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A general random-phase-approximation (RPA) equation for the surface susceptibility of an

itinerant ferromagnet is derived. The surface is treated as a perturbation to the bulk problem.
It is shown that the resulting secular equation for surface spin waves has the same structure as
for magnetic insulators, It is demonstrated that the spin-rotational invariancc of the Hubbard

Hamiltonian imposes an important self-consistency condition on the surface perturbation to the
bulk susceptibility. The previous calculations which do not satisfy this self-consistency condition
are critically reviewed. The secular equation for surface spin waves is solved explicitly for a

strong itinerant ferromagnet containing a plane of impurities with an excess intra-atomic repul-

sion EU modeling the surface. The unenhanced surface susceptibility is treated exactly in the
surface plane and approximated by the bulk susceptibility outside thc plane, This approximation
is shown to be asymptotically exact within RPA for a fcrromagnet with exchange splitting much

larger than thc bandwidth. Surface spin ~aves in this model split off thc bottom of the bulk

spin-wave band for a magnetically ~eaker surface (4 U & 0) and they deviate downward from
the bulk band only to the order q~I (qJ) is the wave vector parallel to the surface). The attenua-

tion of long-wavelength surface spin waves is exponential and their attenuation length is propor-

tional to the square of the wavelength. All these properties are in qualitative agreement with

the properties of surface spin waves in magnetic insulators. The similarities and differences
between surface spin ~aves in metals and insulators are discussed in the light of thc modern ap-

proach to magnetic excitations in bulk itinerant ferromagncts.

I. INTRODUCTION

Surface spin waves in ferromagnetic insulators
have been studied extensively. " In the simplest
model, nearest-neighbor exchange interaction is as-
sumed and the exchange integral J, in the surface
plane is chosen to be smaller than the bulk value J.
A well-defined surface mode then splits off the bot-
tom of the bulk magnon band. It is also found'2
that to the order of q~f (q~~ is the wave vector parallel
to the surface) the dispersion of surface magnons is

the same as the dispersion of the bulk modes and the
surface branch only deviates from the bulk band to
the order of q~~. The attenuation of long-wavelength
surface rnagnons increases as the square of the
wavelength, which indicates that they penetrate very
deeply into the crystal.

No such detailed microscopic information is avail-
able for surface spin waves in metals. The only
theor'etical study of surface spin waves in the
itinerant model of ferromagnetism applicable to tran-
sition metals is due to Griffin and Gumbs. 3 ~ In con-
trast to magnetic insulators, Griffin and Gumbs find
that surface spin waves in metals always split off the
top of the bulk spin-wave band and they claim that
this property is a characteristic feature of the itinerant
model of ferromagnetism. To obtain surface spin
waves, Griffin and Gumbs were forced (by the com-

plexity of the surface problem in metals) to adopt the
ciassical infinite barrier model (CIBM) which as-
sumes that the static electron density in a metal
remains constant right up to its surface. However,
recent band-structure calculations' indicate that this
assumption is not valid in transition metals such as
Ni. Moreover, it has been pointed out6 and acknow-
ledged by Griffin and Gumbs that CIBM breaks the
spin rotational symmetry of the problem and Griffin
and Gumbs thus loose the Goldstone mode ~ =0,
q() 0. This casts serious doubts on the validity of
CIBM and the fundamental problem whether surface
spin waves in the itinerant model exist and, in partic-
ular, whether they split off the top or bottom of the
bulk band remains unresolved.

