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Structure of metastable states in a random Ising chain
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%'e investigate the structure of metastable states (states of local-energy minima) in a random
Ising chain. It is shown that one can always achieve a unique reduction of a metastable state
into a series of irreducible spin clusters. In a certain sense each irreducible spin cluster is

equivalent to a two-level system. e present the exact degeneracy for a random Ising chain by

a very simple argument. %e obtain an analytical expression for the distribution function of the
barrier heights r and the excitation energies e of the clusters —D(e, r). This includes contribu-
tions from all the possible spin clusters of various shapes and sizes, Even though the numerical
results of this paper have been obtained for a Gaussian distribution, all the formulas of the dis-

tribution functions obtained are general, independent of the concrete form of any random con-
tinuous distribution. To illustrate how these results can be applied, we recover the "logarithmic
law" for energy versus relaxation times at different temperatures, a well-known characteristic of
spin-glasses.

I. INTRODUCTION

Spin-glasses have been under investigation for a
long time. In spite of the progress made, many
phenomena still await explanation. ' The theoretical
difficulties stem mainly from ambiguities inherent in

the mechanism responsible for the spin-glass phase.
Recently, there have been many experiments on the
relaxation properties of spin-glasses at low tempera-
tures, particularly on measurements of abnormally
slow decay rates. These experiments have aroused
considerable theoretical interest in the low-

temperature properties of spin-glasses. One hopes to
construct a simple, clear, and tractable model from
which to obtain certain general analytical results free
from ambiguous approximation or tedious numerical
calculations. A one-dimensional (1D) model' does
offer such advantages. While such a model lacks any
real phase transition, it does help us to understand
some of the important concepts; e.g. , competition
between ferromagnetism and antiferrornagnetism,
structure of spin clusters and the long-tail behavior of
time-dependent phenomena, etc. , which are all

characteristics of the spin-glass phase. A one-
dimensional model by its simple structure offers us
certain exact analytical results, which form thc sub-
ject of this paper.

For any equilibrium property, the contribution
from metastable states can always be ignored because
of its small occupation in the phase space (see Sec. II
of this paper and Ref. 4). The metastable states, '
corresponding to local minima in the energy, deter-
mine thc various long time relaxation processes at
low temperatures. Insight into the structure of these
metastable states is needed.

It is easy to prove that the metastable state can al-

ways be resolved in a definite way into a series of ir-
reducible spin clusters. Thc dynamics is adequately
described by the flipping of spins of these irreducible
spin clusters. This picture is very similar to that of
the two-level system in the phenomenological theory
of glasses. 7 As soon as one determines the distribu-
tion function of the barrier height r and the excita-
tipn energy ~ of these irreducible spin clusters,
D(e, r), one obtains the tool for analyzing various
relaxation processes. In this paper, we present an ex-
act expression of the degeneracy and derive the dis-
tribution function D(e, r) taking into consideration
contributions from spin clusters of all shapes and
sizes. As an example of its application, the loga-
rithmic law in the energy relaxation process is ob-
tained. It is well known that the logarithmic law is a
peculiar time-dependent characteristic of spin-glasses.

II. STRUCTURE OF METASTABLE STATES

The Hamiltonian of the Ising model in one dimen-
sion with randomly distributed nearest-neighbor in-
teractions is

x= —$ ~,a,J&
————X J;, .

(v)

Here the indices i and j denote the positions of the
spins, the symbol (ij ) confines the summation to
nearest neighbors only, cr, is the Ising spin
(cr, =+1), and J& is the bond energy. A normalized
Gaussian probability distribution for the exchange en-
ergy JJ for nearest neighbors is given by

P(Ji) = exp( —Ji) =P(JJ)
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The metastable state' is defined as a state in which
the total energy of the system cannot be decreased by
flipping any single spin. One can plot the

~ J~~
—i dia-

gram (see Fig. I), where
~ J;I is the absolute value of

the bond energy and i is the position label.
In the following paragraphs we will summarize

some essential characteristics of metastable states and
express them in the form of lemmas for clearness.

