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Interface roughening and random-field instabilities
in Ising systems in three or less dimensions
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The ferromagnetically ordered state of random-field Ising systems for dimensionalities d ~3
is shown to be unstable with respect to domain formation, if the field-induced domain interface

roughness is taken into account. For d =3, the interface exhibits a "wiggly" structure on all

length scales intermediate between the correlation length and the domain size. This instability,

which follows from the assumed random-field-induced roughening, makes the lower critical

dimension, dt =3, consistent with the change of the effective dimensionality by 2 for the

random-field model. Experimental consequences of these results are indicated.

The influence of a random field, "which couples
linearly to the order parameter, on a regular,
second-order phase transition is extremely marked.
The critical behavior is drastically modified and the
changes in the critical exponents are much larger
than those caused by most symmetry-breaking pertu-
bations studied so far. ' In particular, e expansions in

d =6 —a dimensions ' show, that the critical
behavior of a d-dimensional model with quenched
random fields that have only short-range correlations
is identical with that of a (d —2)-dimensional "pure"
model, to all orders in e. Recently, Parisi and Sour-
las have elegantly formulated the above proof. One
is led to consider the interesting possibility that the
rule d d —2 might apply even beyond where the di-

agrammatic expansions are applicable for Ising-like
models. (For spin dimensionality n ) I the corre-
spondence works only in the range 4 ( d ( 6.)

Various physical systems can be described by the
random-field model: Random antiferromag-
nets, ' ' or Mattis"" spin-glasses in uniform
magnetic fields, charge density (as well as spin densi-

ty, etc.) waves coupled to impurities, '3 mixtures of
competing anisotropy magnets, ' and polymers. "
Also the problem of the influence of impurities on
first order transitions' -has similarities to the
random-field model. The phase diagrams of
random-field systems as functions of the amplitude
of the field exhibit a rich structure. " '

For the case of a random field with an extremely
small amplitude, an outstanding question is what is
the "lower critical dimension, "

dl, below which the
vanishingly small random field disrupts the ordering
of the usual order parameter. Using magnetic
language, where the latter ordering is ferromagnetic
and the field is a random magnetic field, such an in-

stability can be demonstrated, for example, by show-

ing that the system is unstable against domain forma-
tion.

In the simplest picture, compact domain formation

on a scale L is determined by the competition
between the bulk random-field gain, which is of or-
der L ' per domain, and the surface energy loss. '
The latter is of the order L ' for models with con-
tinuous symmetry, where the thickness of the
domain wall is of order L, while for Ising-like sys-
tems the surface energy is of order L '. These esti-
mates lead to an instability of the ordered state for
d «4 in continuous symmetry systems and for d «2
in the Ising-like systems. From this it strictly follows
that dt «2 for Ising-like systems. dI =2 would follow
only if no further, stronger instability mechanism ex-
ists. Since the reduction of the effective dimen-
sionality by two4 ' would imply di=3 (di for the pure
Ising model is I), such a stronger instability is desir-
able, for d «3, to avoid a contradiction for the value
of dI. Here, we shall show that the random-field in-

duced roughness "of the Ising interface below and
at d =3, can be used to construct such an instability.
This provides a physical picture for the random-field
phase at d «3. The domain sizes will be estimated
and ensuing phase diagrams indicated. %e em-
phasize that dI is therefore just the physical dimen-
sion d =3. The rough Ising interface is an intermedi-
ate case between the sharp Ising interface for suffi-
ciently high d and the extremely diffuse domain wall

for continuous symmetry systems.
%e consider for definiteness the usual ferromag-

netic model,

3C = J xir Crt gh CT

(iJ)

with

J )0, (h;) =0, (h, hj) =h s,t

%e now consider the interface between up and down
compact domains of linear size L, with L )) (r,
where gr is the usual Ising correlation length. This
interface for the pure case h =0 is known to have a
rough phase below d = 3, in the sense that the
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characteristic domain-wall thickness wq(L) diverges
with L like20

The interface (for T & 0) is always structured on the
microscopic scale (((gr), but it is smooth, with

large fluctuations in the rough phase, see Fig. 1, on
the macroscopic ( » gr) scale. However, the inter-
face energy even then is of order L" ', in the usual,
h =0 case. ' One may now attempt to distort the ac-
tual interface, so that a maximal random-field nega-
tive surface energy is gained. However, one can only
gain an energy on the order of hL~ ' out of this, which
cannot compete with the exchange energy, for p « J.