In this paper we shall study the simplest one-band
Hubbard model of an itinerant ferromagnet with sur-
face in the random phase approximation (RPA) and
show quite conclusively that surface spin waves split
off the bottom of the bulk magnon band provided
the intra-atomic Coulomb integral (Hubbard's U) in
the surface plane is smaller than in the bulk. The
dispersion and penetration depth of surface spin
waves will be also determined. No adjustable param-
eters are used and the present results are asymptoti-
cally exact within RPA for a strong ferromagnet with

exchange splitting 4 much greater than the
bandwidth.
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II. RPA SECULAR EQUATION FOR
SURFACE SPIN %AVES

We consider a simple cubic ferromagnet described
by the standard one-band Hubbard model'

0 X t/jc/ cj + X U, n, tn/t + V
ijo l

where c&,c& are the creation and annihilation opera-
tors in Wannier states, n&

= c& c&, U& is the effective
intra-atomic repulsion (Hubbard's U), and t/j is the
hopping integral. The potential V modeling the sur-
face will be specified later. Since the screening by the
conduction electrons and the correlations in the nar-
row band itself may be modified near the surface we

allow U& to vary in the direction perpendicular to the
surface. The parameters U&, t&, and the total number
of electrons in the band are chosen so that the
Hartree-Fock (HF) ground state is ferromagnetic. As
is well known, the bulk ( V-0) transverse spin sus-

ceptibility X calculated in RPA exhibits an isolated
bulk spin-wave pole which is separated from the
Stoner (electron-hole) excitation spectrum. To ob-
tain surface spin waves we require X in RPA for fer-
romagnetic electrons that are scattered from the sur-
face potential V. The transverse susceptibility matrix
in the Wannier representation is defined by

x/j(t) = ((S,+(t);Sj (0) )), where S/+=c/tc/t,
Sj cjtcjt and ((; ) ) denotes the retarded Green's
function. Since the wave vector parallel to the sur-
face q][ remains a good quantum number it is more
convenient to use mixed Bloch-Wannier representa-
tion X/j X/j(q//, p/), where ij label atomic planes
parallel to the surface. We can now write the stand-
ard equation of motion for X~ and solve it in RPA.
It is straightforward to s'how 'k ' that jt//(q//, p/) satis-
fies the following matrix equation which is exact in
RPA:

~/j('qll /») ~p/('qll ~)+ Xjt//(qll /») U/&tj(q//, p/)
I

(2)

The kernel X jp~(q//, /») is the transverse susceptibility
of noninteracting electrons moving in a spin-
dependent HF potential V/ = V/+ U/(n/ ). Here,
V& is the surface potential V in the ith atomic plane
and U, (n, ) is the HF exchange potential which is
highly inhomogeneous since both U/ and (n, ) vary
near the surface. The kernel X/j(q//, /») can be quite
generally expressed~ in RPA in terms of HF one-
electron Green's functions Gt/ (t)

Xg~(t) = (c/tt (t) cjt(0) ) G/jt(t)

+ (cjt (0)c (/tt) ) G/jt(t)

where ( ) denotes the thermal averaging. As-
suming that the solution of the one-electron HF
problem is known, the spin-wave problem reduces to

the solution of the key equation (2). All the previ-
ous attempts at solving it without drastic approxima-
tions have failed since, unlike the bulk problem, the
kernel X& is an essentially off-diagonal matrix both in
the Wannier and Bloch representations. Direct solu-
tion of Eq. (2) with the exact kernel Xtj is equivalent
to the inversion of an infinite matrix and is thus not
feasible.

To avoid this problem, we shall treat the surface as
a perturbation to the bulk problem. It is convenient
to write first Eq. (2) in an operator form,

x = x'+ x'Ux (4)

where I is the unit operator and 6 is the bulk suscep-
tibility denominator

G =(I U,r)-' . —

Clearly the poles of [I—G(I"6U+AUp+AAU)] '

determine the spin-wave energies in a ferromagnet
with surface. In the Bloch-Wannier representation,
the spin-wave poles are thus obtained from the fol-
lowing secular equation:

Det[I —G(l AU+ AUp+ AEU)]// =0

where i,j label atomic planes parallel to the surface.
Equation (8) which is still exact in RPA is the most
convenient starting point for the study of surface spin
waves. We note that l, G, and Uo are the charac-
teristics of a bulk ferromagnet and b, U, A are surface
corrections. It is also interesting to note that the sec-
ular equation (8) has exactly the same structure as
the secular equation obtained by Mills and Mara'du-
din' for a Heisenberg ferromanget. The operator G is
the unperturbed spin-wave Green's function and

and set X =I +A, where I is the standard
unenhanced susceptibility of a bulk ferromagnet and
A is the surface correction which can be determined
from Eq. (3). In the mixed Bloch-Wannier represen-
tation, I is given by

rt/(q//, /») =AT' Xexp[iqq(i —j)]I (q, /»), (5)
e~

where

r( ) A/ & y fkt fk+qt

&k+q ) &k t

Nq is the number of atomic planes parallel to the sur-
face, and ek are the bulk HF electron energies. We
shall also write explicitly the surface correction to U
by setting U= Uo+4U, where Uo is the bulk value
of U and 4U is a diagonal matrix in the Bloch-
Wannier representation with nonzero elements only
for atomic planes i near the surface. The formal
solution of Eq. (4) for the dynamic susceptibility x is
then given by

jt = [I—G (r A U + A Up + Ab, U) ] ' G (I'+ A), (6)
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raU+AUo+AAUis the surface perturbation. As
shown by Mills and Maradudin the surface perturba-
tion in the Heisenberg model is strictly localized.
This suggests that a truncation of the (in general ex-
tended) perturbation I'5 U+ A Uo+ AEU should be
possible and physically plausible.

III. MODEL OF THE SURFACE AND SOLUTION

OF THE SECULAR EQUATION

To discuss the surface perturbation we have to
specify the surface potential V. Following Kalkstein
and Soven" we could introduce (100) surface by set-
ting t& =0 across the z =0 plane. Further refinement
would be to modify tjJ for first few atomic planes to
take account of the band-structure changes near the
surface. However, all the important features of the
spin-wave localization at a surface can be obtained in
a far simpler model of surface for which analytic
solution of Eq. (8) is possible. In this simplified
model we assume: (i) strong Stoner ferromagnet;
(ii) electrons are allowed to hop freely across the sur-
face (t~& = tsb"'" for all ij); and (iii) U, = Uo for i 4 0
and U~= Uo+~Ufor i =0, where AUis a parameter.
The combined effect of (ii) and (iii) is that we have
replaced the general surface problem by a simpler
problem of localization of spin waves, at a plane of
"impurity" atoms with excess intra-atomic repulsion
b, U. Although such a model of surface may seem
crude, it reproduces all the qualitative features of sur-
face spin waves. In fact, we can compare it directly
with an infinite Heisenberg ferromagnet in which the
exchange between nearest neighbors J in the plane
z =0 is set equal to J' ~ Jb ik It can be easily shown

by the method of Refs. 1 and 2 that surface spin
waves become localized below the bulk band for
J' (J "'" and above the band for J' & J "'". This can
be easily understood since a spin wave localized in
the plane z =0 experiences either smaller (J' & Jb"'")

or greater (J' )Jb"'") exchange stiffness than in the
bulk. Clearly the condition for spin-wave localization
is that the exchange stiffness in the surface plane is
different from its bulk value. If, on the other hand,
one sets only J=0 across the z =0 surface and there-
by creates real surface, the spin wave traveling in the
surface plane experiences the same stiffness as in the
bulk and no localization occurs. This is the well-

known result arrived at analytically in Refs. 1 and 2.
It follows that the introduction of a real surface
(cleavage) plane only complicates the problem but
adds nothing to the physics of the spin-wave localiza-
tion. The same argument applies to the Hubbard
model. By setting U = Uo+ 5 U in the plane z =0 we
change the exchange stiffness in this plane and,
therefore, we expect spin waves to become localized
below the bulk band when the exchange stiffness is
smaller (hU & 0) and above the band when it is

greater (d U & 0). We shall now prove rigorously
that surface spin waves split off the bottom of the
bulk spin-wave band for AU (0.