Lemma 1. The necessary and sufficient condition
for a metastable state is that any frustrated state8 (or
broken bond) may occur only in the valley of the

I J, I
—i plot (Fig. I). This lemma is obvious and we

will not present a proof.
We define a two-spin cluster' as two neighboring

spins in metastable state that remain metastable after
both spins are flipped. It is obvious that the neces-
sary and sufficient condition for a two-spin cluster is
that the interaction energy between these two spins
be greater than the absolute values of their two
nearest-neighbor bonds,

can neglect the probability of having the same bond
values for neighbors. But, for a discrete random dis-
tribution with a finite number of elements, the situa-
tion becomes more complex. In this case, one has to
take into account the probability of having the same
bond values for neighbors. As a simple and useful
example, we let the probability distribution function
be given by

~(J) = ,
'

(5J, —., +gJ—.J,)

where Jp is a given constant and 5 the Kronecher
symbol. We test the bonds one by one, e.g. , from
left to right. It the ith bond is a broken bond, then
the (i +1)th one should be an unbroken bond. If
the ith bond is an unbroken bond, the (i + I) th
bond can have two choices: the broken and unbro-
ken state. From this simple argument one has the
following relation for the number of metastable
states:

f(N +I) =f(N) +f(N —1) (6)

and f (N) here is the Fibonacci number. If N » 1, the
solution of Eq. (6) is

i.e., a platform in Fig. 1. From Lemma 1 one can get
the number of metastable states in an N-spin system,
N ))1, as follows. For any random continuous dis-
tribution (for example, the Gaussian distribution) the
probability of a bond being a valley is —,~ Only the

valleys have two states to choose from: broken or
unbroken. Thus the number of metastable states in
an ¹pin system with a random continuous distribu-
tion is

f(N) —2"i' (N » I) (4)

IJjl"

where f (N) is the number of metastable states in the
N-spin system

For a discrete random distribution with an infinite
number of elements Eq. (4) is obvious whenever one

f(N) 2~n In(%5+ I )
ln2

Now we return to the study of the system
described by Eq. (I) and Eq. (2), i.e. , a random Ising
chain with Gaussian probability distribution for the
bond energy.

If one relaxes the definition of a metastable state,
for example, to a state in which the total energy of
the system cannot be decreased by flipping i spins
(i =1,2, . . . , no), no being a given natural number,
how many metastable states wi11 the ¹pin system
have? Since i can take the value 1, Lemma 1 stands.
It is not sufficient in this situation; one further
demands that the values of any valley's 2np left and
right neighboring bonds be greater than the absolute
value of the valley bond. In other words, one must
revise the definition of the valley bond as a
minimum relative to its 2np neighbors in this situa-
tion. The probability of being a valley for any bond
1s

t 1

P„(no) =2 J) dJp(J) 2 p(t)dt
t 2 1

2 Jf p(t)dt
2np+ 1 )

U"I

IJ'I

1

2np+ 1
(8)

I,J(l /plot. -

Using an argument similar to the above, the number
of me tastable states becomes

( )
N/(2no+()

Np
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(10)m =m)+my+ +m/

Here m; is the number of spins of the i th irreducible
spin cluster, and / is the number of irreducible spin
clusters, 1 «I ~m —1,

From Lemma 2, and Eq. (4), the average size of
an irreducible cluster is three spins, a small cluster.
Thus one expects that small spin clusters
(m =2, 3, 4) could play a major role in some relaxa-
tion processes. This expectation was one of the as-
sumptions confirmed by a Monte Carlo simulation
for a 2D random Ising spin system. ' It may be valid
even in real spin-glasses (Ref. 2, Binder). For mag-
netic relaxation the larger cluster will become impor-
tant because of the larger number of spins involved.

It is clear that only the neighboring geometric rela-
tion exists among clusters, and no containing and/or
overlapping geometric relation can be found for a 1D
system. It would be interesting to study the topologi-
cal relations among irreducible clusters in higher
dimensional systems. This is not an academic sub-
ject. From Lemma l.and Lemma 2, we can actually
study spin clusters under a simpler alternative. Con-
sider only the properties of the boundaries of the ir-

reducible spin clusters.
%e define the valley bond in Fig. 1 as a weak

bond. The absolute average value of weak bonds is

J = „I JP„(J)dJ

= Jl J~2p(J) 2 Jl p(t)dt

s= —
Jl P'(x) dx =0.2376

3 0

1 2

where P„(J) is the probability distribution of valley

with bond energy Jand P(x) —=
&I p(t)dt. The dis-

tribution of the absolute values ot weak bonds is

In fact, Eqs. (8) and (9) are valid for any continuous
random distribution. Equations (8) and (9) are also
valid for any discrete random distribution whenever
one can neglect the probability of having the same
bond values for neighbors. The reason is very sim-

ple, since for any bond the probability of being a
minimum among randomly distributed (2nD+ I) con-
necting bonds is just I/2no+1.

