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The two-dimensional axial-next-nearest-neighbor Ising model is studied numerically using

finite-lattice results. The row-to-row transfer matrix is mapped into a simple one-dimensional

spin- —quantum Hamiltonian. The leading eigenvalues and the corresponding eigenvectors are
2

calculated numerically for chains of finite lengths. Using a finite-lattice renormalization-group

transformation the high- (low-) temperature region is analyzed with the use of the Hamiltonian

for the original (dual) model. Although there is no clear evidence for a massless phase, the

phase boundaries obtained in this way are a strong indication of the presence of a sinusoidal

phase between the paramagnetic and the (2) antiphase, in fair agreement with previous

analytical results.

I. INTRODUCTION

Recently the two-dimensional ANNNI (axial-next-
nearest-neighbor Ising model) has been intensively
studied. Although invented by Elliott' in 1961 to
describe the phase structure of rare-earth com-
pounds, this model has also been proved to be relat-
ed to the commensurate-incommensurate phase tran-

sitions and remains a challenging problem, both
theoretically and experimentally.

The three-dimensional ANNNI model has an infin-

ite number of phases and a very complex phase dia-

gram, ' shared by other models with competing in-

teractions. ' In two dimensions the model has been
studied by Monte Carlo simulations, by exactly solu-
ble "mock" models, ' and by an appropriate version
of the Pokrovsky-Talapov ' method. Recently one
of us has used exact mappings, high- and low-

temperature expansions for the correlation length,
and spin-wave approximations to obtain the critical
behavior of the two-dimensional ANNNI model.

The phase diagram of the two-dimensional ANNNI
model is shown in Fig. 1. The notation para indicates
a paramagnetic phase which is of the usual type
above the line IL'D, but which displays a strongly os-
cillatory behavior below this line. The notation ferro
indicates a usual ferromagnetic phase, while the (2)
phase is characterized by row configurations of two

spins up, two spins down. The sinus phase is a
genuine incommensurate phase with magnetization
oscillating according to a characteristic wave vector.
This type of phase diagram agrees with recent analyt-
ic calculations, although some controversy still
remains over the location of the Lifshitz point. '

0.8

0.6

0.4

0.2

0.2 0.4 0. 6 0. 8

FIG. 1. The phase diagram of the two-dimensional
ANNNI model. 7 =K]y/K]z is the reduced temperature
and ~ = ~E2 iI/Kt» is the ratio of the competing interactions

in the x direction. I(~=1, K=O) and D(X=K=~) are Is-

ing critical points awhile M(v =0, K =0.5) is the multicritical

point, For a discussion of the phases, see the text.

In this paper we report the results of finite-lattice
calculations. In interpreting the results one has to
keep in mind that a true incommensurate phase ap-
pears only in the thermodynamic limit. Besides a

quite accurate ferromagnetic-paramagnetic phase
boundary, our main result is the suggestion of the
existence of a "sinus" phase lying between the
paramagnetic and the (2) phase, as indicated by the
fact that the phase boundaries obtained by applying
finite-size scaling" alternately to the original and dual
models do not converge to a unique line.

Our paper is organized as follows. In Sec. II the
model is defined, its row-to-row transfer matrix is
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constructed and subsequently mapped into a one-
dimensional quantum-spin Hamiltonian at T =0 in
the so-called Hamiltonian limit. The dual of this
Hamiltonian is also derived. The symmetries of
these Hamiltonians, as well as our diagonalization
procedure, are discussed. In Sec. III we present in
graphical form the behavior of the leading eigen-
values of the different symmetry blocks for chains of
eight spins. The finite-size scaling and the finite-
lattice renormalization group transformations
(FLRG) are presented in Sec. IV. The behavior of
the (scaled) mass gaps (the mass gap is defined as
the inverse of the correlation length) are presented in
graphical form. Accordingly, the results obtained for
the phase boundaries from the original and the dual
Hamiltonian are discussed in Sec. V. They are com-
pared to exact expansion results and previous analytic
predictions. Although the mass gaps behave strange-
ly in the region below the mean-field Lifshitz point
(r = Etl, /Et„= —,, E = [E2„(/Et„=—,), our numeri-