We first note that assumption (i) further simplifies
the problem since the ground state of a strong fer-
romagnet is not affected by the plane of impurities
with excess potential 4U [up-spin carriers do not feel
the impurity plane potential Vot = ( Uo+ AU) (not)
since (not) =0]. It is also important to note that
there are three surface terms in the genera1 secular
equation (8), i.e, I hU, AUa, and AAUand all these
terms are preserved in our simplified model of sur-
face. The term I 4 U can be called "primary" surface
perturbation since it describes the direct effect of b U
on bulk spin waves. The remaining two terms AUO

and AA U are "secondary" in the sense that A re-
flects the changes in the one-electron states due to
5 U and these changes influence indirectly spin waves
which are collective modes made up of all the one-
electron states in the crystal. Although the electron
density in a strong ferromagnet is not affected by
4 U, the secondary terms A Uo and AA U are nonzero
in our Simplified model of surface since down-spin
carriers feel the surface potential b, U via
I pt

= ( Up+ 4U) (not) and their Green's function
which appears in Eq. (3) for A is modified near the
surface. In fact, it will be seen that the correct treat-
ment of the matrix A/J is of central importance. To
illustrate this, we shall first solve the secular equation
(8) in the classical infinite barrier approximation
A =0 which assumes that the impurity plane has no
effect on the one-t:lectron states.

The secular equation (8) in CIBM assumes the
form

Det Ss —$X;„"'"AUS„OS~p =0 (9)

where X&'„"'"= X, GgI',„ is the bulk enhanced RPA
susceptibility given by

Xs"'"(qs, ru) = Nq
' gexp[iqq(i j)]—

&& I'(q, (u) [ I —UOI'( q, (u) ] '

(10)

It follows from Eq. (9) that the spin-wave energies
are determined by

1 = ReX]]ulk(q )

For small q~~ and ru the susceptibility Xqb"'"(q~~, cu) is
dominated by the bulk spin-wave poles, i.e.,

I'(q, m)[l —UoI(q, ~)] '= n't[Dqg +(Dq(z( —~)] ' .

where D is the bulk spin-wave stiffness and nt is the
number of up-spin electrons per atom. Outside the
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bulk spin-wave band, i.e., for co & Dq]2] the summa-
tion over qq in Eq. (10) can be replaced by integral
and XII'" becomes

ReX)o'"(q rv) =—D ' 'a (Dq~] —ru) ' '

x tan
—1[(Dq 2 )1/2(Dq 2 ~)—1/2]

(12)

Aoo fori=j=0
Ag=

0 fori WO, j 40 (13)

~here a is the lattice constant and qo is a cutoff wave
vector whose magnitude is unimportant since we are
only interested in the limit q]] 0, ~ 0.

When co approaches the bottom of the bulk spin-
wave band from below, ReXIIII'"(qo, ra) tends to +~
and it follows from Eq. (11) that there is always a

bound state (surface spin wave) below the bulk band
provided 4U & 0. In the special case q][=0, the sur-
face spin-wave energy co, is clearly negative, i.e.,
there is a gap in the spin-wave spectrum. Since im-

purities with excess potential 4 U do not lower the
spin-rotational symmetry of the Hubbard Hamiltoni-
an" the Goldstone theorem is violated by the ap-
proximation A =0. It can be easily seen that the
same argument applies even to more elaborate
models of surface (such as adopted by Griffin and
Gumbs4). Clearly CIBM is not a good approximation
in this case and the effect of surface on the
unenhanced susceptibility X has to be evaluated
self-consistently.

The next simplest approximation is to treat the sur-
face layer exactly and replace X outside the surface
by the bulk susceptibility I. Therefore, we shall set

—sgn(A U) (aa& —
Pq(~ ) + (16)

where a and p are given in the Appendix. In fact,
for the discussion of the existence of surface spin
waves only the result P/a (D is required.

The qualitative behavior of the left- and right-hand
sides of Eq. (15) is shown in Fig. 1 both for AU )0
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which is more convenient for graphical analysis. The
bulk susceptibility is again given by Eq. (12) and we
only require App(qo, co) for small o& and qo. It is easy
to evaluate the general expression (3) for App and an
explicit formula for A00 is obtained in the Appendix.
As already discussed, the approximation (13) is ex-
pected to be valid for a strong ferromagnet with ex-
change splitting much greater than the bandwidth. In
this limit, the expansion of A00 in powers of cu and q][
takes the simpjte form

Apo(qo, «p) = —
AUUp '(Up+AU) '

where App is given by Eq. (3). The approximation
(13) is expected to be valid when the hopping term t&J

is small compared with U. In fact, it has been
demonstrated' that it becomes asymptotically exact
in the limit t///U 0 in the sense that the Goldstone
theorem is exactly satisfied. It follows that the ip-
proximation (13) preserves the spin-rotational sym-
metry of the problem and we may use it to discuss
the existence and properties of surface spin waves.

