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A continuous @ field theory with quadratic symmetry breaking and isotropic trilinear interac-
tion gp gd»kp, @Jitik is studied, to one-loop order in dimension d =6 —a, for an anisotropic

(n +1)-state Potts model. Effective critical exponents for the crossover induced by quadratic
symmetry breaking are calculated, and the r'esults, in the limit n =0, are applicable to the ther-

mally driven crossover in random bond-diluted ferromagnets near the percolation threshold.
The limitation of a single renormalized g is explicitly pointed out.

Consider a generalized (n +1)-state Potts model
on a lattice in which the pair interaction E;e,(r)
x e, (r'), in the representation' where e (r) are n +1
n-dimensional vectors (n =1, . . . , n +1;
i =1, . . . , n ) on the lattice site r, is not the same for
all components i. This amounts to break thc
equivalence of the Potts states. In a continuum,
field-theory version this leads to quadratic internal
symmetry breaking in the effective Hamiltonian den-
sity. In the spirit of renormalization-group theory,
Wallace and Young argued that this is the most
relevant perturbation and that there is a single trilin-
ear coupling gpdJkp;QJpk (summation over repeated
indices), with a tensorial coefficient dJk = e; eJ ek,
that is invariant under the jul/ symmetry group of the
usual Potts model. ' Nevertheless, quadratic sym-
metry breaking favors a crossover to states of lo~er
symmetry with a possible relevant change in trilinear
couplings, which is of considerable interest to study.
It has been proposed that thc thermally driven transi-
tion from the percolation threshold to the critical line
in randomly diluted magnets with nonmagnetic im-
purities is a realization of crossover in an anisotropic
one-state (the n =0 limit) Potts model. "The
theoretical aspects of quadratic symmetry breaking
have not been studied in detail so far. Neither the
change of critical exponents under crossover nor the
relevance of possible symmetry breaking in the trilin-
ear couplings has been established.

In this work we report the calculation of effective
critical crossover exponents in a continuous Q' field
theory with quadratic symmetry breaking and trilincar
isotropy. %e point out that there is a natural and
nontrivial symmetry breaking in the trilinear coupling
which has not been noted before and that can have
further consequences. %e show that trilinear isotro-
py is only restored by taking the renormalized cou-
plings at the isotropic Potts fixed-point value. The
validity of the results is, as usual, subject to an
analysis of the fully anisotropic theory, which will be
studied separately.

Our Landau-Ginzburg-wilson Hamiltonian that
corresponds to the Hamiltonian of Domany' for the
random bond-diluted Ising ferromagnet in the replica
limit m =0 of the anisotropic n +1 =2 state Potts
model is

T

H = d~x —,('7$)'+ —,r@'+ —,m $22
i

+
3I gPK diJk4i@J4'k

where @ is an n-component real field with longitudi-
nal and transverse components, @~ and $p, respec-
tively; $2 = $t + $2 with @t = $~Q„and @2

2= $p@p,
summation over repeated indices (used in all that fol-
lows), gp is a dimensionless couPling constant, and K

is an arbitrary momentum-scale parameter. The ten-
sorial coefficients are

II+1

dJk= Xe; 8J ek, I,J,k=1, . . . , Jt

a 1

in the convenient representation'

ep gyp jtL 1p ~ ~ ~ p m p

ep=( „rt„r),(( ot„r),tr. . . , (ot(r2 . . a. ), (3b)

p = m +1, . . . , n, where e„are "longitudinal" and

ep "transverse" components (formed by all possible
distinct products of rr„) of the vectors e, , in which n
labels the 2 = n +1 "states" of the spin variables
0.„=+1. Moreover, the ei are constrained by

e, ea=(n+1)S.Jt
—1, e; e;=(Jr+1)SJ,

Xe, =0.

our convention is that greek subindiccs run over
longitudinal components, latin over transverse ones,
except i,j,k, which stand for all components. It fol-
lows from (3a) that d„„s=—0, which has relevant
consequences.

The square of the critical mass, t, and the noncriti-
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cal mass m are related to the scaling fields of the ran-
dom bond-diluted Ising model, p, 1=p —p, and
p,p

= 8 in thc low-temperature limit, through
2/$ 2

t = p, i
—Am and m = p, 2, p being the bond concen-

tration with mean-field critical value p, and E =J/T
for an Ising pair interaction J.

%C renormalize 0 by dimensional regularization9'0
with generalized minimal subtraction (GMS)" and
the calculations are checked against renormalized per-
turbation theory regularized with a cutoff. '2 The re-
normalization is done at the critical theory for fixed
m. For the random ferromagnet this means renor-
malization at a point on the critical line. There are
no critical mass subtraction terms in dimensional reg-
ularization" and we can proceed as usual by taking
the critical line as given by mean-field theory. The
reason for going beyond minimal subtraction of
dimensional poles is that there are logarithmic terms
in the dimensionless mass P, =—m/n which appear
behind the poles in an expansion in ~ =6 —d that
have to be subtracted in the limit of large p, , in order
to make the theory finite, in complete analogy with

@ field theory with quadratic symmetry breaking. "
Although the massive propagators vanish in the limit
of large P, , they lead to singular (in P,) contributions
to the diagrams. %C are interested in allowing p, to

vary over an infinite range in order to study the glo-
bal features of the crossover. This amounts to a re-
scaling of p in the flow equations for the renormal-
ized parameters.

