„(q).

This agrees in order of magnitude, dependence on
T and concentration (EF) with the data quot-
ed above. For thicker 20 systems, when k+t & 1,
the inelastic rate is suppressed by a factor m/kI; t. The factor L~«{q) is given by

(Al)

I-~-~(e)= f~r Jar'e"" ' 'g*(r)f. (r)g'. (r')g (r')

and arises because the Coulomb interaction couples
to the density which in this representation is deter-
rnined by the disordered one-electron eigenfunc-
tions g„(r). Notice that we have already confi-
guration averaged the Coulomb propagator to ob-
tain Eq. (2.1). Performing this average indepen-

I

dently neglects terms smaller then the ones we
keep by a factor at least 1/kFl where I is the elastic
mean free path. Thus we work always in the
weak-scattering limit kI;I ~~ 1 and we shall use
averaging procedures which are well known for
this domain. These methods are formulated for
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Green's functions and vertices in the coordinate
representation so it is convenient to transform Eq.
(3.1) by using the fact that

gg„(r)6„(co O)—g*„(r')=G(r, r', co II—) .

(A3)

Since the energy E is not fixed upon averaging,
an appropriate quantity to study is the self-energy
averaged over states m at energy E. This energy

average is obtained from

XE(co)= +5(E E—)X (co),
1

m

(A4)

where Xo is the one-spin density of states. Since

5(E E—)= —[6 (E)—6"(E)]/2tri,

we may use Eq. (A3) again and obtain

X (co)= — yV, (q, n)ydr dr 'e'q'" ' '6(r, r ';co n)[6—"(r ', r;E) 6"(r—', r;E)] . (A5)

Here A, R. denote the advanced and retarded components of G. The spectral function W for 6 is just given

by (G —6"). The remaining 6 in Eq. (A5) can be written as an integral over its spectral function, and we

finally obtain

&E(co)=— QV, (q, II) . Jdv . —Jdrdr 'e"" " '~(r, r ';v)M(r ', r;E) .
2triNo n

' '
2tri v i (co —II )— (A6)

To average over impurity configurations it is only necessary to consider the product of,ar s in (A6). The
averaging of this quantity is described in Sec. III.
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