cal results support the form of the phase diagram
first proposed by Villain and Bak' and by Cop-
persmith and coworkers, namely, that the Lifshitz
point is at T =0. Results for the critical exponents
obtained from these methods are rather disparate.
We have therefore applied a block-projection renor-
malization group method" (BPRG) to calculate the
critical exponents. Although such methods lead to
less accurate phase diagrams, the results obtained for
the critical index of the correlation length are in
keeping with expectations.

II. ANNNI MODEL

The two-dimensional ANNNI model is defined by

—px- g(E„S-,. s-, ,-„-~E, ~s-,. s-, ,-, „

usual

E1y 2
ln tanhE 1„~ (1.5)

The different symmetries of the model (1.1) and,
correspondingly, of the operator (1.2) were discussed
in detail in a previous paper. ' Here we notice that in
the so-called Hamiltonian limit, when E1„,K2„, and
Et'„ tend all to zero (but not the reduced temperature
r = EP~/Et„, nor the competition ratio
ll = ~E2„~/Et„) the operator V goes to

NC
Nc

VII ——C c 1+Et„x(o,*a,' +—t llol'o ~2 +ro f)
i+1

(1.6)

After neglecting the constants one is led to a linear
—,-spin Hamiltonian defined (after the canonical

transformation o l"~ al') as

H = X(0 l lrl+t K 0l~lrl+2 +'r lrl )
i

(1.7)

The low-lying eigenvalues of this Hamiltonian corre-
spond to the exponential of the largest eigenvalues of
the transfer matrix. At ~ =0 the Hamiltonian (1.7)
reduces to an Ising model in a transverse field. This
model' is in the same universality class as the usual
Ising model and the critical point is defined by vc =1.
The same stands for v, K )) 1, where one recovers
two independent Ising models in a transverse field
situated on the even and the odd lattice points,
respectively. At ~ =0 one has an exactly soluble
model, frozen into a ferromagnetic state if K (0.5 or
a (2) state if ll &0.5.

Implementing the duality transformation through
the bond operators

+Etys-., S-.
, +-, „) Pl = lrl lrl+] Pl glrj=

J&i
(1.8)

V= V1V2

where V1 represents the self energy of a row

(1.2)

~c
Vt ——/)exp(Et„; f t

—[Ep ~ f +2) (1.3)

while V2 contains the interrow interaction

Nc

V = g C exp(E",") (1.4)

Here C =exp(E~'~)/cosh(Et~) is a constant and as

where p-1/kT, i runs over a square lattice and 1 x,
1y are unit vectors in the x, y directions, respectively.
The variables s-, are usual Ising variables s-,. = +1.
The row-to-row transfer matrix V is given by

the operator (1.6) will map after the canonical trans-
formation p, i" p, i' 1nto the dual Ham1lton1an HD

HD X(P,i Kill I Pl+1 + TPlP I+1),
l

(1.9)

which is an XZ (or XY) model in a longitudinal field.
The duality transformation (1.8) "reverses" the mag-
nitude of the temperature; accordingly, the paramag-
netic region (r » 1) of the original model is
mapped into a two-fold degenerate ferromagnetic
state in the dual model (1.9). The ferromagnetic re-
gion of the original model corresponds to a disor-
dered, paramagnetic phase in the dual model, while
the (2) phase is mapped into a usual antiferromag-
netic phase. These observations are important when
interpreting the results of the finite-lattice calcula-
tions.
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Finally let us mention that the (global) parity
operator

(1.10)

commutes with the Hamiltonians (1.7) and, in terms
of p, , 's, (1.9). Therefore we have used a basis in
which these Hamiltonians are automatically block di-
agonal and will use the label even (odd) to character-
ize eigenvalues corresponding to even (odd) eigen-
vectors. We shall additionally use the notation k =0
(A 0) to label the eigenvalues of translationally in-
variant (non-invariant) states.