Let us first assume that, instead of the single iso-
tropic trilinear coupling in Eq. (1), we have the four
uo«lvvvlklvf v4vl~ u1& dlvvw@lv@v4~~ uln dlvmv

e/2 e/2 a/2

$„, and ups'i d „„$ Q„$, Ev.en if such cou-
plings are not present in the original Hamiltonian
they will be generated in the renormalization-group
equations by the quadratic symmetry breaking for
small but finite m. Although d„„„=—0 the uo coupling
should not be left aside. Otherwise the isotropic
Potts model behavior will not be recovered in the
m =0 limit. Moreover, an internal uo vertex con-
nected to other internal vertices can lead to nonzero
contributions to some of the irreducible three-point
vertex functions l /Jk which al'c nccdcd 1n thc rcnor-
malization scheme. Indeed, 1 ( )„ involves a term
proportional to e e„e~e d» —summation over re-
peated indices —which is (n +1)d„„if e~e = e e„,
that is e e e =e„, for n & m, where use is being
made of e; = 1 for any i

%C are primarily interested in the critical behavior
of the longitudinal two-point vertex I „„.To one-
loop order, the bare vertex is

I'„"„'(ku, , P) = k'8„„(1—(n +1)'[(m —1)ul'Jl+-,' (n +1 2m) u—jJ,] },
where Jl(k, p, ) and JI(k, p, ) are dimensionless integrals with one and two internal transverse propagators
(q'+ P, ') ', and one or no longitudinal propagator q ', and subtracted as usual at k —= k/n =0. Although a cou-
pling constant renormalization is not needed to obtain a renormalized I R„„to this order, it will be needed for the
fixed-point equations. In the fully anisotropic theory, that will be reported elsewhere, ' the renormalization of a
given u& is related to that of all others. In the case of isotropic trilinear couplings that we are concerned with in
this work we note first that, even if all u; arc taken to be the same, there are two distinct three-point vertex func-
tions and to keep track of this we let u2 W u1 in

(d„„) 'I"„"„' (kl, kl kl, ul, p) = uln'i'(I + ul'(n +1)'[3L,+(3m —10)LI+ (n +5 —3m)LI] ],
(d.„„)-'I&Ii(k, ,k, ,k, ;u, , i-) =u, n i'(1+u,'(n+I)'[L, +3(m 1)L,+(n— 3m)L,-]],

no index summation, with k3 = —k1 —k2, in which
Ll(kl, kl, i1), LI, and LI are given by triangular dia-
grams with one, two, and three (q'+P, ') ' propaga-
tors and Lo with three longitudinal propagators q
The symmetry of the model yields a tensorial coeffi-
cient for Lo that vanishes in the first vertex and a
vanishing coefficient for L1 in the second one. %e
note also that in the small and large p, limits,
d„J„I't~'„'„reduces to Eq. (6) whereas d„'„I'„"„
behaves as Eq. (7). All the L;iv i =0, . . . , 3, have
the same dimensional pole in I/e and, although the
detailed p, dependences of Lb L2, and L3 are not thc
same, they have the same behavior for large p, that is
relevant to make'the theory finite by GMS and this is
[I —

I eln(1+i' )]/e~v. The next-to-leading terms in

Eqs. (6) and (7) become (n +1)'(n 2)u'K"—/e, the
isotropic result for p, =0, but they differ for any
other JM, .

To remove the dimensional poles and the large-p,
behavior of the relevant vertex functions we renor-
malize as

(2) (2) (2 1) (2 1)
Z@~yv ~Ryan 1 Z$2I Pu, i I Ryy, i

3/2 (3) (3) 3/2 (3) (3)
~yyN I R ysrN1 Zg ~NNf ~RNNf

by 111ealls of dllIlellslol1less ful1ctlo118 ul(u, e;p), u1,
(u, e;P,), Z@(u, e;P, ), and Z~I(u, e;P,), where u and v

are renormalized couplings, u2 is set equal to u1 in

Eq. (5), and I'„"„'," is the longitudinal two-point ver-
tex with one $' insertion, summed over all the i
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components of the insertion. Actually, the renormal-
ization of I „„'I is not an independent one because
the diagrams are those of I „„„with the tensorial
coefficients of I „"„'. The expansion coefficients in

u~=u+a~u, u2=v+a2v, Z~=1+b~u, and3 3 2

Z&2=1+cpu', and with u' replaced by v', that make
the vertex functions finite are found to be

