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A real-space renormalization-group transformation has been carried out on the classical @

model on a lattice in two dimensions. The critical line has been found for 0 ( 8 & ~ where 8 is

the ratio of the site well depth to the nearest-neighbor harmonic coupling energy. For 8 && 1

(near the displacive limit) the critical temperature qualitatively agrees with a rigorously derived

function for T,(8) in that limit. In contrast, a previously published Kadanoff-Migdal transfor-

mation on the same model predicts that T,(8) is linear in 8 for 8 «1. A crossover to noncrit-

ical Gaussian-like behavior is found at temperature To(g) & T, (8} for sufficiently small 8.

I. INTRODUCTION

The Q" model on a lattice is defined by the reduced
Hamiltonian

=E X
' +XV, (x,)+XU,(x,,x,),AT, 2m ((i)

U ( ) Es 2+ E(8—+I)Uix= x+ x

(la)

(lb)

U2(x,y) = —(x —y)
E (1c)

where E = I/ksT, [x;},and [p;} are coordinates and
momenta of the particles and (ij) are nearest-
neighbor pairs. 8 is proportional to the ratio of the
well depth of the site potential energy to the harmon-
ic strain energy. In the limit 8 ~ the $' model is

formally equivalent to the Ising model. The limit
8 0 is called the displacive limit. In that limit the
well depth of U~ is zero. U~ has only a single
minimum and so the Hamiltonian has a Gaussian-
like structure in that limit. In 1dimensions, the
canonical configurational partition function is defined

by

G(x, xj)Q„(E,8) = dx, de ge ', (2a)
4 -oo

( )

A real-space renormalization-group (RG) transforma-
tion can be performed in two dimensions by integrat-

ing over half the coordinates in a way similar to the
decimation procedures that have been used on the
two-dimensional Ising model. ' Block-spin RG's on

@ type models have also been constructed. ' I have
found by a numerical integration technique that for
most of the (E, 8) parameter space the renormalized
couplings can be accurately mapped onto the $
Hamiltonian without introducing further couplings.
The only exception is in the low-temperature region
near the Ising limit. Examination of the RG flow

along the critical manifold T,(8) indicates that 8 is a

marginal parameter near the Ising critical fixed point.

For very large 8 the renormalized value of 8 is found
to be larger by only a small additive constant. This is
an artifact of the decimation character of the RG
transformation and therefore probably has no effect
on the Ising universality of the phase transition. For
8 && 1, near the displacive limit ~here the well depth
of U~ is small, the critical temperature is not propor-
tional to the harmonic strain energy as is the case in
thrcc or higher dimensions. Howcvcf th18 numerical
solution to T,(8) is in qualitative agreement with a

rigorous formula for the critical temperature near the
displacive limit derived by Bricmont and Fontainc. '
They show that T, (8) is bounded above and below

by a function of the form

e = —C(e+ I) T in[(e+ I) T]

near the displacive limit. A Kadanoff-Migdal
transformation6 on the same model' in two dimen-
sions predicts that T, is linear in 0 for small 8. In
general the Kadanoff-Migdal transformation predicts
T, —82 ~~2 in d dimensions for small H. Not surpris-
ingly the Kadanoff-Migdal transformation simply
misses the logarithmic correction to the linear
behavior in two dimensions.

The existence of a crossover from Gaussian-like to
Ising-like behavior at small 8 predicted by the
Kadanoff-Migdal transformation' is confirmed by this
RG transformation. For T greater that a crossover
temperature To(8) the system exhibits a Gaussian-
like symmetry after the RG transformation has been
iterated several times. This means that the double
well potential is renormalized into a single well po-
tential similar to the Gaussian model. ' As T is
lowered this behavior disappears and the system
crosses over to an Ising-like potential in which the
well depth increases after each iteration of the RG
transformation. In this region small blocks of parti-
cles would tend to have a nonzero net polarization.
This crossover should be associated with the emer-
gence of a central peak in the dynamic response func-
tion S(q, ru)
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II. RBSUI.TS AND DISCUSSION

The RG transformation applied here is very similar

in principle to RG transformations used on the Ising
model in two dimensions. ' Figure 1(a) shows a

square lattice in two dimensions. The bonds
represent the pair couplings G(x,y). The first step is

to integrate Eq. (2) over the sites marked x. The

remaining sites form a square lattice with nearest-
neighbor distance K2 times the original nearest-
neighbor distance. If it now proves possible to map
the new effective couplings between the remaining
lattice sites onto the P' Hamiltonian then a RG
transformation with scale change b = J2 can be gen-
erated. When the variable labeled t in Fig. 1(a) is in-

tegrated over, a coupling symmetric in (X~,X3,X3 x4)
is generated:

exp[G4(x&x&X3X4)]= J drexp[G(x, ,r)+G(x, ,r)+G(X3, r)+G(x, , r)] . (4)

64 is invariant under permutation of any two of its
arguments. Therefore the integration creates equally

strong couplings between nearest neighbors and next
nearest neighbors. In addition, each nearest-neighbor
bond will have a contribution coming from another
integral. One can approximate the effect of the

next-nearest-neighbor couplings by adding their
strength to the nearest-neighbor couplings. ' In the
Ising limit this procedure gives both the critical tem-
perature and exponents quite accurately. If this pro-
cedure is to make any sense in the general case then
the following equation must be approximately satisfied:

4

G4(x] xQ x3 x4) = — XUt (x&) ——[ U3(x~,x3) + U3(X3,X3) + U3(X3,X4) + U3(X4 x~) ]
i~1

where

U~(x) = —G4(x, x,x,x)

entire parameter space by the Q4 site potential term
r 4

x

i.e, , the renorrnalized couplings can be approximately

split into site terms and couplings between nearest
neighbors only. Ul is the site potential term and U2

is the effective nearest-neighbor coupling. This pro-
cedure is carried out by numerically integrating Eq.
(4) and performing the steps Hsted below numerical-

ly. The function U~(x) is very accurately fit over the

E and 8 are the renormalized coupling constants and

( is a site length rescaling factor. Once U~ is known,
the minima of the function are located numerically.
For most of the parameter space Ul has two minima
located at +xo. The strain energy between nearby
sites is measured by letting the arguments in 64 take
on different values. For example, I define the func-
tions

U3 (xp,y) = —64(xp, xp, xp,y) 4 U~(xp) 4 Ut(y)

(7a)

U,
' '

(xp,y) =—', [G4(xp, xp,y,y) +—,U)(xp)+ —' U, (y) ]

FIG. 1. The first step of the RG procedure consists of in-

tegrating exp( —

H/kate

over the lattice sites marked x in

Fig. 1(a). Figure (b) shows that the sites that remain also

form a square lattice, but ~ith the lattice constant increased

by a factor of K2.

The first corresponds to fixing three particles in the
block in Fig. 1(b) at xp and displacing the fourth
to y. The second corresponds to fixing two at xo and
displacing two to y. Of course other combinations are
possible but these are representative; if these two

functions are nearly equal then this method of divid-

ing up G4 is reasonable. The difference between
these two functions is a measure of the error made in

assuming nearest-neighbor couplings only. Every-
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where in the parameter space except at low tempera-
ture near the Ising limit these two functions are very
close to being equal. For example, the case of 8=10
and T on the critical line is shown in Fig. 2. All oth-
er cases except the low-temperature Ising region give
similar agreement. Even there the two functions- (2)
differ by only about 50%. Once U~ and U2 are
determined, the renormalized coupling constants E
and 8 are determined from

= -[U, (xo) —U, (0)],
4(8+ I)
2EH - (2)= U2 (xp, —xp)
8+1

(sa)

(sb)

These equations are chosen so that the four point
coupling function G4(xt, x2,x3,'x4) is fit exactly by the
p' Hamiltonian at the points (0,0,0,0), (xo xo.xo.xo)
and (xp, xp, —xp, xp). Alternatively one can
parametrize the renormalized potential by the width

of the double well rather than the height. This could
be important near the Ising limit because the particles
seldom sample the potential near the top of the well.

It turns out that the RG flow with that parametriza-
tion is almost identical to the first parametrization.
This in addition to the careful checking of the differ-
ence between U2' and U2 and a comparison with

an asymptotic expansion of Eq. (4) near the Ising
limit assures that this scheme is reasonable.

The RG flow of the system has the following
features as shown in Figs. 3(a) and 3(b). The RG
flow is determined by performing the above steps nu-
merically and iterating. The critical manifold T, (8)
extends from 8=0, to 8= ~. Near 8=0, T,(8)
tends to zero slightly faster than the first power of 8,
i.e., T, is not proportional to the nearest-neighbor
strain energy as it is in higher dimensions. In some
recent work, Bricmont and Fontaine' have shown

that for 8 &( 1 the critical temperature is bounded
above and below by a function of the form

8 = —C(8+ I ) T in[(8+1) T] (9)

This was accomplished by using a Peierls argument.
The lower bound was found by using an infrared
bound technique and the upper bound was found by
using correlation inequalities. Since the critical tem-
perature is bounded above and below by a function
of this form it is reasonable to assume that T, (8)
obeys the relation

8 = —C(8+1)T, in[(8+1) T, ] (lo)
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for some Cas 8 0. In addition Bricmont and Fon-
taine conjecture without proof that C =3/4m. This
agrees qualitatively with the results of this RG
analysis. Figure 3(b) compares a curve of the form
(10) (solid line) with the points on the critical line

given by the RG flow (circles). The constant C is

chosen so that the curve goes through the value of
T, at 8=0.08. This constant is about five times
bigger than the conjecture of Bricmont and Fontaine.
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FIG. 2. The shape of the renormalized potentials on the
critical line near the Ising limit (T =0,95, 8=10.0). The
vertical scales for the one particle and two particle potentials
are vastly different. xo is the point where U~ takes its

minimum value.
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FIG. 3. The phase diagram of the $4 model in two
dimensions. Figure (a) shows the entire parameter space.
Figure (b) is an enlargement of the top left corner of (a).
The circles are points on the critical line as determined by

the RG analysis. The solid line is the prediction of Bricmont
and Fontaine with the constant C chosen so that the line

passes through the left-most point. The squares and dotted
line are the corresponding point on the crossover line. The
arrows denote the RG flow along the critical manifold.
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Also shown are points on the crossover line
(squares) fit with Eq. (10). The Kadanoff-Migdal
transformation7 gives a straight line which lies far
above the curves sho~n here. Near the Ising limit I
find that the critical temperature obeys the relation
T,(8) = T,(~) —const/8.

Some recent work by Baker and Bishop' on an ex-
actly solvable model in this universality class is in

qualitative agreement with this phase diagram. Their
parametrization is somewhat different from this w'ork

but the essential division of the phase diagram into
an ordered phase, a disordered Ising-like region and a
Gaussian-like region is preserved.

III. CONCLUSION

In conclusion, I have used a real-space RG pro-
cedure to determine the phase diagram of the P'
model in two dimensions. Near the displacive limit

the critical temperature agrees qualitatively with a
rigorous formula for T, in that limit. A Kadanoff-
Migdal transformation was incorrect in this respect.
However, the Kadanoff-Migdal transformation does
correctly predict the existence of a high-temperature
Gaussian-like region for sufficiently small 8.
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