III. FINITE-LATTICE RESULTS

Using standard library routines we have exactly di-

agonalized the Hamiltonians (1.7) and (1.9) for
chains of up to eight spins. A Lanczos tridiagonaliza-
tion procedure, '" for example, would allow the exact
diagonalization of much larger lattices. However, by
maintaining the spin basis in our calculations we are
able to directly identify the spin configurations corre-
sponding to the eigenvalues of the ground and first
few excited states (we shall refer to these as leading
eigenvalues). Moreover, the size dependence of the
eigenvalues is quite smooth and we expect no
surprises in their pattern for X & 8. Nonetheless,
some tricks are necessary, especially in connection
with the (2) phase of the original model.

It is worth mentioning that the duality transforma-
tion is strictly true only in the thermodynamic limit;
for finite lattices one has to impose special boundary
conditions. s However, for reasons of computational
efficiency we have used periodic boundary conditions.
In a few cases calculations have also been made with
free boundary conditions and the correct boundary
conditions; the results compare favorably with the
results presented herein.

A. Original model

We have studied the leading eigenvalues of the
even- and odd-symmetry blocks for N = 3, 4, 5, 6, 7,
and 8. In order to account for the ground-state con-
figurations (r —0) one has to decline such lattices
where the ground state would not fit, therefore if
~ & 0.5 only chains comprising integral multiples of
four spins are allowed. " We present here results for
N =8 which are typical for the pattern of the leading
eigenvalues. In Figs. 2(a) —2(f) (the negative of) the
lowest two eigenvalues of each symmetry block (even
eigenvalues are full lines, while odd eigenvalues are
dashed) are presented for ~ =0, 0.25, 0.4, 0.5, 0.7,
and 1 as functions of the reduced temperature ~.
The leading eigenstate of each block is translationally
invariant but the second eigenstate is, in general, not.

For K & 0.5 the ground state of the system is fer-
romagnetic and is twice degenerate at v =0, consist-
ing of even and odd translationally invariant eigen-
vectors, as it should. Therefore the mass gap show-

ing the onset of ferromagnetism is just the difference
between the corresponding eigenvalues. Let us point
out that the critical temperature can be estimated
quite well from the value of ~ where the difference
between the first and the second even eigenvalues is
minimal (two full lines in the pictures). For exam-
ple, 7&=1 at K=0, as follows from self-duality argu-
ments. The behavior of the odd eigenvalues at high
temperatures is peculiar, especially for K less than,
but near 0.5, when they become degenerate at low

temperature. This behavior indicates that the mass

gap also has components which oscillate as a function
of r and ~ [see Fig. 4(b) and also Sec. III B) This is

reflected in the rather peculiar behavior of the scaled
mass gaps (see Sec. III B) for ~ & 0.25.

At x =0.5 all four eigenvalues are degenerate at
r =0 (many more eigenvalues, not shown here, are
degenerate, too —for details see Ref. 16). The odd
eigenvalues remain degenerate at any ~. As ~ in-

creases above 0.5, the four leading eigenstates remain
degenerate at r =0 as the (2) phase is four times de-

generate. The odd eigenvalues are exactly degenerate
for all values of 7., showing once more that the mass

gap has an oscillating component (the second odd
eigenvalue is not translationally invariant). As ~ in-

creases, so larger 7 is needed to open the mass gap
and in the K, 7 ~ limit one recovers an Ising-like
picture.

