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Results of a molecular-dynamics study of the discrete sine-Gordon (SG) chain are re-
ported, emphasizing ¢-¢, sing-sing, and cos@-cos¢ dynamic correlation functions (¢ is the
SG field variable). Correlations at the temperature k3 T~0.29E (Eg is the continuum
SG kink-soliton energy) are interpreted in terms of elementary linear and nonlinear
modes—Kinks, breathers, single-, and multiphonons. The validity of “ideal-gas” approxi-
mations is assessed and corrections from lattice discreteness and mode-mode interactions
are discussed. Finally, the relevance of our results to planar ferromagnetic chains (e.g.,
CsNiF3) in an easy-plane applied magnetic field is assessed.

I. INTRODUCTION

In this paper we describe and interpret results
from our molecular dynamics (MD) simulation of
the sine-Gordon (SG) chain. This is a one-
dimensional system where each particle interacts
with its neighbors through harmonic forces and
also moves in an externally imposed sinusoidal po-
tential which can be thought of as arising from a
rigid background lattice. The equations of motion
for the system are
27
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MU,,=C(U,,+1-2U,,+U,,_1)—%ZZAsin

n=1,...,N. (1)
The total number of particles is N each with mass
M, the displacement of the nth particle from its
equilibrium position is U,, and the lattice constant
is a. C and A are constants giving the strengths of
the linear and nonlinear forces, respectively.

These equations of motion are integrated by an
algorithm due to Beeman,' which has previously
been used in a study of structural phase transi-
tions.” The total energy is a constant of the
motion in this integration scheme. This technique
should be contrasted with the coupled Langevin
equation scheme of Schneider and Stoll,* which
keeps the temperature constant, and our results for
the SG chain may be considered complementary to
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theirs. The results reported here are limited to a
single temperature T (see below).

Our primary aim is to understand the dynamic
structure factors

Sxx(g@)=N"" [ dte™(X(g,0X(—g,0)) , ()

where the wave-vector-dependent fluctuation is de-
fined by
N
X(gt)=3 e~r=ay (s). (3)

n=1

The three local variables for which we present
results are (i) the displacement (U), or more pre-
cisely its phase (¢) relative to the periodic potential

27
a
(ii) the sine (s) of this phase variable

X, () —>dn(t)=""U,(t) . @)

X, () —>s,(t)=sin , (5)

2—7TU,,(t)
a

and (iii), the fluctuation of the cosine (¢) of the
phase variable

X, (t)—c,(t)=cos %—T-U,,(t)

—_ <cos > . (6)
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The wave vectors q are determined from the
periodic boundary conditions in the usual way:
q=2mm /(Na), where m is an integer. We will fre-
quently use the dimensionless wave vector
g=qa/m=2m/N.

We try to interpret results in terms of the natur-
al elementary modes of the SG equation (1), name-
ly kinks, breathers, and phonons (magnons).>~%
Appealing, but intrinsically simplistic “ideal gas”
approximations have been widely used in the litera-
ture®> and it is now important to begin to quantify
these. An important advantage of the MD simula-
tion is that the integrated weight f S(g,w)dw can
be examined separately for “high”- and “low”-
frequency regimes, and we will present results for
each of these two regimes. This information is not
available from transfer integral schemes® without
phenomenological approximations, and as we shall
see, the total and partial integrated weights can
have rather different ¢ dependence. Since “central
peaks” (i.e., low-frequency components) have fre-
quently* been attributed to kinks, it is important to
understand this probe of nonlinear modes more
quantitatively. In particular, interpretation of neu-
tron scattering data in easy-plane Heisenberg mag-
netic chains [e.g., CsNiF; or
(CD;)sNMnCIl;(TMMC)] has so far depended
heavily on simple kink theories to explain
anomalous central peaks.’~® Although serious
questions remain about the validity of a pure SG
description (particularly regarding quantum ef-
fects,’ damping, and the importance of nonlinear
out-of-plane spin motions'°~!?), we will see that
some qualitative trends may help to explain the
notable partial successes of ideal kink-gas theory
data fits. Having in mind CsNiFj; in the presence
of a 5-kG in-plane magnetic field,”’ we have
chosen the following parameters for Eq. (1): M =1,
A =1, a=2m and C =29.22 (see also Ref. 3).

For these parameter values the kink width is ap-
proximately 10a. For many, but not all (see below)
properties this validates a continuum SG approxi-
mation to (1), as is frequently assumed*~%: Equa-
tion (1) then becomes

C3bxx — By =w5sing @)
where
ci=Ca®/M

and
w=41’4 /(Ma?) .

For the numerical integration of Eq. (1), the
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dimensionless variable wyt was used, and these
equations were integrated for 50000 time steps us-
ing a step size of A(wyt)=0.08.

