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Universal resistive transition for two-dimensional superconductors
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Vortex fluctuations are shown to imply that the resistance of a two-dimensional superconduc-
tor is a universal function of a certain combination of sample parameters. Analysis of experi-
ments gives suggestive evidence for the validity of this universality. In view of the new results
presented it is argued that recent resistance predictions based on the "asymptotic" Kosterlitz
renormalization-group equations are only valid over a small temperature interval compared to
the width of the resistive transition.

I ~ INTRODUCTION

It has recently been suggested that the broad resis-
tive transition observed in "dirty" two-dimensional
(2D) superconductors should be due to thermally ex-
cited vortex-antivortex pairs. ' This explanation of
the resistive transition is based on the following three
ingredients: The Coulomb gas analogy of the vortex
fluctuations by Pearl, ' the Kosterlitz-Thouless
charge-unbinding transition, and the proportionali-
ty between the flux-flow resistance and the number
of free vortices. ' In the present paper it is shown
that these three ingredients also lead to the prediction
of a "universal" resistive transition. This means that
the measured resistance for all samples should fall on
the same curve when plotted against a certain com-
bination of sample parameters.

II. UNIVERSALITY

following is that ci and c2 are sample independent.
The thermodynamics of the vortex fluctuations is
determined from the partition function Z
=Trexp( —H2y/T) where H2~ —= Hqg/q' and
'r= 'r/q [th—e non-neutral configurations can be ig-

nored because their energies are proportional to

2D Coulomb gas 2D Superconductor

Particle Vortex

Particle dimension, g Ginzburg-Landau coherence length

(= ((T =0) [( TO T) / TO] —I/2

T, =Ginzburg -Landau temperature

TABLE I. Relation between 2D Coulomb gas and 2D su-
perconductor.

We assume that the vortex-fluctuations are ade-
quately described by the model due to Pearl. ' The
Pearl model is equivalent to a two-dimensional
Coulomb gas where the vortices with vorticity +1
play the role of Coulomb gas particles with positive
and negative charge. ' This equivalence is summa-
rized in Table I.

"Dirty" superconducting films obey the condition'
((( i. ~ Ae where ( is the Ginzburg-Landau coher-
ence length, I. is the sample dimension, and Ao is the
transverse penetration depth (compare Table I).
When this condition is satisfied the energy of a neu-
tral configuration of 2N particles (vortices) is given
b 5, 9

Sign of charge, s=+1 Vorticity

Magnitude of charge, q

n, =Ginzburg-Landau areal density
of superconducting electrons

=n,o(T =0)(T,O —T)/T,o

mc2 1
Ap = —= transverse

2me2 n,o

penetration depth

C& ffj.
2H2„——q ——, X s;s, ln + c2

/san

i J
~

i

where q, (, and s are defined in Table I, ri is the dis-
tance between particle i and j, and ci and c2 are
dimensionless constants. The important point in the

Chemical potential, p, Vortex core energy, I@I = —p

82
/ p. f = n f'd ' = —'q'
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In(L/g) ]. It follows that a dimensionless thermo-

dynamic quantity can only be a function of the
dimensionless variable T. Or, in other words, a dimen-

sionless thermodynamic quantity must be a "universal"

(t e ,. s.ample independent) function of the variable T.

The flux-flow resistance is given by'

TABLE II. Sample parameters. (A) Amorphous
niobium-germanium sample: Fig. 3 in Ref. 11 and Figs. 5
and 6 in Ref. 12. (8) Granular aluminum sample: Fig. 3 in
Ref. 13. (C) Granular aluminum sample: Figs. 10 and 11 in
Ref. 14.

R/R~=2nn g (2)

where R (Rn) is the resistance (normal-state resis-
tance) and n is the density of free vortices. A possi-
ble explicit definition of n is given by

27K 77

T
(3)

where A. is the screening length of a potential outside
an infinitesimal test charge. The important point is
that nrem~ is a dimensionless thermodynamic quantity.
Thus it follows that R/Rn should be a "universal"
function of T.