It is easy to extend the definition of a two-spin
cluster to the m-spin cluster such that after flipping
all of the connecting m spins in a metastable state
one still gets a metastable state. %e define the ir-

reducible m-spin cluster as follows: It is an m-spin

cluster, and it cannot be reduced into some sub-
spin-cluster other than itself.

Lemma 2. Any spin cluster is filled with one or
more irreducible spin clusters.

Another presentation of this lemma is that any
spin cluster can be reduced into a set of irreducible
clusters in a definite way.

shown in Fig. 2. The probability decreases very fast
when IJ, I

increases. From Lemma 1, one can say
that for the metastable state, the broken bonds may
only exist on the weak bonds. From Lemma 2, the
so-called irreducible spin cluster is nothing but a spin
assembly surrounded by weak bonds. %e think this
description is meangingful even for real spin-glasses.
%hen m =2, 3, the spin cluster itself is an irreducible
one. Since the reduction (into irreducible clusters) is

definite and time independent, according to Lemma 2

(see Fig. I) there is no transition between clusters.
This leads to great simplification for dynamical prob-
lems, i.e. , one can take these irreducible clusters as
an assembly of two-level systems in a certain sense,
and statistics on this assembly becomes the only in-

formation one needs.
For the definition of the barrier height r and the

excited energy ~, see Ref. 5. %e will not reproduce
it here.

Lemma 3. The bond values J, in the irreducible
spin cluster are positive

J, )0
and if one arranges them in order, there is no
minimum in the J&-i plot; the number of maxima,
should they exist, are equal to one or zero according
to L'Hopital's rule.

From Lemmas 2 and 3 the necessary and sufficient
condition for an m-spin irreducible cluster is as fol-
lows:

J, )0

30--

2.5-

2.0—

l.5—

I

I

0 0.4 0.8 I.2

FIG. 2. The distribution of the absolute values of weak
bonds.
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and there be no minimum in the J1 —i plot.
For a given bond energy J1, the probability distri-

bution for two-spin clusters is
'2

-(2) fJ1 foo
P (J,) =N,p(j, ) Jl dxp(x) Jl p(y) dy

1

where

—= &2p( J))f'( j))

p(x) = [erfc'(0) —erfc2(x) ]/2

with the complementary error function

erf(x) —= 2&(x) =2 't p(t)dt, erf(0) =1
~x (15)

And S2 is a normalization constant. The average
bond value for two-spin clusters is

J ' = lxP (x)dxJ

Jt xp(x)y'(x)dx
=0.8192

Jl p (x)y'(x) dx
(16)

FIG. 3. The probability distribution of bond values for
two- and three-spin clusters.

j t3'= —Jl(x+y)P (xy)dxdy
2

xp x x dx

p x xdx
=0.7283

The average bond value for three-spin clusters is

(17)

where P (x,y) is the probability distribution for
-(3)

three-sp~n clusters with bond energy values of x and
y. The probability distribution of bond values for
two- and three-spin clusters is shown in Fig. 3.

For the given bond values of J1,J2, . . . , J 1, the
probability distribution of m-spin irreducible clusters
1S

m-1P" (j'.J.». .j —.J")—p(j')p(j")«j -Ij'I)o(j.—-Ij"l)e(j')&(j") 2 "IIp(j) . (18)

where the Lemma 3 must be valid for these (m —1)
bonds.

Lemma 4. Flipping in order (from left to right or
inversely) is the only way in which the irreducible
spin cluster experiences the lowest barrier.