The other Wilson functions

t

9 lnZ@
y@(u, a, p, ) = p(tl, a)

gu

= —,
' (n +1)'(n —1)(l +P, ') 'u', (17)

at(p) = (n +1) (7 —3n) [1 ——ein(1+p2)]
4e 2 BlnZ 2

y, (u, e, p, ) =p(u, e)
Bu

a2(p) =at(p) —
2

(n +1)'ln(1+p2) (10) =(n+1)'(n —1)(1+P,') 'u' (is)

bt(P) = — (n +-1)2(n —1)[1 —-sin(1+P, ') ]
6e 2

in which P(u, a) =PI(u, e;0) =P2(u, a;0) yield, when
u = u"(0), the effective crossover exponents

ct(P) = (n—+—1) (n —1)[1 ——sin(l +P,')]
2

rt(P) =y~(u', e, P) = (n —1)e/3(7 —3n)(1+P,')

(12)

The Wilson p functions are then obtained as""
v '(P, )—2=y 2(u', e, P, ) —y~(u', c,P)

= 5(n —1)a/3(7 3n ) (1+P—, ) (20)

pt(u, t ,tt) = "K Bu

BK Ai

= —-au+ (n +1—) (7 —3n)
2 4

x(1+p, ) u (13)

p2(v, t,p) = K
Bv
BK A'2

=—'av+ '(n +1)'(-7 —3n)
2 4

x (i —p, '/p, ,') (1+p,') 'v', (14)

u'2(P ) =2a(1 +P2) [(n + 1)2(7 —3n) ] ' (15)

v" (P) =2m(1+p, ) [(n +1)2(7—3n)(1 —P2/P, ,)]
(16)

Our equations are consistent with an isotropic trilin-

ear coupling only if we set p, =0 in u' and v', and
we are thus left with the fixed-point coupling
u "2(0) =2m/(n +1)2(7—3n) of the isotropic Potts
model. Equations (15) and (16) are discussed fur-
ther below.

for fixed dimensional couplings A. &
= K u] and

A, 2
= K u2 with 4p, , =—7 —3n. The nontrivial solu-

tions to the fixed-point equations pt(u", a;p) =0 and

P2(v', a;P) =0 are then

that describe the critical I'~t„~(k, P, ) ~ S„„k' ~'"' and
the longitudinal correlation length g~~(t, p, ) t " "'.
When p, =0 we recover the exponents of the isotrop-
ic Potts model'0'6 and, for P, = ~ (extreme anisotro-

py), the mean-field values g(~) =0 and v '(~) =2
in d =6 —e dimensions are obtained, with a smooth
change in between. We also studied the critical
behavior of the transverse 1 ~, but before discussing
this point we consider further the fixed-point equa-
tions (15) and (16). They clearly indicate that trilin-

ear anisotropy may become important for large p, .
We do not know, at present, if they are at all charac-
teristic of the fully anisotropic theory, but we note
that u'(p, ) has a runaway for p, ~, while v"(p, )
runs away from a finite p, = p, , and becomes ima-

ginary for p, ) p, , with a finite asymptotic fixed-point
value v"(~) =i (n +1) 'Ka/2. Other $' field
theories with an imaginary coupling have been con-
sidered in a different context before. "

When we consider I ~' we find that, for any finite

p, , it is renormalized by the same Z~ that makes fin-

ite the longitudinal I"„„.Despite the discrete sym-

metry group of the Potts model this is a check on the
renormalizability of the model with quadratic sym-

metry breaking, in accordance with current expecta-
tions. The diagram expansion for 1~~ is, of course,
not the same. It differs in the tensorial coefficients
and there is an additional diagram in I ~' that in-

volves two longitudinal propagators q '. For small p,

we find I'~ (k, p, ) ~ 5~k' "t"~, with the same q(p, )
as for the longitudinal fluctuations. Similarly, I"~",

is renormalized with the same Z 2 as for I „'„", and

this yields gq
—t t "~, with the same v(p, ) as for (~~.

On the other hand, for asymptotically large p, our
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conclusions are more tentative, because of the isotro-
pic fixed point u'(0). Nevertheless, we find, as one
would expect, that I'~) —(m2+ Cr) 8~, for k =0 and
nonzero t, C being a constant, and the second term is
just the mean-field energy density E —t' where
e =0.

To comment on our results we have shown that,
for the present problem, the choice of an isotropic
trilinear coupling used in previous work' is not a
straightforward one. The presence of a single
isotropic fixed-point value is in sharp contrast to $'
theory with quadratic symmetry breaking where the
initial coupling flows to an isotropic fixed point of
lower symmetry. It is useful to recall that this fol-
lows by assuming an isotropic four-point coupling to
start with. It is possible, although unlikely, that the
study of the fully anisotropic theory for the present

P' field Potts model could reveal a further isotropic
fixed point, This is currently being studied, Our
results should apply to the percolation crossover in
the limit n 0. Kith a proper interpretation of t and
m 2 they should also be applicable to the second-order
transition in the (n + l «2)-state Potts model. Be-
cause of our quadratic symmetry breaking it is not
clear that they should apply to the recently studied
metastable region for the Potts model with 1 & n & —,.'
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