The 2D Coulomb gas has a Kosterlitz-Thouless
transition at the T, given by ~

2.60'
& 2.47~

63 +10

2,21b

2.12+0.01'
500

1.99'
1.67+0.02f

2100

'Specific-heat measurement gives T,"=2.60 K (Ref. 12). 2D
Aslamazov-Larkin formula gives T, =2,608 K (Ref. 15).
bFit to formula R ' —

g
2 —

Tp Tfor T—( To (compare
Fig. 3 in Ref, 13).
'2D Aslamazov-Larkin formula (Ref. 14).
~Tc smaller than lowest measured point (compare Fig. 3 in

Ref. 11),
'T, = temperature where measured points deviates from the
linear relation 8 —To —T (compare Fig. 3 in Ref. 13).
fThe approximate condition 8 =0 for T = T, (compare Fig.
11 of Ref. 14).

T, = T,/q2 = 1/4 e( T, ) (4)

where e( T) is the dielectric constant of the Coulomb
gas. ' Note that ~ is a dimensionless thermodynamic
quantity and hence it follows that e(T,) is a "univer-
sal" constant. Thus it also follows that R/R& should
be a "universal" function of the variable X = T/T, .
In terms of the superconductor parameters the
parameter X is given by (see Table I)

T Tc Tc

T,D —T T,
(5)

III. EXPERIMENTAL VERIFICATION

How can the prediction of a "universal" R/Rn(X)
curve be tested experimentally~ We will illustrate
this by measurements done on three samples. The
sample parameters, the method used to obtain them,
and references to the measurements are given in
Table II." "

Among the potential possibilities to determine T~

are: Extrapolating from below, e.g. , measuring the
kinetic inductance, Lk, and using Lk ' —T, —Tas in
Ref. 16 or measuring 8 in a finite perpendicular mag-
netic field, 8, and using R ' —T, —T as in Fig. 3 of
Ref. 13; extrapolating from above T, using the
Aslamozov-Larkin formula as in Ref. 17; fitting to
specific-heat data as in Ref. 11.

The Kosterlitz-Thouless temperature, T„ is sig-
naled by a rapid increase of the number of free vor-
tices. Among the potential possibilities to observe
this increase are: A rapid increase in the kinetic in-
ductance L» (compare Fig. 2 of Ref. 16); break down
of the linear relation R ' —( To —T) when R is mea-

sured for a fixed B (compare Fig. 3 of Ref. 13);
measuring R as a function of B for fixed T and extra-
polating to B =0 and using the approximate condi-
tion R ~s~=0 for T = T, (compare Fig. 11 of Ref.
14).

In an "ideal" experiment T, and T, should be
determined in several ways in order to make sure
that the sample is well characterized with these
parameters.

In Fig. I we have plotted y = ( To T)/T against-
In(R/R~) for sample A. According to the universal-
ity prediction this should be a sample-independent
curve up to the scale factor (To —T,)/T, on the y
axis [compare Eq. (5)]. We may test this prediction
in the following way'. Take a T for sample 8, this T
corresponds to a measured In(R/R~), the In(R/R~)
corresponds to a "universal" X, this L is up to a con-
stant equal to y in Fig. 1. The result is shown in

0.05—

O.O I—

-Io

FIG. 1. Plot of resistance data for sample A. The sample
parameters are given in Table II ~
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FIG. 2. A universality test applied to data from samples
A and B. T refers to data from sample B and y is given in

Fig. 1. The full curve results from the construction
T(B) in[(R/Rz) (8)] = in[(R/R~) (A) ] y T(B)y
(see text). Universality predicts that Ty- (T, —T). The
dashed line shows that this prediction is borne out for a
large portion of the resistive transition. The crossing point
between the dashed line and the Taxis gives To for sample B.

4 X
7 Tc-~c

Tc'- T Tc

FIG. 3. Plot of In(R/R~) vs L Dot at Xt. data point
for sample C; full curve: data for sample B; dashed curve:
data for sample A. Sar@pie parameters are given in Table II
except T, for sample A where the value T, =2.46 obtained
from the universality prediction and sample C was used (see
Table III). Universality predicts that all data should fall on a
single curve.