Since both A~ and b U~ have now nonzero ele-
ments only for i =j=0, the secular equation (8) be-
comes

1 —X]I'"hU —G Aoo(Uo+AU) =0
~ (14)

where Gpp ——X]I'"Up+1 and X]I'" is defined by Eq.
(10). E,quation (14) can be easily transformed to the
form

Uo[l + UoX]I'"(qs, co)]

= [A UUo ' ( Up+ A U) '+ App(qp, co) ] ' (15)
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FIG. 1. Schematic plots of the left-hand side (broken
curves) and right-hand side (continuous curves) of Eq. (15)
as functions of co for fixed q][. (a) corresponds to b U )0
and (b) to llU (0.
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IV. DISPERSION AND PENETRATION DEPTH
OF SURFACE SPIN %AVES

To determine the dispersion of surface spin waves
we have to solve Eq. (15) explicitly. Working to the
lowest order in pl and qll we may use Eq. (12) for
Xpp'"(qll, ru) and the expansion (16) for App(qll, pl).
Because of the symmetry of the problem, the surface
spin-wave energy co, can be expanded in powers of q~~

as
co =Aq +Bq" +

Substituting for XIIlk, App, and pl, in Eq. (15) and
keeping only the lowest powers of q[~, we obtain

(17)

2a D Up nl (Dqll Aqll + ' )
= —sgn(A U) (nAqll —pqll + ) . (18)

and A U & 0. It is clear that Eq. (15) has no solution
below the bulk spin-wave band for b U )0. On the
other hand, there is always a solution for 0 U & 0,
i.e., surface spin waves exist and they split off the
bottom of the bulk spin-wave band. Moreover, since
the surface spin-wave energy ao, lies between the
points pl = (p/a) qll and pl = Dqll it tends to zero con-
tinuously in the limit q]] 0, i.e., the surface mode
satisfies the Goldstone theorem. It can be also seen
from Fig. 1(a) that for AU )0 the Goldstone
theorem is satisfied by the bulk mode.

This behavior of surface spin wave's obtained in the
self-consistent approximation (13) is in sharp con-
trast to the behavior of surface spin waves in CIBM.
While CIBM predicts surface spin waves below the
bulk band for b, U & 0, the present calculation shows
that they appear for 4U & 0. It follows that CIBM
not only violates the Goldstone theorem but also
looses completely the acoustic surface mode for
AU &0.

In the lowest order in q[[, the right-hand side can be
neglected and Eq. (18) is clearly satisfied for A =D.
The surface spin-wave energy is then given by

= Dq[[ + Bq[~ +

where D is the bulk spin-wave stiffness constant.
Hence to the order of q[2[ the surface and bulk spin-
wave energies are identical. This result which also
holds for the Heisenberg model' is quite general
since the surface perturbation on the right-hand side
of Eq. (18) is always of higher order in qll than the
bulk term on the left-hand side.

The calculation of the coefficient B of the quartic
term would require more detailed knowledge of the
frequency and wave-vector dependences of App and

Xpp ". Although such a calculation is quite feasible
the effort is hardly justified since the present model
of surface is too simple for the numerical value of B
to be significant. Nevertheless, it is easy to discuss
qualitatively the behavior of the quartic term. It fol-
lows from Eq. (18) that its right-hand side (i.e., the
surface term) contributes to B and, therefore, the
surface mode deviates from the bulk band to the or-
der of qll. The graphical analysis of Fig. 1(b) indi-
cates that the deviation is downward (which is impor-
tant since well-defined surface spin waves can exist
only outside the bulk band).