II. PREDICTIONS OF
IDEAL GAS PHENOMENOLOGY

The structure factor predicted from an ideal rela-
tivistic [cf. Eq. (7)] gas of SG kinks, Sk (g,w), is
by now well document¢d3’4’”:

Sfx(q,w)

_ ng(T)
T 2mg

w

q

L 1

y~? idlia %

®)

with y(v)=(1—v2/c3)~'"2, ng the kink (plus an-
tikink) density, and P(v) the ideal relativistic gas
velocity (v) distribution,

P(v)=[2¢coK ()]~ (v) exp[ —ay(v)],
9)
a=EQ /kyT .

(K is a modified Bessel function.)

The functions f§ are “form factors” reflecting
the kink shape: they decay on a scale proportional
to the inverse kink width, which is given by
2d =2cy/w,. Relevant examples are given in Table
I. Result (8) omits all kink diffusion or lifetime ef-
fects and is derived in a Hamiltonian framework.
Corresponding ideal gas results!? for relativistic
breather “particles” suggest central- and high-
frequency components: for X =c (¢ =cos)

S2 (g,w;wp;central)
ng(Tiop) 0§ | 0}
= —~ |21
21rq wp | Wp
o| j|lo
XPI T e |

(10)

This central structure derives from the particlelike
envelope of a breather of internal frequency wp.
The internal oscillation itself yields the high-
frequency response centered at'3

co};”(q)EJ_rZwB(l—v,%,/c%)'/zivmq , (11)

where v, is the velocity at which y~1(v)P(v) is
maximum; i.e., v,, also controls the central peak
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TABLE 1. Form factors.

X(¢) | FHQ)]
¢ 27Q ~'[cosh(57Qd)] ™!
sing 4d (57Qd)[cosh(57Qd)] ™!
cosd 4d(+70d) | sinh(37Qd)| !

splitting [Eq. (10)]. wjp is restricted (classically'¥)
to the continuous range 0 < wp < wg, but the upper
frequency is limited by system size effects since
breathers become arbitrarily extended as wg— .
The breather form factor (see Ref. 13) f2—0 as
wp—0 or wy and maximizes at wp= %w(z,. The
breather densities are denoted by ng(wg;T). The
total response is the sum of contributions from all
allowed breathers and is a competition of form fac-
tors, densities, and lifetimes. This competition is
not well understood. We have argued previous-
1y'>13 for a “preferred” breather with frequency

op zwo/\/i, as suggested by the structure of the
breather form factor. We expect that this is ap-
propriate at high enought 7. At low T, however,
density effects may be expected to strongly favor
low-energy (small amplitude, spatially extended)
breathers. Contributions from such breathers can
be described within conventional perturbation
theory, as asserted elsewhere.'® The corresponding
power-series contributions from these anharmonic
processes will compete with harmonic multiphonon
expansion terms,> %16 although these are interrelat-
ed and clear separation will be difficult unless large
amplitude (nonperturbative) breathers dominate.

In Sec. III we demonstrate signatures of kinks,
breathers, and phonons (including multiphonons).
Our MD simulation is at the single temperature
kpT=0.293E, which is chosen because central
peak splitting is apparent at this 7" but kink densi-
ty is still low enough for a qualitative elementary
mode interpretation. Splitting is not found? at
kpT <(0.2—0.25)E, and correspondingly we
know®!7 that asymptotic perturbation theories are
valid in this T range for power series and exponen-
tial (kink) thermodynamic contributions. Concern-
ing applications of SG to magnetic chains,>”? we
should emphasize that this mapping is restricted
(among other things) to low-velocity particlelike ex-
citations.” Thus the onset of SG splitting is ex-

pected to coincide with the breakdown of the
mapping—Iarger out-of-plane spin motions are en-
ergetically preferred. This is consistent with recent
classical Heisenberg chain MD results,!! although
damping and quantum effects have yet to be as-
sessed for real magnetic materials. It should be
noted that the onset of splitting does not occur at
the same T and q for all correlations and is strong-
ly influenced by discreteness (Sec. III), so that the
breakdown of a SG mapping may be similarly
sensitive.

III. MOLECULAR DYNAMICS
RESULTS AND INTERPRETATION

In this section we present our MD results for the
dynamic correlation functions Sg4, S, and S,
and interpret them in terms of linear phonon and
multiphonon processes and kink and breather ele-
mentary modes. Kinks and breathers are both very
evident in our data: in Fig. 1 we have shown ex-
amples of kink and /arge-amplitude breather
dynamics projected from our data by a tech-
nique>!® (see Fig. 1 caption) which suppresses all
small-amplitude fluctuations.