%e note, ho~ever, that if the expected reduction
of the effective d by 2 were valid, then one should
expect a similar reduction for the roughening prob-
lem, with appropriate changes in d in Eq. (1) which
should raise the critical dimension for roughening from
three to five. This is in fact borne out by calculations
done by Pytte, Imry, and Mukamel" using the replica
method. Independently of these calculations we es-
tablish here a particular instability by physical con-
siderations, assuming the appropriate dimensional
change in Eq. (1), and showing that it yields self-
consistently the expected instability. %e therefore
assume that in the presence of the random field h,

Eq. (1) is replaced in the range of d of interest,
d&5, by

w (L) —"L" '&i2 (2)

Since for d ~ 3, Eq. (2) yields ws(L) «L, it is im-
mediately suggested that for d & 3 the notion of
stable domain is meaningless for large enough L
since for any h &0, however small, the domain wall
~ould sweep a range larger than the domain itself.
Thus, the system will split to finite domains. To es-
tablish this in more detail and to get an estimate for
the finite domain sizes, we note that the effective
area of the rough domain eall for d & 3 with
wd(L) » L would thus be L 'wq(L) (all lengths
being measured in some microscopic length unit).
Since for each piece of area f~ ' one can gain an en-
ergy of at least of the order her+ by microscopic dis-
tortion (Fig. 2) of the interface, one obtains for the
total gain EL'.

(3)

~ 4/(3-u)
=

g
-y/v(3-d)

h
(4)

where we used the usual scaling relations. Lp will set

where the last factor represents the reduction of the
underlying magnetization near T„P and v are the
usual critical exponents. At the same time the
interface free energy price is on the order of
JL~ '(gr) '~ ", where the last factor represents the
critical vanishing of this energy as T T, . %e thus
obtain a negative total interface free energy, from (2)
and (3), provided that

3 ~ 5
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FIG. 1. Domain wall on scales x„((T&& x„(&L) in
the rough phase. The "diverging" thickness ~~(L) is due
to large wavelength fluctuations. The interface is smooth lo-
cally but its fluctuations that are ~~(x„) on scale x„accumu-
late to O(w~(L)) on the scale L.

FIG, 2. Typical actual interface between up (+) and
down (—) domains, on the scale of several (T. It actually is

rough on the scale (T due to thermal fluctuations but will

appear smooth on a scale &) (. Shown are the h =0 case
(a) and the h &0 case (b) where, without changing the
structure much, the interface now has microscopically dis-
torted so as to attach more sites with negative h; to the
down domain and likewise for the positive h& sites.
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The physical case d =3 is very special. The gain of
Eq. (3) per unit area is L independent. Therefore
just increasing L cannot make the total interface en-
ergy negative. In fact, the exponent in Eq. (4) blows

up as d 3 for every h ( J. Thus the case d =3
needs a more general calculation. We consider
simultaneous adjustment of the interface on many in-
termediate scales x„, instead of using only the length
scale ( as above (Fig. I). The excess of random field
in a volume x„'wd(x„) (extending over an area x„" '

of the interface) is practically statistically independent
of the excess in a volume x„+(wd(x„+() if x„+( )&x„.
The contribution of scale x„ to the energy of a piece
of scale L is then from Eq. (3) of the order of
(ra "/2 (L/gr) 'x„'wd(x„)(rd 2. The total gain is
hence obtained by summing over all scales,

nmax

E =g s" '+'hL ' $x 'w(x)
n 1

nmax
/3/v d+5/2 g—c(3—d)n/2 /2 Ld —1—

n 1 J

where, for instance, x„=gc" ', with c being a con-
stant sufficiently larger, but of the order of unity
(e.g. , c =4 in Fig. I), and x„=L. Since L )& g,"max

n,„)&I; the summation would diverge for
n,„~in the case d «3. For d ( 3, it is given
essentially by the largest term (n = n,„), which will

reduce to our previous estimate (3). For (2( & 3, the
sum converges and thus EL = ho(L '), which can-
not compete with the interface energy for h ((J.
For the special case of d =3, all the terms in the sum
are equal, and thus