We shall now discuss the penetration depth of sur-
face spin waves. It is first necessary to determine the
dynamic response X„„(qll, p&) of a general atomic
plane n parallel to the surface. The amplitude of the
surface spin wave S„+ is then proportional to the resi-
due of X„„atthe pole co = cu, . The susceptibility X„„
can be calculated from Eq. (6) and since the denomi-
nator in Eq. (6) is already known [Eq. (15) or (16)],
it is straightforward to show that

[AU+A U (Uo+&U)l(xbo"'kUo+I) 'xbo"'kxPi"„'kU,

( Up+ A U) (xIIp Up+ I ) ' —[A U + AppUp( Up+ A U) ]
(20)

It should be noted that Xb„"lk and XbI['k remain finite at
~ = ~, and the surface spin-wave pole is due entirely
to the denominator in Eq. (20). It follows that the
amplitude of the surface spin wave in the n th atomic
plane is given by

S„+ lim [AU+A Uo(Up+AU)]

n qll~ (22)

Here,

K = a (q ll
—pl /D)

bulk spin-wave band, Xp"(qll, pl) can be expressed
from Eqs. (10) and (12) as an integral

X (XgulkU + I) lxbglkXI]ulk (21) (23)

The only terms in Eq. (21) depending on n are xI["„'"

and X„"p'" and they clearly determine the penetration
depth of surface spin waves. Since eo, lies outside the

a is the lattice constant, and qp is a cutoff momen-
tum whose magnitude is unimportant provided
n K « qpna. For long-wavelength surface spin waves



~n =~coo exp~ —2aM' (—&/D) (25)

In the limit q~~=0 the amplitude S„+ is independent of
n and the surface spin wave reduces to the'homo-
geneous bulk mode ~ =0, q~~=0. For finite qI~, the
amplitude decays exponentially away from the surface
and the attenuation of long-wavelength surface spin
~aves increases as the square of the wavelength.
Both results are in complete agreement with the
Heisenberg model for ferromagnetic insulators. '

The principal result of Sec. II is the derivation of a
general RPA secular equation for spin-wave energies
in a crystal with surface. The surface is treated as a
perturbation to the bulk problem and the structure of
the secular equation (8) is found to be exactly the
same as in the Heisenberg model of magnetic insula-
tors. It follows that the physical condition for the ex-
istence of surface spin ~aves in metals is also the
same, i.e, , spin waves become localized at the surface
provided the surface exchange stiffness differs from
the bulk. Although the secular equation for surface
spin ~aves has the same structure, there are impor-
tant differences between surface spin ~aves in metals
and insulators. First, the range of the surface pertur-
bation in Eq. (8) is infinite but the surface perturba-
tion in the Heisenberg model extends only over I —2
atomic planes. As a result, the introduction of a
cleavage plane in the Hubbard model (without any
other changes in the surface parameters) modifies the
HF exchange potential in several adjacent atomic
planes, which changes the exchange stiffness. Hence
the cleavage plane should lead to the surface localiza-
tion of spin waves. No such localization occurs in
the analogous Heisenberg model with nearest-
neighbor exchange if only the bonds normal to the
surface are cut. The Hubbard model behaves in this
respect as a Heisenberg Hamiltonian with a long-
range exchange. The second important difference is
the frequency dependence of the surface perturbation
in the Hubbard model. In magnetic insulators, the
surface perturbation depends only on the wave vector
q~~. This is the most important feature of an itinerant
ferromagnet. To see what effect these properties of

this condition is always satisfied and the upper limit
in Eq. (22) can be replaced by infinity. It follows
that

xI!ulk (~baulk)+ ~ e-nr(&

Since x ~ q~21, it might seem that S„+diverges for
q~~ 0 as q~~ . However, it can be easily sho~n that
the factor [AU+AOOUO(UO+AUl(xgaU0+I) ' re-
moves this divergence and the surface spin-wave am-
plitude is given by