Breathers will not!® contribute to odd ¢ correla-
tions such as in Syy and S (s =sin), and kink
theory (8) is indeed rather successful qualitatively.
For S44, Eq. (8) and Table I imply a split central
peak with maximum at @,, =0,,(a)q, where v,, ()
is the maximum of P (v) itself:

0, a>3

coll—a?/N'?, a<3. (12)

U ()=

MD results for the central structure in
S46(6,0)/844(q) [Sy(@)= [ (dw/2m)S 44(q,0)]
are shown in Fig. 2 and compared with the ideal
gas prediction. We see that the orders of magni-
tude of intensities are consistent. However, with
a=(0.293)"!=3.41 no splitting is predicted,
whereas it is strongly evident (Fig. 2) in MD.
Indeed a nonzero mean kink velocity o, is ap-
parent in Fig. 1 and consistent with the frequency
location of the splitting. We propose that the basic
kink mechanism is supported but that details
depend strongly on both mode interactions and
discrete lattice effects. Unfortunately, neither of
these effects have been precisely assessed beyond
linear perturbation order, which is generally insuf-
ficient for our purposes. Near-quantitative success
in predicting the kink density can be achieved!” by
renormalizing EX: At kpT=0.293EY’ we use'’
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FIG. 1. (a) Space-time plot of the particle positions.
Particle number n is plotted vertically and time is plot-
ted horizontally. If, at time ¢ the particle displacement
U, (t) satisfies — < U,(t) <, or if U,() minus an even
integer (positive or negative) multiple of 2 is in this
interval, then a white spot appears at the (z,n) position
on the plot; otherwise a black spot appears. With this
scheme, the boundaries between the large black and
white regions are the midpoints of kinks and antikinks,
and small bubbles of white in black regions or black in
white regions are breathers with amplitude larger than
. (b) More detailed plot of the particle positions show-
ing breather motion. If the particle displacement U,(t)
satisfies 7 < U,(t) < 37 so that the nth particle is in the
(n +1)st well, then a + sign is put at the (¢,n) posi-
tion, and if it satisfies — 37 < U,(¢) < — so that the nth
particle is in the (n — 1)st well, then a — sign is put at
the (¢,n) position. This sequence of + and — signs
showing the internal oscillation of a propagating breath-
er appears in part (a) as the sequence of black bubbles
for these (t,n) values.

a=1.61 (rather than 3.41). The result (see Fig. 2)
is a notable improvement, but it is beyond this
simple improvement to match both amplitude and
location of the split peak (see the fits in Fig. 2).
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FIG. 2. Frequency spectra of the displacement-
displacement correlation function [cf. Eq. (4)]. For each
of the two wave vectors §=0.002 and 0.004 the MD
results are compared with ideal relativistic kink gas
results calculated from Egs. (8) and (9) and Table I for
three different values of the parameter a. For each ¢
the curves are normalized to have the same total area.
(For §=0.002 the theory curve for a=1.38 and 1.61
coincide near the cutoff.)

We consider discrete lattice corrections to be equal-
ly serious. Discreteness becomes important for rap-
idly moving kinks where the continuous Lorentz
symmetry breaks down, including the associated
cutoff at o =cyq [Eq. (8)]. The qualitative correc-
tion is to increase the effective continuum kink
width d with increasing v/c, (or w/coq). A conse-
quence is the appearance of some weight for

@ > coq, as observed by MD (Fig. 2). More impor-
tantly, the tendency to enhance weight at smaller
/q (giving stronger and lower frequency splitting;
Fig. 2) compared with the continuum theory can
also be understood qualitatively from the enhanc-
ing effects'® of discreteness on P and fx. In a fu-
ture publication we will analyze these corrections
more fully by including numerical estimates of true
kink widths and energies for arbitrary discreteness.
We note that there are no severe central peak
broadening mechanisms evident (from mode in-
teractions beyond a renormalization).

Sss(q,) is also well-described qualitatively by
kink theory as far as its central peak structure is
concerned. This can be expected since Syg and S
are directly related from the field equation of
motion®!3 (in a Hamiltonian framework):
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2

Se(q, ’ 2
Ss@@) e " 5194 |11 _cosiga)]
S¢¢(q,w) @9 a
(13a)
4
-0
el P ) (13b)

The continuum-limit result (13b) is exactly
preserved within kink theory!! but (13a) extends to

o
o

S.(a,9)/S, (q,t=0)

0.002

0.010

all frequencies and predicts that at small g, the
central intensity in S is strongly depressed com-
pared with S44, whereas a high-frequency com-
ponent (from self-consistent phonon modes) is
enhanced. Our MD results confirm this (see Fig.
3). A new feature should be emphasized—splitting
of the central peak is observed, but only for suffi-
ciently large g (>q*). At kpT/EQ=0.293,
g*~0.008, and splitting then develops strongly
(Fig. 3). We can understand the appearance of g*
within kink phenomenology from (8) and Table 1.
In contrast to Sy, no splitting is predicted from