E/, d 3=(/2 /J)( @" L n

L 2

L d —(g(—2p+ v)/2v IJ 4r

Equating this again, to the positive surface-free energy
g 'JL', we find for the minimum domain size

Lo $ r exp[ (J//2) 2( (2P-3v &/2v(COnat) )

and the T, smearing is again given by Lo —(r, or

(6)

the scale for the spontaneous domains formed ac-
cording to this particular mechanism by the random
field for d & 3. For very small values of h/J these
domains will be very large; in fact, the above esti-
mates are valid only when Lo & gr. The condition
Lo —gr should signify how close one can get towards
the h =0 T, before the correlations in the system be-
come affected by the random field. This suggests
that the extent of broadening of the transition by the
field, AT„should be given by

', 4/[~+ |/(3—g) ]

Lo —gr, or /3. T,/T, —$0"— (5)

/3, T,/T, n $0("(/2/J)4", which agrees with Eq. (5) at
d =3.

The resulting phase diagram for the Ising systems
at d «3 with random fields is indicated in Fig. 3.
The ferromagnetic state exists for h =0 only. For
T =0 one has weak singularities at all rational values
of

/2/Juror

h & h„while for h, & /2 & 2h, a sequence
of well isolated singularities occurs. ' The dashed
line physically shows up as a line of smeared phase
transitions between a "paramagnetic" phase with
short-range ferromagnetic correlations to a rather
complicated "domain" phase. [The T, smearing is

given by Eqs. (S) and (6).j In the latter state, the
instability of the ferromagnetic state found in this pa-

per will cause an arrangement of domains whose size
is larger than Lo. This domain phase implies a sort
of spin-glass ordering" similar to the one exhibited
by the Mattis model. "'

To summarize, we have physically demonstrated an
instability of the "rough-interface" phase of Ising-

type systems at d «3 to quenched random ordering
fields where we considered self-consistently the inter-
face roughness induced by the random field itself.
This instability is stronger than the simpler one
demonstrated for Ising-like systems at d «2 in Ref.
2. The lower critical dimension for the random-field
model thus just coincides with the physical dimension
d =3. This removes the inconsistency with the
d d —2 mapping. Characteristic domain sizes and

T, broadening were estimated and qualitative phase
diagrams indicated. Our work implies that experi-

d&5

w hc(T)/J

FIG. 3. Schematic phase diagram in the (h/J, T) plane for
d ( 3. The ferromagnetic phase (F) exists only for h =0.
A domain state(D) exists at low temperatures, and h WO,

its transition h, (T), broken line, to the high-temperature
paramagnetic (P) phase is probably "smeared. "The broken
h/J axis for h/J ) 1 signifies the singular many-phase struc-
ture (Ref. 18).
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ments on d =3 random-field systems would be ex-
tremely instructive. In fact, the agreement with ex-
isting experiments' ' is quite encouraging. In par-
ticular, the transition found in Ref, 10 for the
paramagnetic-dilute antiferromagnetic case is substan-
tially broadened by the uniform field, which is ran-
dom for this order parameter. For the same sample
the paramagnetic spin flopped transition, for which
the field is not random, remains sharp, indicating no
sizable macroscopic inhomogeneity. The random-
field broadening thus appears to be an intrinsic effect.
As mentioned before, another implication of these
results is that the (rather common) first-order transi-
tions in impure d =, 3 systems' should often exhibit
some rounding. The results of this letter are sub-

stantiated by expansions in ~ for d = 3 + e which can
be performed for this model. '
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