This is the preferred flipping method in practice. It
is easy to check out this lemma, According to the
above lemma, one can write the barrier height
r ( & 0) and the excitation energy e( & 0) of the ir-

l

reducible spin cluster as

(19)
and

e=2IJ'+ j"I, (20)
where J,„ is the largest bond value among (m —1)
bonds, and the symbol

I
J',J"I,„ is the value of the

greater of IJ'I and IJ"I. The distribution function of
the barrier height and the excitation energy for a m-

spin irreducible cluster is

D (e,r) —Jl 5(e —2IJ'+J"I)5(r —2(j~» —
I
j',J"lm») P (J',J, ,J2, . . . , J ~,j")dj'dj"djt, . . . , dJ

(21)

From Eqs. (19) and (20),

D (a, r) —JI P (Jji.J2 ~ J ) [O(j'- I
J"I) 5(.-2(J'+ J"))5(r —2(J,„—J'))

+o(j"—
I
j'I) 5(~ —2(j'+ j"))5(» —2(j-..—j"))

+0(—J' —
I

j"I)5(a+2(j'+ J"))5(r —2(j,„—J"))

+8(—J"—
I
j'l)5( +2(j'+J"))5( —2(J,„+J")))dj'dj"IIdj . (22)

1~1
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Here Eq. (12) should be fulfilled. Using the following symmetries,

P (i', it, . . . , i t,i")=P (i",i (, . . . , J ti') (23)

P (i', it, . . . , i~ t,i")=P ( —i', it, . . . , i~ i, —i") (24)

Eq. (22) becomes
m-1

Dt ~(e, r) —4„P ( i', i&, i2. . . , im &,i")8(i' —Ii"l)8(~ —2(i'+i"))8(» —2(i,„—i'))di'di" II di, . (22')

Suppose i,„=i;, 1 «i «m —I, one can rewrite Eq. (22') as follows:

D"(.,») -4 g" „»'»"0(i'- Ii"1»(~ -2(i'+ i")»d ( Ii'I »4( Ii"
I »p (i'» p (i")

oo JI J J2 r —1x„,»,8(»-2(i, —Ii'l)»p(i, ) „',» i J ', 4i 2J-, di~ II2p(ik)
IJ'I " IJ'I IJ'I IJ I k 1

pJ/ &Jm-2 m —1

JI '„di„, „I „di. , II 2p(i, ) (22")

From Lemma 2, one must perform statistical analysis over the assembly consisting of all irreducible clusters with

various shapes and sizes. Thus the distribution function is

di'di" O(i'- Ii"1»(~ —2(i'+ i"))0( li'I) 0( li" I)p (i')p (i")
m 2/ 1

x di p (J,) 8(r —2(i; —i'))
"IJ'I

fe J. -1

„,di, g, di, „,di II2p(i„)
J J

feJ, J 2
m —1

x di,.+, di, II2p(J, )
,
"IJ"I "IJ"

I

J di'4i"o'(i' li"1»(~ —2(—i'+ i"» 4(li'I) 0( li" I)p (i') p (i")

where

up=—1,

x J dxp(x)5(r —2(x —i')) X u (i',x) X u (li" l,x)
J mW, ,m 0

(25)

~"m-1
u (x,y) —= Jl dx, Jl dx, J dx II2p(x, ),m =1,2, . . . ,

x x x I 1

(26)

Defining

v (x,y) —= $ u„(x,y)
kM

we get the following integral equation chain:
ty

u (xy) = I +2 J dzp(z)v t(x,z), m

= l&2i ~ ~ ~ ~ ~ ~

If v (x,y) is convergent,

(27)

(28)

(3O)

Bv(x,y)
By

= 2p (y) v(x,y),
Bv(x,y)

Bx
= —2p (x) u(x,y)

and the boundary condition

(31)

(32)

from Eqs. (27) and (28), we have
ry

v(x,y) =1+2 l dzp'(z) v(x, z)
x

Alternatively, one can write the corresponding dif-
ferential equations

lim v (xy) =v(xy)
m oo

(29)
v(x, x) =1 (33)
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The solution of Eqs. (31)—(33) is

rx
v(xy) =exp 2 J p(z)dz

In fact from the definition of v(x,y), Eqs. (27) and (29), one can write down the expression for the
function v(x,y) directly,

(34)