THEORY

0.02, v) (arbitrary units)

Sss(az

()

20

0.120
10

FIG. 3. Frequency spectra of the sine-sine correlation function [cf. Eq. (5)]. Each curve is labeled with the value of
its wave vector g, and each is normalized by the initial value of its corresponding correlation function. (a) Low-
frequency part of the frequency spectra. The arrows locate cog. (b) A typical comparison of MD results with ideal re-
lativistic kink gas theory at §=0.02. The theory curve is calculated from Egs. (8), (9), and Table I with a=1.61. (c)
High-frequency part of the frequency spectrum. The upward pointing arrows locate the self-consistent-harmonic pho-
non frequency. At §=0.060 the low-frequency part of the spectrum is also shown [continuing from part (a)], and the

downward pointing arrow locates cqg.
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P(v) and accompanying y factors because these ap-
pear in the combination y~*P(v). This predicts a
monotonic decrease with w/q for all a, but there is
a competition with the structure factor which pro-
duces splitting for ¢ > g5 (a) (the structure factor
effect is weak for Sy,): a little algebra gives

mqod tanh(—;-'n'qad)z 1+a. We find easily that g5
is always larger than the value g* observed in MD.
Indeed, even with a=0 (T =« ), gy is only 0.029.
To be consistent with S44 we use @=1.61 in Fig.
3(b) for comparison with MD; then §3 =0.054 to
be compared with §*~0.008 from MD. Again we
can understand this discrepancy qualitatively as a
discrete lattice effect'® enhancing the competing
terms in (8) more strongly as w/q increases. Simi-
larly a tail beyond w=cgq is expected and ob-
served!® [Figs. 3(a) and 3(b)]. Notice [Fig. 3(a)]
that resolvable splitting for S is observed in MD
for § <0.06.

The more delicate nature of the splitting in S
makes it a better candidate for exposing the impor-
tance of corrections to ideal gas theory from both
mode interactions (e.g., through a renormalization)
and discreteness. To emphasize this we show in
Fig. 3(b) a comparison of Sg(q,0)/ f Sss(q,0;
central)ddw /27 evaluated from MD and kink theory
with a renormalized to 1.61. We use §=0.02,
which we believe [see Fig. 6(a)] is in a region of
quantitative validity for a-renormalized kink
theory as far as f S, (central) dw is concerned.
Despite this successful description of the integrated
weight, its distribution in frequency is poorly
described [Fig. 3(b)]. We ascribe this to the greater
role of form factors in determining splitting for S
(these are unaffected by a renormalization) than for
S¢¢- Note that any tendency towards relativistic
splitting is beyond linear phonon-kink interaction
theory'® which also predicts a much too severe
reduction in intensity at our 7.

In Fig. 3(c) we have also shown the strongly
weighted high-frequency structure in S, whose lo-
cation is quite well described by single-phonon
response theory: self-consistent harmonic phonon
theory® suggests a response at

@(q)=[wi{cosp )+ (2C/M)(1—cosqa)]'/?,

where (cos¢ ) is determined self-consistently, or (as
we use here) evaluated from MD which gives

{cos¢ )~0.346 at our T. The locations of @(q) are
shown in Fig. 3(c); they are always slight underes-
timates. Higher-order multiphonon (see below) and
anharmonic broadening mechanisms (including
soliton-phonon interactions'®) necessarily also con-

tribute to Si,. The asymmetry with additional
weight on the high-frequency side of the single-
phonon peaks [see Fig. 3(c)] is expected from these
mechanisms. Similarly, we find evidence for such
contributions to the low-frequency structure in S
at large g (see below).

We conclude that the structure in S44 and S is
basically well-described by kinks and phonons, al-
though refined theories of discrete lattice effects
and nonlinear mode interactions are still needed.

No such simple conclusions seem to be possible
for S, either for its central- or high-frequency
structure observed in MD (see Fig. 4, and also Ref.
3). As we have explained elsewhere'>!> (see also
above), breather modes are expected to contribute
strongly in both frequency ranges, whereas they
cannot in Sy or S,. However, familiar multipho-
non processes> 161 are also clearly relevant and
contributing in the same frequency regimes (there
is no single-phonon response as in Syy and Sg).

