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Soliton damping and energy loss in the classical continuum Heisenberg spin chain
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%e consider the effect of damping on the evolution of a classical continuum one-dimensional
isotropic Heisenberg ferromagnetic spin chain due to relativistic interaction. The corresponding
Landau-Lifshitz equation is shown to be identifiable with a damped nonlinear Schrodinger equa-
tion. By obtaining an explicit decaying solitary wave solution for the energy density and mag-
netization density, we demonstrate the damping of the soliton solution with an associated loss of
the total energy.

In the phenomenological description of ferromag-
netic systems, the magnetization (spin) density
S( r, t) is assumed to be a continuous function of po-
sition r, with an associated energy density involving
suitable magnetic interactions. Classifying such in-
teractions as (i) exchange interaction and (ii) rela-
tivistic interaction, Landau and Lifshitz' derived the
following phenomenological equation of motion' '
for the spin:

=S x V~S+h. [V S —(S V2S)S] . (1)
at

Here we have not included the effects of anisotropy
and external field. The first term on the right-hand
side of Eq. (1) corresponds to exchange interaction,
while the second term represents suitable relativistic
interaction. The effect of the latter is usually as-
sumed to be insignificant represented by the small-
ness of the constant ) . Conventionally ) is identi-
fied as o.y where o. is the dimensionless Gilbert
damping parameter, and y is the gyrornagnetic ratio.
The term proportional to the constant A. may be con-
sidered as a loss (dissipative) term in the equation of
motion which causes least analytical distress' and
which also preserves the constancy of the magnetiza-
tion density.

It is also well known that Eq. (I) with h. =0 corre-
sponds to the continuum limit of the equation of
motion of the classical isotropic Heisenberg ferromag-
netic spin chain6 where the exchange constant and
lattice parameters have been absorbed After appropri-
ate scaling of space and time variables. In one-space
one-time dimensions Eq. (1), for the lossless (k =0)
case, is a completely integrable solitonic system and
is equivalent to a nonlinear Schrodinger equation. ' 9

In higher dimensions also it possesses interesting
solutions. '0 ' In practice the system is not complete-
ly lossless and it is of importance to consider the ef-
fect of dissipation (h. )0) on the spina and the na-
ture of energy loss in the system. In this paper we
consider the one-space one-time dimensional analog

of Eq. (1):

=SxS +g[S —(S S )S),
S (x, t) = 1, (S =—S),S2,S3)

(2)

and derive appropriate evolution equations for energy
and current densities, including dissipation, in-the
form of a damped nonlinear Schrodinger equation.
Considering a damped analog of the static single soli-
ton solution for the energy density, it is demonstrat-
ed explicitly how the energy decays and the spins get
oriented towards a single direction as time passes on.

The nonlinear dynamics characterized by the equa-
tion of motion (2) could be understood easily by
identifying the underlying geometry of the system.
For this purpose we map the evolution equation (2)
onto a moving space curve in I." of given curvature K

and torsion ~ characterized by the Serret-Frenet equa-
tion""

h (x, t) =- as
2 gx ,

' K'(x,t)—(4a)

4(x, r) =S && =K'(x, r)r(x, r) . (4b)
9S QS
BX QX

e„=d x e;, d =Ke3+~e~

The e;, i =1,2, 3 'are the usual unit tangent, principal
normal, and binormal vectors and define a local coor-
dinate system with an origin 0' on the space curve.
Then a position vector R could be ascribed to 0' with
respect to a fixed frame with origin 0 and then a
complete description of the space curve may be
given.

The classical magnetization or spin vector S(x, t)
corresponding to (2) is now identified with the unit
tangent vector e~(x, t) of the space curve and thereby
we associate the energy density and current density of
the undamped (h. = 0) system (2) in terms of the
curvature and torsion as
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Correspondingly the equation of motion (2) becomes

e~, =etxet +X[e~ —(e~ e~ )et]

and so using Eq. (3) it can be written as et,
= ( K T+ )t'K ) e2+ (K + P KT) e2. Again using Eqs.
(2) and (3) the time evolution of the other two
members of the trihedral may be found straightaway.
Thus the evolution of the trihedral e&, i =1,2, 3, at
0' of the space curve associated with (2) takes the
rigid-body form

eit X el le1 + 2e2+ 3e3
~here

To identify the evolution equations (7) or (8) with
more standard nonlinear partial differential equa-
tions, we make the following complex transformation
for the dependent variables:

t

y(x, t) =K(x, t) exp i T(x, t)dx

—= [2E(x,t)]'i'exp i J dx
S(x, t)

28 x, t

Then Eqs. (7) become the damped nonlinear
Schrodinger equation

i%~+(I t)—)4 + 2141'0

K~ 2
Ni = T + (2K»T + KT»)

K K
(6a) + Jt($$„—Q $»)dx =0 . (12)

Cd2 = (K» + ihKT)

Cd) = ( KT + A. K»)

In order that Eqs. (3) and (S) are compatible
( e «)„=( e «, ),. We thus obtain

Kg = 2K»T KT»+ X(K»» KT )

(6b)

(6c)

(7a)

8, = —4„+z 8
b2 g2

2g 2$
(8a)