B. Dual model

The same kind of "snapshot" is shown in Figs.
3(a) —3(f) for the dual model (1.9). Now the r —0,
K (0.5 is a paramagnetic region, where the even,
k =0, eigenvalue is unique. In the same region at
large ~ one enters into a ferromagnetic phase. This
fact is very clear from the behavior shown in Figs.
3(a) and 3(b) and does not deserve any further com-
ment. At K =0.5 the even and odd eigenvalues are
degenerate in pairs. At ~ =0 they are all degenerate,
once more as a consequence of the high degeneracy
of the multicritical point. As K further increases a
rather strange thing happens. At small 7 the even
eigenvalues are degenerate, a consequence of an anti-
ferromagnetic ground state. Then the leading odd
eigenvalue suddenly crosses both of them to become
the ground-state energy to which the translationally
invariant even eigenvalue tends from below in order
to ensure the ferromagnetic behavior of the v » 1

phase. Strictly speaking, a crossing in the leading
eigenvalue corresponds to a first-order phase transi-
tion. However, when using finite-size scaling a
second-order transition takes place before the cross-
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Thc four 1cadlng clgcnv81ucs of —H (1.7) for thc Drlglnal model for 8 chain of clght splns for K =0 0.4 0.5, 0.7, and
I. The solid lines represent eigenvalues from the even-parity block while the dashed lines represent those from the odd-parity
block.
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FIG. 3. The four leading eisenvalues of —HD (1.9) for the dual model for a. chain of eight spins for x =0, 0.4, 0.5, 0,7, and
l. The solid lines represent eigenvalues from the even-parity block while the dashed lines represent those from the odd-parity
block.
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ing, which can indeed result in a rather large ex-
ponent for the specific heat. "

IV. FINITE-SIZE SCALING AND
RENORMALIZATION GROUP

The basic concept of finite-size scaling can be ex-
pressed by postulating that the operator correspond-
ing to finite-size effects has a critical index equal to
one or, in other words, that if a thermodynamic
quantity or other operator has in the thermodynamic
limit a given singular behavior as a function of
~
T —Tc~, then for finite, but large, N its behavior

can be parametrized by the same function of I/N at
the exact critical point

(4.1)

This concept, introduced as early as 1941"and
later developed and generalized by Fisher and
Barber, ' has proved to be a very useful tool in

evaluating critical behavior from machine-experiment
results.

The finite-lattice renormalization group transforma-
tions can be classified into basically two groups. One
group uses the original ideas of Kadanoff and Wil-
son ' as implemented by Niemeijer and van
Leeuwen and we will call them block-spin methods.
These methods use perturbation theory" or a projec-
tion technique in order to reduce the number of de-
grees of freedom. '~ A different method, first applied
to the transfer matrix by Nightingale" and used in
the context of quantum-spin systems by different
groups, ' is a direct implementation of the finite-size
scaling idea. It considers the correlation length (or
its inverse, the mass gap) as the basic quantity and it
assumes that for sufficiently large W' & N

as close to each other as possible without changing
the nature of the ground state. A critical point ob-
tained in this way will be denoted by rc(N, N') and
the thermal critical exponent by yr(N, N'). Using in-
creasingly large values of W one can extrapolate the
series of results to obtain very accurate values. " In
the original model N and W' must be multiples of
four when K & 0.5, as discussed earlier. Therefore
we can use only a 4 8 mapping from our finite-
lattice results and we have no information on the
convergence of this result.

In Figs. 4(a) and 4(b) are presented the scaled
mass gapa NA~(r, ~) of the original Hamiltonian
versus the scaled temperature ~ for K =0 and x =0.4.
For K = 0 (Ising model) the mass gaps behave as ex-
pected, with a very clean intersection near v =1. As
x increases, the points of intersection move to small-
er values of ~. At x =0.5, the scaled mass gaps van-
ish at r =0, independently of N. In Figs. 5(a) —5(d)
the scaled mass gaps of the dual Hamiltonian are
shown for K =0, 0.4, 0.7, and 1. The behavior
sho~n is in keeping with that of the original model
and indicates clearly the convergence of the method.
Note that the vanishing of the mass gaps as ~ 0 in
the original model corresponds to the degeneracy of
the ground state. Similarly, the mass gaps in the dual

(a)

NA„

0

0.5

NdN(r, x) =N'b, (r', ~) (4.2)

defining implicitly a unique relationship between the
original and renormalized temperatures, v and ~',
respectively. The fixed point (critical temperature) is
obtained from

NAN(rc, K) =N'd, i(rc, ~) (4.3)

while the critical exponent y, is derived as usua122 to
be

We have applied this method throughout the paper
in view of the reliable results it gives for quite dif-
ferent models and different types of critical
behavior.