At present it is not clear to what extent these vari-
ous anharmonic effects are related (i.e., anharmoni-
cally broadened multiphonon processes versus ex-
tended breathers), although there are MD indica-
tions (below) that they can be distinguished as
separate contributions at our temperature. No use-
ful relationships can be learned from the equations
of motion, as was the case for S;;. Kinks should
certainly make a central peak contribution to S,,.
According to ideal kink phonemenology [Eq. (8)
and Table I],

SX(g,0)

E?(q—J:tanh—z[%ﬂqu_l(w/q)] . (14)

Pure multiphonon theory®!®!® (i.e., without anhar-
monic broadening) yields a power series in

(kg T/EYL). The two-phonon term

[0 (kg T /EL)?] comprises (i) a low-frequency con-
tinuous (difference) component which is essentially
flat for 0 < <coq with a square-root singularity at
w=cpq. There is then a gap before the onset of a
continuous high-frequency (sum) component again
with a square-root singularity typical of one
dimension (see below). The g dependences of
breather, multiphonon, and kink contributions are
distinguishable. From their form factors (Table I),
kink structure-factor contributions decay character-
istically for %ﬁqd >1, i.e.,, §>0.05 with our
parameter values. Breather contributions represent
longer-ranged correlations—breathers all have at
least twice a kink’s spatial extent so that their form
factors'? [in (10)] generally produce decay at small-
er g than for kinks. On the other hand, multipho-
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non processes decay at larger characteristic g’s
(e.g., at gd ~2 for two-phonon terms) and with a
Lorentzian rather than Gaussian dependence.

In Fig. 4 we have shown the MD data for low-
and high-frequency structures in S,.. At high fre-
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(<0.005), but the broad two-peaked structures
shown are within the numerical resolution. For

g >0.05, weight in the lower-frequency structure is

lost (or masked by weight in the higher-frequency
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FIG. 4. Frequency spectra of the cosine-cosine correlation function [cf. Eq. (6)]. Each curve is labeled by the value
of its wave vector g, and each is normalized by the initial value of its corresponding correlation function. (a) Low-
frequency part of the frequency spectrum. The downward pointing arrows locate cog. (b) The high-frequency part of
the frequency spectrum. The downward pointing arrows locate @ (q). The upward pointing solid arrows locate w,(q)
as given by Eq. (15), with {(cos¢) determined from the long-wavelength limit of Si(g,). If wo{cosd) is fit to the
high-frequency peak of S..(g,®) at §=0.002 and that value used to compute wy(q) at other g values, the result is locat-
ed at the upward pointing dashed arrow.
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structure). For this ¢ regime the two-phonon sum
process fits increasingly well as g increases with a

little smearing upon the predicted®!%!® square-root
singularity at

w,(q)=(4a§+cig?)

=2w0(cos¢)’/2[1+(%qd)2/(cos¢)]”2 .
(15)

In writing (15) we have used the self-consistent
phonon frequency as a reasonable approximation.
An incipient square-root singularity becomes very
plausible as g increases [see Fig. 4(b)iii]. Supposing
that breather contributions are being comparatively
lost with increasing g, it is also consistent that
weight should be taken from lower frequencies
first, since this is contributed from the more ex-
tended breathers whose form factors decay most
rapidly with increasing q. The quadratic predic-
tion for w,(q) [Eq. (15)] should be contrasted with
the linear one for wg'(q;wp) from breather
phenomenology [Eq. (11)]. It is hard to be defini-
tive about the identification of the high-frequency
peaks with our present data, and we do not believe
that our understanding of breather or multiphonon
structure-factor contributions and interrelations is
sufficient to attempt an absolute comparison at this
time. However, qualitatively, one interpretation is
that the lower peak should be associated with a
“dominant” breather,>"’ i.e., dominant frequency
@p (and corresponding breather extent!’). The
selection of @y is a combination of form factor [see
below (11)], lifetime, and density effects which is
not precisely known. Nevertheless we can impose
a consistency requirement if we suppose that the lo-
cation of the split central peak [Fig. 4(a)] is deter-
mined by the same breather type. In view of the
anticipated discreteness and interaction effects (cf.
discussions of Sy and S44), we do not fit to the
bare theory, Eq. (10), but rather take v, directly
from the MD data which gives v,/ co=w,, /
c0q==0.59, where we have taken an average w,, for
g <0.06. Fitting the lower high-frequency peak to
(11) for §=0.002 suggests @3~0.71w,. This
agrees surprisingly well with earlier expecta-
tions.’>!> Note, however, that @ is quite weakly
preferred (see below). In Fig. 4 we have indicated
the location of @p'(¢) and w,(q) according to the
above prescriptions. We observe that these coin-
cide closely for much of our g range, and resolu-
tion of two distinct contributions in the MD data
is not possible for intermediate q. Instead of
(cos$)!”? in (15) we have used the actual long-
wavelength phonon frequency observed in S (Fig.
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3). Even s0, w,(q) is a slight underestimate of the
observed peaks for all g. This could be a result of
the broadening of (harmonic) two-phonon sum
processes from the intrinsic anharmonicity in our
system, and of higher-order multiphonon contribu-
tions which are also important (especially at our
high 7).