28„&i=~ g

[2 2"g„
28,

4b h„2, 8 g2 P.b.
+2bJ+A - — —

2
+4

282 282

—T +KK»+A. —2(K T)» +K T, (7b)
, Z , Z

and therefore the evolution of the energy and current
densities is expressed as

We might mention that Eq. (12) closely resembles
the damped nonlinear Schrodinger equation discussed
by Pereira and Stenflo' except for the nonlocal term
in (12). In the undamped case (h. =0) Eq. (12) is
the well-known completely integrable nonlinear
Schrodinger equation' with associated soliton solu-
tions. This has the further consequence that the cor-
responding isotropic Heisenberg ferromagnetic spin
chain in its continuum limit is a completely integrable
dynamical system and hence nonergodic. Then the
question immediately arises as to how the nonlinear
normal modes interact to lose energy in the presence
of the dissipative term (h. & 0) here. While a com-
plete answer for the general ¹oliton solution for
the energy or the spin is not yet known, in the
present article we confine our attention to the one-
soliton case. To consider this, we proceed as belo~.

From Eq. (12) and its complex conjugate, we can
show that

i (pp ) +—(1 —i X)P p~ —(1 +i h) Q~f =0 . (13)
dt

Now considering the total energy of the magnetic
chain

t

(gb) Making use of Eq. (11) in Eq. (13) and intergrating
between the limits —~ and + ~, we arrive at an
equation for the rate of change of total energy

'2

E(t) = jf tt«(, t)d =-,' Jf = ,
' Jj '(, t)d—x

and using (7) and (8), we obtain the following ex-
pression for the rate of change of E(t):

dE(t) d
2

= —z Jt [(K») + K T ]dx ~ 0 if h. ~~ 0 .

(10)
It is evident from Eq. (10) that there is an energy
loss in the system when the relativistic interaction is
included (A. & 0), as the rate of change of total ener-

gy is negative, and thereby showing the depletion of
energy in the system.

p(x, t) =c sech —x expi —xC . C

2 2

so that

K(x, t) =c sech —x, T(x, t) =-c C

2
' '

2
(16)

where c is a constant.
In the damped case we allow c to be a function of

2i =(I+iA.) J1 P~gdx —(1 —iA. ) jt Q Q dx

(14)
which is identical to Eq. (10). Now a static form
(corresponding to an observer in suitably moving
coordinate system) for the one-soliton solution of the
undamped case of Eq. (12) is known to be of the
form '
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time and then using Eq. (15) in (14) the appropriate
expression for it can be obtained. Making use of Eq.
(15) in Eq. (14) we have

—= ——A.c
dc (17)
dt

and so

c = (K3/2)(at +8) (lg)
where 8 is the integration constant. Thus in the
damped case, the energy and current densities are
given by

b(x, t) = —,
' K'

=(—', )(at+8) 'sech'(J3x/4)(at+8) 't']

(19a)

J(x, t) =K'T

= (343/16)(h. t + g) ' '

x sech (J3x/4)' (At+5) . ' '] (19b)

za = t Kzt + T I T (zt —1 )
1 . 2 (20a)

The form of the energy density is depicted in Fig.
1(a) for different times, showing the damping of en-
ergy density in the system for the one-soliton solu-
tion, while Fig. 1(b) demonstrates the loss of total
energy in the system.

Having known the curvature and torsion of the
space curve it is possible to construct' the orthogonal
trihedral uniquely (up to rigid motions) from known
procedures in classical differential geometry. In other
words, using the solutions (19) of the damped one-
soliton case for the energy density and current densi-

ty, the associated solutions for the spins may be ob-
tained by noting that Eqs. (3) and (5) are equivalent
to a set of two Riccati equations in terms of the Dar-
boux vector ' zi'. FIG. 1, (a) Damping of the static one-soliton solution for

the energy density of the spin system as a function of time.
(b) Dissipation of total energy E(t) of the spin system.

+ (2 KzT + KT—g)
K K

3
[(KT —XK~) + I (Kg+ XKT) ]zt

[ (KT kK~) l (K~ + X K)Tl
1 (20b)

where zt ——(ett+ t'ett)/(1 —e3t), ei't+ e3t+ e3t 1, and
I = 1, 2, 3. Solving the Riccati equations appropriate-
ly, for the assumed expressions for the curvature and
torsion from (19), the expressions for the spins may
be obtained as

"S= esc[h(J3x 4/)(it+8) t 3] (tanh[(13x/4)() t+8) +]sin[(J3 x4/)(at+8) ' ']

cos[(%3x/4)(k—t+5) ' ']} (21a)

S»= —sech[( J3x 4)/(At +8) ' 2] {t nah[( J3 x4/)(kt +5) ' ']c so[(&3 x4/)(Xt+ )5' ']

+sin[( J3x/4) (at +g) '"]}
S*=tanh [ ( J3x/4) ( at + 8) '"]

(»b)

(21c)
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The nature of the dependence of c on r in Eq. (19)
causes the spins to loose their pulse nature. The
damping aspect for the z component of the spin vec-
tor is illustrated in Fig. 2. From the expression (19a)
it is clear that as time passes the energy density de-
creases. Correspondingly, the magnitude of S and
S' components of spins start decreasing as per the
Eqs. (21b) and (21c) and eventually they align paral-
lel to the x axis which may be seen from Eq. (21a).
Similar analysis may be carried for multisoliton solu-
tions, us ng the soliton perturbation theory. "
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