N

v(x,y) = $ J dx, J dx Jl dx Q2p(JI)
X- X X ( j

r~ fy N fx
Ji dx, Ji dx, Ji dx g2p(J, )=exp Jl 2p(z)dz

ml X X X ( X

The function v(x,y) has the same form as the U matrix in quantum-mechanical perturbation theory, and thus the
same properties such as the group character

v(x, z) v(zy) = v(xy) (35)

and the unitary property —Eq. (33). But here all of the quantities are real and classical, and there is no problem
with commutation, i.e., they are simpler than the U matrix in quantum mechanics. From Eqs. (27)—(35), we
have

T 1

re/4
D(e, r) =

J~ dxy(lxl)p(x)@ ——x p ——x p-oo 2, 2 2

+f I 1 6+K—» Ixl.
2 '2 '2 (36)

where WD is a normalization constant. From the above expression for D (E,r ), the strong correlation between
the barrier height (r) distribution and the excitation energy (E) distribution is obvious. From Eqs. (31)—(34),
after several straightforward algebraic steps, we get the distribution function of the excited energy E( & 0)

E(E) —
gl D(e, r) dr

thus,
r

E(E) = Jl dxp(lxl)p(x)qh ——x p ——x v(lxl, oo) v ——x, ~ —v oo, ——x
~/

Pf~ 2 . 2 2 2
(37)

Here WE is a normalization constant. From Eqs. (25) and (34), the distribution function for the barrier height r
is found

«r) —J" D('r) «- J „dJ'dJ"«J'- IJ"I) @(IJ'I)y(l J"I)

xp(J')p(J")p —+J' v J',—+J' v IJ"I,—+ J'
,2, '2, '2

The integrand is an even function of J". One thus has

(38)

OO I

R(r) —J dJ'p(J')@(J')p —+J' v J', —+J' J dJ"p(J")d(J")v J",—+J'
0 2 2 '2

For the integral over J", using Eqs. (31)—(33),
'I r

I I

J dJ"$(J")p(J")v J",—+J' = —— @(J")dv „J",—+J'
0 '2 2 ~0

= —$(J")v J",—+J'
2 2

r 'I

0 I

dJ"v J",—+J' p(J")
IIJ J

r

qh( J")v J",—+J' —v J",—+J'
2 2 '2

0
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So

JI (r) = J, dJ'@(J')p(J') p( ,
' r—+J')u'(J', ,

' r +—J')[y(0) —@(J')], (39)

where Nq is a normalization constant. If we expand the exponential function u(x,y) in Eq. (36), and carry out
similar manipulations for 8 (r) and E(a), from the leading term of expansion we get the distribution function of
the barrier height r and that of the excitation energy ~ for two-spin clusters

faoo
1~&"(r) =—] dJy(J)p(J)p( r+J-)[y'(0)-@'(J)],2' 2

(40)

t e/4
1E&'l(.) = —

i dxd(~x~)p(x)y'(-. x-)p( a -x-) .
2 2

From the second term in the expansion we get the distribution function for three-spin clusters

~t l(.) = ' „dJ@(J)p(J)p(-,'.+J) I-,'[y (0) -@ (J)]+fy'(0)-4'(J)]fy(J) 2y( ,'-. +J-)]]

dJ@(J)p(J)p(-,' ~ +J) [—'+-'~(J) --'y(-'r+ J)

+ ,
' y(J) y(-—,

' r +J) + y'(J) y(-,' r +J) —
—,
' y'(J)] (42)

pe/4
1Et"(e) = ~ dx@'(~x~)p(x)y'(-a —x)p(-a —x) .

Pf~ ~ -oe 2 2

Numerical results of these distributions are sho~n in
Figs. 4 and 5.

A feature worth noting in Fig. 4 is the existence of
the nonmonotonic behavior. The average excited en-
ergies are

E(a

e —= „aE(e)de =0.6772

e =— 'f aEt2'(e)de =0 7220

l 1

0 0.2 0.4 0.6 0.8 1.0 s

HG. 4. The distribution of the excited energies of irredu-
cible spin clusters.

0 0.8 I.6 2.4 5.2 4.0
FIG. 5. The distribution of the barrier heights of irreduci-

ble spin clusters.
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