Within the above breather interpretation, we
must conclude from Fig. 4 that @y is only weakly
preferred—significant weight is contributed from a
wide range of frequencies around @z. We certainly
expect that &g — ~wg, as T—0+ because of
breather density effects dominating form factor
considerations (cf. Sec. II). In that case, the impor-
tant breathers will be included in low-order anhar-
monic perturbation theories.!® This approach has
been advocated by Maki et al.,?* emphasizing
two-phonon bound states (low-energy breathers) as
an alternative mechanism for the lower high-
frequency peak in S,.. Additional low-T
(<0.2E”) MD simulations are highly desirable to
understand relative breather contributions unambi-
guously.

Considering the central peak in S, we recall
that kinks [Eq. (3)], breathers [Eq. (10)], and two-
phonon difference processes®!>1¢1° all yield broad
central peaks with cutoff w=cq in the continuum
limit. This agrees with the MD results (Fig. 4) ex-
cept for the familiar tail for > cpq from discrete-
ness. For § <0.05 there appear to be two central
components—one with maximum at @ =0 and one
split to +w,, ~+0.59cyq. One proposal (above) as-
sociated the latter primarily with breathers. For
G >0.05 the w~O0 structure is lost and w,, /cyq in-
creases with ¢ (e.g., w,, /coq~0.87 for §=0.18).
We argue below that kinks alone can substantially
account for the integrated central intensity in S,
for § <0.05, so that a quite plausible alternative
possibility at our T is that w,, corresponds to the
splitting appropriate to the kink central peak.
Note, however, that bare kink theory [Eq. (8) and
Table I] only predicts splitting for kzT > E{", a
substantially higher T than for S44 [Eq. (12)].
Thus discrete lattice enhancement would have to
be even more severe, dominating continuum form-
factor influences and a renormalizations. Two-
phonon difference processes yield a peak at
o, <cog—as stated earlier, the pure two-phonon
difference process predicts a square-root singularity
at w=cyq which is softened here by higher-order
multiphonon effects, anharmonicity, and discrete-
ness. For §>> 0.05, this last mechanism fits neat-
ly with our understanding (above) of the high-
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frequency weight in S, in the same large g regime,
where kinks (or breathers) contribute significantly
less.

More detailed comments on the integrated
weights S, (g) and S (g) are in order. These con-
tain less information than the detailed frequency
structure but do support and quantify the interpre-
tations we have made already. Results are shown
in Fig. 5, where we contrast the total and partial
(central) weights: Note that their g dependencies
are quite distinct and we emphasize again that only
the total intensities are rigorously available from
transfer integral calculations.® In particular, the
total intensities all decrease monotonically with in-
creasing g (and agree with transfer integral results).
By contrast, the central component of Si(q) has a
maximum at §~0.07 and is approximately propor-
tional to g% as g—0, in qualitative agreement with
kink theory predictions, even at our relatively
elevated T. We also show in Fig. 6(a) the abso-
Iute® prediction of kink theory [Eq. (8)] with
a=1.61. There is quantitative agreement for
§ <0.05, where kink contributions are expected to
be strongest, but there is significant additional
weight at larger ¢ [see Fig. 6(a)]. This may be due
to third (and higher)-order multiphonon contribu-
tions which should dominate those from kinks at
large g. In addition, diffusive effects which are
omitted in our ballistic kink theory become more
important with increasing g, and discrete lattice ef-
fects will certainly move the location of the max-
imum in Sg(g). If a is not renormalized (i.e.,
a=3.41 is used), S(q) is overestimated by ~50%
at small q.
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FIG. 5. Total intensities. The top part shows the in-
tegral over all frequencies for S, S, and their sum as a
function of . The bottom part shows the integral over
the central peak alone. (For the three smallest g values,
the points for the sum coincide with the S, points.)
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To compare with MD results for S,.(g) we have
computed [Figs. 6(b) and 6(c)] isolated contribu-
tions from kinks [integrating Eq. (8)] and from
two-phonon difference processes>!% 1%

4

o? d kBT : 1 —1
fo Sz(qyw)dw=;'——EI((o) [1+(59]7".

(16)

Evidently, a very high proportion of the observed
central weight in S, can be accounted for in this
way. Kinks dominate for § <0.075 and two-
phonon processes for §>0.075. The small addi-
tional weight at large § can be attributed to
higher-order multiphonon processes (which decay
more slowly with ¢g) and anharmonicity. There ap-
pears little room for strong breather contributions
at small g (where they should be expected). This
may be misleading: we should be wary of separat-
ing modes more than qualitatively at our T, espe-
cially where several nonlinearly-related contribu-
tions are competing and particularly for kinks and
large-amplitude breathers. Certainly, the structure
observed in S, (q) at small § (Fig. 5) is quite out-
side of isolated kink or two-phonon theory and in
the anticipated breather regime. All of this points
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FIG. 6. Comparison of various contributions to spec-
tral weight measured in absolute units (see Ref. 21). (a)
Kink theory contribution compared to MD results for
central peak intensity in Si;. (b) Kink theory and two-
phonon-difference contributions and their sum compared
to MD results for central peak intensity in S,,. (c)
Two-phonon-sum contribution compared to MD results
for high-frequency intensity in S,.
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to the need for a better understanding of how these
various processes are interrelated in a strongly non-
linear system. The separation will be much clearer
(classically or quantum mechanically) at low T,
where kinks and large-amplitude breathers will
contribute much less weight because of their higher
activation energies.