the surface perturbation have on surface spin waves
in metals, we have examined in Sec. III the simplest
model of spin-wave localization at a plane of impuri-
ties with excess intra-atomic repulsion AU. The main
approximation of Sec. III is the truncation of the
range of the "secondary" surface perturbation AIJ in
Eq. (8). The correct treatment of this term is crucial
in any surface (and impurity!) problem. When the
secondary perturbation A,& is completely neglected,
one gets the infinite classical barrier approximation
(CIBM) of Refs. 3 and 4. We find that, at least for
the present model of surface, CIBM is quite inade-
quate. The reason for its failure is that the depen-
dence of the surface perturbation on the wave vector
q~~ and frequency co is completely lost in CIBM. As a
result, CIBM does not satisfy the important self-
consistency condition that the surface perturbation
should vanish in the limit m 0, qII 0. This condi-
tion is imposed by the spin-rotational symmetry of
the problem and must be satisfied both in the
Heisenberg and Hubbard models (in the Heisenberg
model, the surface perturbation is independent of cu).
Although Gumbs and Griffin recognize that CIBM
fails in the limit au 0, they argue that it predicts
correctly the position and properties of the surface
mode above the bulk spin-wave band. %e find that
this is not the case. In the present model of surface,
CIBM predicts the surface mode above the bulk band
for d! U & 0. This is clearly unphysical result since
the exchange stiffness is reduced in a magnetically
weaker layer (hU & 0). In Sec III,. the secondary
perturbation A& is treated exactly in the surface layer
and it is shown that the surface mode splits off the
bottom of the bulk band. Our result is asymptotically
exact in RPA for a strong ferromagnet with exchange
splitting much larger than the bandwidth. For ~eaker
ferromagnets, the surface perturbation is clearly more
delocalized and its effect on several atomic planes
would have to be considered. This can be easily done
and our preliminary results indicate that such a delo-
calization does not change qualitatively the results
obtained in the present model.

The most striking feature of the acoustic surface
spin waves obtained in the present self-consistent ap-
proximation is their remarkable similarity to the sur-
face spin waves in magnetic insulators. For a mag-
netically weaker surface hU & 0 (analogous to
J'"'""& P"'" in the Heisenberg model), we find that
surface spin waves split off the bottom of the bulk
band (as in the Heisenberg model), they deviate
downward from the bulk band only to the order of q~(

(as in the Heisenberg ferromagnet), and their at-
tenuation is proportional to the square of the
wavelength (again as in the Heisenberg ferromagnet).
Such a similarity is clearly not accidental and can be
explained if one adopts the view that magnetic excita-
tions in an itinerant ferromagnet involving rotations
of the magnetic moment only (such as spin waves)
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are qualitatively the same as in magnetic insulators
described by the Heisenberg Hamiltonian. This is in
line with the current approach to ferromagnetism'
in transition metals as exemplified by the Hubbard's
theory of iron. '" According to Hubbard an effective
interatomic exchange can be defined in an itinerant
ferromagnet and the present calculation shows that
such an effective localized model remains valid even
when a surface (or impurity) is introduced. One ex-
pects this remodel to work well when the intra-atomic
integral U is large compared with the bandwidth.
This explains the success of our truncation of the
surface perturbation A& to a very short-range
Heisenberg-like perturbation.

Finally, we may speculate about the position of the
surface mode for 5 U ) 0 (magnetically stronger sur-
face). The graphical analysis of Fig. I indicates that
the surface mode should split off the top of the bulk
spin-wave band (as in the Heisenberg model with
Jaur ace & J u"). We expect this result to hold for
itinerant ferromagnets similar to iron for which the
Hubbard's effective localized model is believed to be
valid. For weaker ferromagnets, the effective local-
ized model becomes progressively worse at higher ex-
citation energies (e.g. , above the bulk spin-wave
band), and detailed numerical analysis is required
since no simple expansions of X~"'" and A& are possi-
ble near the top of the bulk spin-wave band. Howev-
er, we wish to emphasize that our qualitative results
for the acoustic surface branch (qll 0, 0/ 0) are
valid for any itinerant ferromagnet including the
weak one. The case of a weak itinerant ferromagnet
is even more interesting since other surface modes at
higher energies might exist in addition to the
Heisenberg-like acoustic mode discussed in the
present paper. Such high-energy modes could be
more easily resolved in low-energy electron diffrac-
tion (LEED) experiments. Work is now in progress
to obtain the whole excitation spectrum of an
itinerant ferromagnet by the present self-consistent
method.
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APPENDIX