The method works best when N and N' are chosen

0

0.15

FIG. 4. The scaled mass gaps Nb, ~(v) for K =0 and
K =0.4 in the original model. The points of intersection
yield the critical points ~c(N, N +1), N =4, 5, 6, 7. Some
curves are dashed as a visual aid.
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FIG. 5. The scaled mass gaps NAz(r) for K=0, 0.4, 0.7, and 1 in the dual model. The arrows in (c) and (d) indicate the
crossings occurring in the ground state which correspond to a first-order phase transition [see Figs. 3(e) and 3(f)]. Some curves
are dashed as a visual aid.

model must tend asymptotically to zero as now the
high-temperature state (r ~) of the dual model is

ferromagnetic; this tendency is evident in Fig. 5(c)
(dual model, K =0.7).

It has been pointed out' that the FLRG tech-
niques are not reliable after the first crossing in the
mass gaps. However, a peculiar behavior observed at
temperatures above the critical temperature may sug-

gest the presence of an oscillatory phase. Shown
respectively in Figs. 6(a) and 6(b) are the scaled
mass gaps of the original and dual Hamiltonians for
K =0.4. Visible in the original model are a series of
crossings associated with a change in slope of the
scaled mass gaps. This behavior, which becomes
more prominent as N increases, becomes apparent at
K & 0.25 and persists through K =0.5. Such addition-
al crossings are visible for K & 0.5; however they ap-
pear only for large N and move rapidly toward large T

as K increases above 0.5. In the dual model, one also

observes additional crossings which first appear at
K & 0.25, but there is no direct correspondence with
the behavior observed in the original model. We at-
tribute this anomalous behavior in both cases, how-
ever, to the strong oscillations of the spin-spin corre-
lations expected in this region of the phase diagram.
Note that a negative mass gap implies that the
ground state comes from the odd symmetry block as
may be seen from Figs. 3(e) and 3(f).

V. CONCLUSIONS

By a rigorous mathematical fitting procedure" one
may es«m««c(K) =lim„rc(N, N', K) with
reasonable confidence. Presented in Fig. 7 for
K (0.5 are rc(N N + 1 ) for N = 4, 5, 6, and 7 for the
original model. The convergence of the method is
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FIG. 8. yea(N, N+1) for N =4, 5, 6, and 7 (K &0.5) and

~&~(N, N +2) for N =4 and N =6 as obtained from the dual

model (1.9). Once again, note the convergence of the
method.

0 0.2 0.4 0.6 0.8

FIG. 6. Scaled mass gaps for ~ 0.4 in the original and
dual models. Besides the mell-defined crossings at small ~

defining the ferromagnetic paramagnetic and
paramagnetic ferromagnetic phase transitions, note the
peculiar sctics of additional crossings at higher tcmpcraturcs
which, in our opinion, are due to gap oscillations unrelated
to the critical behavior. Some curves are dashed as a visual
aid.

apparent, as comparison at x =0 of rc(7, 8) =1.001
~ith the exact value of 1 indicates. For x & 0,5, we

have only a single result, as indicated above. Howev-

er, we expect rc(4, 8) to be in error by at most a few
percent over the interval sho~n. The phase diagram
obtained by the block-projection renormalization

group method'2 mentioned in Sec, I agrees quantita-
tively vrith these results around x =0.5 and retains a
qualitative agreement every~here.

Our results for the dual model are presented in Fig.
8. For ~ (0.5 are shown rP(N, N +1) for N =4, 5,
6, and '7. The convergence is comparable to that ob-
tained in the original model; at ~ =0, re(7, 8)
=0.999. For ~ & 0,5 me are able to make calcula-
tions for chains of 4, 6, and 8 spins. The agreement
between rcD(4, 6) and rcD(6, 8) is indicative of rapid
convergence.