Fig. 6(c) compares the integrated high-frequency
MD weight with the prediction of two-phonon sum
processes—these give the same weight as Eq.
(16).%1619 The agreement is good for large g ex-
cept for small additional weight from higher-order
multiphonon contributions. However, as g de-
creases below ~0.1 there is an increasing addition-
al weight [Fig. 6(c)] which must be accounted for,
consistent with our discussion of frequency distri-
butions. Indeed, pure two-phonon theory supplies
less than 50% of the observed weight for § <0.05.
Although some anharmonic broadening will occur
for multiphonon processes, it is tempting to attri-
bute the additional weight to breather excitations
as implied in Fig. 6(c)—dominated by preferred
large-amplitude breathers or by extended, perturba-
tive, two-bound-phonon breathers (see above). It is
interesting to note that isolated ideal breather
theory'® predicts comparable high- and low-
frequency weights in S,.(g). Clearly the large
weight attributed to breathers at high frequency is
not matched at low frequency according to our ear-
lier discussion. This probably reemphasized the
dangers of separating mode contributions too sim-
plistically (since they are competing for central
weight), but may also indicate the greater stability
of breather internal degrees of freedom (responsible
for high-frequency responses) compared with
breather translation.

In Fig. 7 we have compared the percentages of
component central- and high-frequency weights in
Scc(q)+Ss(g). Note the comparable contributions
from both S, components at all g, and also large
central contribution from S for §>0.05.

A S_ — high
B Scc — low
60 C 8 _ — high

DS _— low
Sss

=
8 B
& 20p<¢ -
0 i 1
0 0.08 0.160 g

FIG. 7. Spectral weight in central peak and high-
frequency components of Si(g,w) and S,.(q,w) as a per-
centage of total weight in S,, + Sgs.

IV. CONCLUDING COMMENTS

Our intention in Sec. III was to seek evidence for
elementary contributions to correlation functions in
the SG chain. In summary, our conclusions are
the following.

(i) Central weight in S, is due to kinks for
‘;"qu <1. At larger g additional contributions
from third (and higher)-order multiphonon pro-
cesses seem likely.

(ii) The high-frequency weight in S is predom-
inantly a one-phonon response, with anharmonic
broadening as well as contributions from higher-
order multiphonon processes (especially important
at larger g).

(iii) Sg¢ and Sy are exactly related [Eq. (13)] so
that basic mechanisms and relative scales are un-
derstood. However, the origin of central-peak
splitting within ideal kink theory is quite different.
Also harmonic multiphonon contributions are not
applicable to Sy¢; thus the relationship (13) implies
connections between anharmonic and multiphonon
contributions.

(iv) The central- and high-frequency weight in
Scc at large g (gd >2) is predominantly the result
of two-phonon processes, with small contributions
from higher-order multiphonon processes.

(v) For gd <2 other mechanisms become increas-
ingly important to S, in addition to two-phonon
(and higher-order) terms. At our T (~0.3Eg /kp),
kinks give a very large contribution to the central
weight. The size of this contribution according to
elementary kink gas theory may be misleading be-
cause of contributions anticipated from particlelike
breather modes: at low gd <2/ anomalies do ap-
pear in the g dependence of the central weight (Fig.
5). In the same g range considerable additional
weight (beyond two-phonon difference contribu-
tions) occurs at high frequency. This additional
weight occurs over a broad frequency range but has
a weak maximum at a frequency that scales with g
differently from the two-phonon sum-onset fre-
quency. The additional weight is probably due to
anharmonicity in the form of bound phonons
(breathers).

(vi) Comparable data at other (particularly
lower) temperatures are needed for convincing
identification of competing processes—kinks versus
breathers in S, (central weight); intermediate-
amplitude breathers [from structure-factor effects
(3)] versus low-amplitude (low-order perturbational)
breathers [supported by density enhancement (20)].

(vii) Ideal kink theory requires strong corrections
due to mode-mode interactions and discrete lattice
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effects. Neither of these are understood rigorously
beyond low-order perturbation theory which is
inadequate for k3T >0.2Ex or moderate velocity
kinks. Nevertheless, qualitative expectations are
supported by MD results (see discussions of S 44
and Sg).