The second term in Eq. (3) vanishes for a strong fer-
romagnet since ImG~& =0 above the Fermi level eF.
The majority carriers in a strong ferromagnet do not
feel the exchange potential of the impurity plane and
their Green's function Gtj/(k/l II ) is just the bulk
HF Green's function, i.e.,

G)g = G)g+ d UntG);pG)pg (A3)

for the minority carriers scattered from the exchange
potential AUn~ localized in the plane i =0. Here,
G)~ is the bulk HF Green's function. It follows that

Gtj Gtj+AUntGt/0Gtpj (I —AU//tGtpp) ', (A4)

where

Gtpp =NJ ' X(O —pgt)
'

kj
(AS)

It should be noted that there is always a bound state
below the minority band for 4U & 0. However,
since we consider only strong ferromagnets with ex-
change splitting much larger than the band width the
bound state lies above the Fermi level and has no ef-
fect on the majority carriers. When Eq. (A4) is sub-
stituted in Eq. (Al) the first term in Eq. (A4) yields
the bulk kernel I IJ and the second term gives A J.
The matrix element App is given by

Aoo(qll. ~) = —//tAUN ' Xfkt[Gt'00 (k. qll ~)1'
k

x [I —nthUGtpp(k, qll, 0/)] '

where

(A6)

Gtoo(kqll. cu) =NZ g(&kt p +to) (A7)
k~, k i(+q(($

k~

To evaluate Aoo, we take the limit II'/A 0 in Eq.
(A6), where W is the bandwidth and 5 = pkt —okt is
the exchange splitting. In this limit, the dispersion of

is small compared with 4 and we may approxi-
mate Gtopp = —I '. Hence App(0, 0) is given by

ImGtj/(kll, fl) =Ng $5(fl opt) exp[ik(j —i)]
k~

(A2)

where ekt is the HF bulk electron energy. To obtain
Gt,j(kll, II), we have to solve the quasi-one-
dimensional Slater-Koster problem

In the mixed Bloch-%annier representation, Eq.
(3) for the kernel X/pj(qll, 0/) assumes the form

F
X'J Nll $ [ ImGtj (kll, fl)

k
ii

x ReGi/J(kll+qll, 0+0/)] d 0

Al//l (0, 0) = —t U [ U/l( Ull + 5 U ) ] '
I

Expanding App(qp cl/) as

Aoo(qll, ~) = Aoo(0, 0) —sgn(A U) (~co —
pqll ) +

(AS)

(A9)

(Al) and setting p = pl +p2+ p3, we obtain in the same



SURFACE SPIN %AVES IN THE HUBBARD MODEL

limit the following expressions for a and Pi valid for
a cubic crystal:

i/ vi(2U, +/kv)
h(vs+cpU)2vs

iav[(2U, +~v)
elk'(v, +av)'

dard formula (see, for example, Ref. 12)

D e~~ Xfkt Vkskf
d

(Vkskt) ~ (All)Uo 2 2 2

k

It follows that the important ratio P/a which
governs the existence of surface spin ~aves is given
by

id. vi,(2U, +d, v)
3~(v+/v) ~'Xf"t(~'"I'

0 k

i~v[U2
P3 3g3( v gv)3 Xfkt k kt

(Alo)
D a'(v, +/kv) (2v, +d, v)

x& ' Xfkt('7kski)' .
k

(A12)

%e no~ reca11 that the bu1k RPA exchange stiffness
of a strong cubic ferromagnet is given by the stan-

Since the second term in Eq. (A12) is manifestly
negative the condition P/a & D used in Sec II.I is al-
%'ays satisfied.
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