In Fig, 9 me summarize our results. The original
and dual models must perforce have the same phase
diagrams, although our studies cannot produce the
entire phase diagram from either model alone. ' The
obvious agreement of the original and dual models
for x & 0.5 clearly defines the phase boundary
between the low-temperature ferromagnetic state (1)

Or lI3inal Nodel
0,8

0.8
0 ~ 6

0.2

0.4

0.2 0.8

FIG. 7. vc(N, N+1) for N =4, 5, 6, and 7 (x &0.5) and

~c(4, 8) for x & 0.5 as obtained from the original model

(1.7). Note the obvious convergence of the method for
x & 0.5.

FIG. 9. The phase diagram obtained from Pigs. 7 and 8

(full lines). The phase boundary I-II is compared to
second-order perturbation-theory results; the boundary III-
IV is compared to first-order perturbation-theory results; the

boundary II-IV is compared to a low-temperature spin-eave
approximation (Ref. 8).
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y'(7. 8 )

Dual Model

y'(6 . 8 )

y'(tI. 6 )
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FIG. 10. The thermal index yT as determined by the
BPRG method for the original model. For K & 0.5, yT is
determined at the phase boundary II IV
(paramagnetic sinus).

FIG. 11. The thermal index yT as determined by the
FLRG method for the dual model. For ~ & 0.5, yT is deter-
mined at the phase boundary ill IV ((2) sinus).

and the high-temperature paramagnetic state (II).
The phase boundary plotted here is the average of
Tc(7, 8) and rc(7, 8). Shown for comparison is the
second-order low-temperature perturbation-theory
result (dashed curve).

For K )0.5, the situation is not as clear. Shown in
Fig. 9 are rc(4, 8) (upper curve) and re(6, 8). The
convergence of the FLRG method for the dual model
has been demonstrated, albeit by only two points of
the sequence. The dashed line above rcn(6, 8) is a
first-order low-temperature perturbation-theory result
and indicates that this phase boundary is correct at
low temperature. The single curve rc(4, 8) obtained
by FLRG methods, substantiated by the BPRG
method, is further supported by numerical calcula-
tions of a spin-wave approximation valid at low tem-
perature (dashed curve). Since the results of finite
scaling are not valid beyond the first crossing in the
mass gaps, we do not expect to observe the entire
phase diagram in either model. These results indicate
that a fourth phase (IV) must be sandwiched by the
low-temperature (2) phase (III) and the high-
temperature paramagnetic phase (II). We believe the
phase IV to be the incommensurate phase whose po-
tential existence has stimulated most of the recent in-
vestigations of the two-dimensional ANNNI model.

The nature of the phase transitions in this model
are also of interest. We have studied the thermal
critical index yT for both models. The
ferromagnetic-paramagnetic phase transition is most
likely of Ising type. Results for yT from the BPRG
technique as applied to the original model are shown
in Fig. 10 and those from the FLRG, as applied to

the dual model, in Fig. 11. Although neither method
reproduces the exact result of yr(K =0) = I, it is
probable that yT is a constant for K & 0.5. For
K )0.5, it seems that thc transition II IV is morc
complicated, while our results on the transition
III IV are inconclusive. We obtain no information
on the transitions IV II and IV III. It has been
suggested that as one approaches the boundary III-IV
from below, the behavior of the model is regular
(n =0), while from above a = —,.27 At the phase

boundary g = 8." Along the boundary II-IV,

q =1. Although our methods have shown that the
phase diagram can be generated from relatively short
chains of spins, it is apparent that the critical
behavior of the infinite chain, as specified by the crit-
ical indices, is not attained in such short chains.

In conclusion, it is apparent that simple Ising
models with competing interactions provide models
with commensurate-incommensurate phase transi-
tions w'hich can be easily studied by a variety of
methods, including Monte Carlo methods, various
renormalization group techniques, and exact calcula-
tions. Such models might well provide a proving
ground for theories of melting in two dimensions.
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