Fig. 2 where T for sample B is plotted against yT.
According to the universality prediction the curve in
Fig. 2 should be a straight line where the crossing
point with the Taxis is the To for sample B [compare
Eq. (5)]. As seen in Fig. 2 these predictions are born
out to an extraordinary degree. Especially note that
the T, for sample B determined from sample A and
the universality prediction in Fig. 2 is identical to the
T, determined by direct measurement on sample B.
This and other results obtained from "universality"
are given in Table III. Also note in Fig. 2 that as T,
is approached the universality prediction breaks
down. This breakdown is expected since the
Coulomb gas model of a 20 superconductor only is
valid as long as only a small fraction of the sample
area consists of vortex cores.

TABLE III. Universality predictions. (The arrows indi-

cate results obtained using the predicted universality. )

A

In Fig. 3 we have plotted ln(R/RN) vs X for the
three samples. For sample A and C we have used
the values T, and T, given in Table II. Note that for
sample C we only have data for one point (denoted
by Xt in Fig. 3). For sample A we have used Ta

from Table II and T, determined from sample C and
the universality prediction (see Table III). The
predicted universality of the R/R~(X) curve is borne
out to an extraordinary degree. Especially notice that
the curves for sample A (amorphous niobium-
germanium) and sample B (granular aluminum) fall
almost on top of each other, with no adjustable
parameter.

IV. VALIDITY RANGE OF ASYMPTOTIC THEORY

In Fig. 4 we have plotted [—In[(R/R~) (4/X) ]] '

vs Xfor samples A and B. Plotted in this way the
"universal" curve is to good approximation a
straight-line (from X =1.1 to X =2, say). The
quantity (R/R~) (4/X) is in terms of Coulomb gas
quantities given by [using Eqs. (2) —(5) and assuming
that a( T) = a( T, ) ]

T,' (K) 2.60 2.21 1.99

R 4
RN X (6)

T, (K)

b
2.46

2.46
b

2.12 1,67

'From Fig, 2: Crossing point of dashed line with T axis.
From the X~ point on the universal curve in Fig. 3: X&

C(T, —T,)/T, j k Tg/(T, —Tg) l for all three samples.
'From Fig, 2 and the relation "slope of dashed line in Fig.
2" = [[TP (A) —T,(A)]/T, (A)[ [T,(B)/[TP (B) —T,(B)]}.

Thus Fig. 4 implies that

)t~g ~ =exp[A/(X —B) ] for 0.1 & (X—1) & 1, (7)

where A and Bare sample independent constants.
This result is not inconsistent with theoretical expec-
tations. ' Oh the other hand Kosterlitz's renormal-
ization-group equations predict'

)'g '=Cexp[D/(X —1)'"] for 0&(X—1) «I,
(g)
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tion of the resistive transition. In contrast, vortex
fluctuations per se as manifested in the universality
prediction is a potential explanation of a large portion
of the resistive transition.

V. CONCLUSIONS

I

X

FIG. 4. Plot of (—ln[(R/RN) (4/X) ] j
' vs X for sample

A (dashed curve) and sample B (full curve) for the same

sample parameters as in Fig. 3.

where C and D are constants of order unity. %e will

call resistance predictions based on Eq. (8) (Ref. 4)
"asymptotic" since they are justified only close to T,.
Equation (7) implies that the "asymptotic" predic-
tions can only be valid within the range 0 & (X—1)
& 0.1. For the three samples in Table III this means
within a temperature range 0 & ( T T,) & 0.0—1 K
and R & 10 RN. Thus the implication is that the
"asymptotic" predictions can only explain a tiny por-

It is shown that, if vortex fluctuations are responsi-
ble for the broad resistive transition of "dirty" thin
superconducting films, then this explanation leads to
an universality prediction. %e tested this universality
prediction against available experimental data and
found very suggestive evidence for its validity. ' In
order to get conclusive evidence for its validity exper-
iments are needed directly designed for the purpose.
It was also argued that predictions for the shape of
the resistive transition based on the "asymptotic"
Kosterlitz renormalization-group results can only ex-
plain a small portion of the resistive transition.
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