We conclude with a few remarks concerning ap-
plication of SG theory to CsNiF;.>7 We noted
earlier that this application should be viewed very
cautiously until more complete theoretical studies
are available. Indeed it has been suggested!' that a
literal SG description does not apply at our T, a
view with which we agree for the classical aniso-
tropic Heisenberg model without external damping.
Nevertheless, several features observed’ in experi-
ments on CsNiF; are in surprisingly good agree-
ment with our results. Some general remarks are,
therefore, in order.

(i) It is not expected>!%!! that resolvable central
peak splitting would survive the perturbations on
SG of real materials [damping, large out-of-plane
fluctuations, or the discrete spin (all of which will
affect kink, breather, and multiphonon processes
differently)], but if it did, at small g, then ideal-gas
fits would require distinct renormalizations as we
have discussed.

(i) Applications of kink-only theory may be
quite good [especially for low and intermediate
4 <0.05 (Ref. 22)] at moderately high T (which is
where they have been mostly applied’). Contribu-
tions to S, (central) from multiphonon contribu-
tions only dominate at large g. Contributions to
the high-frequency weight in S +S,, from S,
(i.e., in addition to the phonon contribution) are
significant for all ¢ (Fig. 7). These should be
looked for even though they appear as a low-
amplitude extended background. They should cer-
tainly appear at sufficiently low T (or high mag-
netic field)—corresponding responses have been ob-
served”® in TMMC.

(iii) Recent experiments’ probing the central in-
tegrated intensity in the interesting g range
G <0.05, are consistent with the MD results report-
ed here as we demonstrate in Fig. 8. This is, how-
ever, not a very sensitive test except at small g—
S (q)+Se.(g) has a maximum at § <0.04 accord-
ing to Fig. 5: This is largely driven by S and so
again is qualitatively within kink theory (and in
good agreement with neutron scattering data’).
However, consistent frequency distribution of
weight would be the most clear-cut diagnostic.
Similarly, regarding the absolute scale in Fig. 8, it
is interesting to note that at §=0.1 the total cen-

o]
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Integrated Central Intensity
(arbitrary units)

O I 1 I 1
0 0.08 0.16

q
FIG. 8. Integrated central peak intensity in Sg + S,
from MD calculations compared to experimental results
on CsNiF; taken from Ref. 7. Results were fitted at
smallest § value, but absolute intensity comparisons
agree to within 10% (see also Sec. IV).

tral weight in spin-wave units*! is 1.1. This com-
pares favorably with the experimental observation’
of ~1.0, despite the possible breakdown of (e.g.,
frequency-dependent) SG predictions at this 7',
T and g dependence of integrated weights are only
weakly sensitive to, e.g., out-of-plane fluctuation
perturbations.!! Tt is not clear how sensitive the
apparent structure (Fig. 5) in S, (g) is to perturba-
tions from SG (it is not a kink property).

(iv) The weight in out-of-easy-plane fluctuations
(linear theory®) is much less (factor of ~30 with
our parameters) than in S, so careful experiments
would be needed to distinguish it.

(v) A very serious open question for CsNiF; is
the validity of a SG field theory description for an
S =1 magnetic chain dynamics. If it is argued
that most weight in the classical (or quantum-field
theory) SG model correlation functions can be at-
tributed to single-phonon (magnon) or two-phonon
sum-difference processes,'? then we expect that
they can be satisfactorily reconciled with equivalent
processes'? in the S =1 chain simply by rescaling
effective Hamiltonian parameters, as is familiar for
the linear magnon modes already.? If, however,
strongly nonlinear modes also contribute impor-
tantly to the SG correlations (as implied here for
certain regions of T, w, and g space), then much
less clear questions must be faced, especially for
dynamics—namely, the nonlinear analogs (if any)
in an §' =1 chain and the importance of out-of-
easy-plane fluctuations upon them.

In a future paper we will present corresponding
MD results for correlations of sin%qﬁ and of cos%q&.
These are experimentally relevant (although at
lower T) to the antiferromagnet TMMC (Ref. 8)
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and are theoretically interesting as largely kink-
sensitive functions®®2* at small g. The relevant
kink phenomenologies must be distinguished, how-
ever, from the ones used above, where, e.g., kink
densities directly controlled a central peak intensi-
ty. In the kink-sensitive function cases, kinks are
responsible for a broadened Bragg central peak and
their density controls the broadening. Appropriate
kink phenomenology is then akin to that required
for ¢ correlations in the ¢-four model,>?® but con-
trasts will be drawn because of the strong role of
quasibreathers in ¢* which affect kink dynamics
much more severely than in SG. In particular,
central peak splitting in ¢* in lost.>?’ We have

also obtained MD results for a SG chain with a
random array of impurities.'>?® Dynamic responses
for this system will be presented elsewhere and
compared with the results and mode interpretations
for the pure chain.
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