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Disordered magnetic lattice gas: Formulation by the method of the distribution function
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A spin-1 model of a disordered magnetic lattice gas with magnetic and nonmagnetic interac-

tions is presented as an extension of the magnetic gas introduced in the previous paper. A for-

mulation using the method of the distribution functions is given, The concept of an effective
potential is introduced along with the usual effective field in order to describe this system. In-

tegral equations for the distribution functions are derived as a natural extension of the Bethe-
Peierls-gneiss approximation to the disordered magnetic system. The form of the thermo-

dynamic potential is given and shown to be stationary for the distribution function which satis-

fies the integral equation. The relationship of this work to those of previous studies utilizing the
distribution-function method is presented and clarified.

I. INTRODUCTION

onc of the most exciting and fascinating problems
in modern statistical mechanics is the study of disor-
dered systems, in particular the magnetic-disordered
system. A magnetic system with randomly distribut-
ed exchange interactions was studied by Edwards and
Anderson' (EA) giving the so-called spin-glass state.
To calculate the free energy of the disordered system,
EA introduced the "n-replica" method which has
been further employed by numerous workers in the
field. In particular, Sherrington and Kirkpatrick ob-
tained a solution for the random Ising model with
infinitely-long-ranged interactions.

On the other hand, another approach to the prob-
lem which does not usc the "n-replica" method has
been developed and applied to the disordered mag-
netic system, rendering the same results as those of
Sherrington and Kirkpatrick in the limit of
infinitely-long-ranged interactions. 3 6

In 1975, two of us' [Frankel and Thompson (FT)]
introduced a completely different approach for por-
traying the amorphous ferromagnet. In that model,
the spatial and spin configurations of the particles
were treated on an equal footing. This work has
been generalized and discussed further by others. ' '0

This model of FT has since been mapped into an ap-
propriate spin-1 lattice-gas model with magnetic and
nonmagnetic interactions and analyzed in the limit of
infinitely-long-ranged interactions. " Another model
for the magnetic lattice gas was used by Ausloos
et al. ' and the detailed comparison with ours has
bccn given in Rcf. 11.

%C now present the generalization of our magnetic
lattice-gas model to the case of random distribution

of interactions. In this paper, we give a general for-
mulation of the problem using the method of distri-
bution functions.

%C will first give the motivation for this work and
discuss the physical systems where this model may be
most applicable and then give a comprehensive histo-
ry of the technique of distribution functions in stud-
ies of disordered systems.

Lec and Yang" in a classic paper many years ago
introduced the lattice-gas model where each lattice
point is either vacant or occupied by an atom and no
two atoms can be on the same site. The model has
served as an excellent model of binary alloys' and
has provided valuable insights into the gas-liquid con-
densation problem. ' %hen dealing with amorphous
systems such as glasses and amorphous ferromagnets
(e.g. , Ref. 14), however, their structure is irregular
with no underlying structural long-range order corre-
sponding to a precise, regularly ordered crystalline
lattice. In these substances, there can be varying dis-
tances between nearest-neighbor (NN) atoms as weli
as more distant neighbors and also varying coordina-
tion numbers. These systems resemble more closely
a network of atoms interlaced with a network of va-
cancies. If the diffusion coefficient for these systems
is small enough (relaxation time large enough) we
can think of applying equilibrium statistical mechan-
ics to studies of these systems even though these net-
works are continuously changing their irregular topol-
ogy in time. In many respects these systems resem-
ble a real liquid wherein the molecules array them-
selves in something like irregular networks (which
vary in time) as most vividly shown for fluids by
computer simulation using molecular dynamics. '

It would, therefore, be most interesting and valu-
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able to attempt to incorporate these kinds of irregu-
larities in the original lattice-gas model. within the
framework of the lattic-gas model, this can be done
in various ways, e.g. , (i) by assigning random interac-
tions between the lattice sites, (ii) by assigning ran-

dom coordination numbers to the lattice sites, and
(iii) by assigning random cell volumes about the lat-

tice sites.
The disordered magnetic lattice gas wi11 be referred

to as the DMLG, hereafter, and will be thought of as
representing disordered systems such as amorphous
ferromagnets and in an appropriate limit (which we
discuss later) spin-glasses. The DMLG without mag-
netic interaction will reduce to the disordered lattice
gas and will be referred to as the DLG, hereafter. As
discussed above, the DLG may be thought of as 8
first attempt to introduce irregularities into the origi-
nal lattice gas and in so doing becomes a refined ver-
sion of a lattice-gas model for describing the liquid
state. In this sense the DLG is perhaps closer to the
situation in rea1 fluids and certainly closer to the phi-

losophy of thc cellular theory of liquids cnunciatcd in
the so-called lattice theories (not Lee-Yang lattice
gas) of the Iiquid state as discussed, for example, in
Barker's book. '6

To our knowledge, there have been two main
streams followed in the development of the method
using the distribution function. One stream was ini-
tiated by Marshall' in connection with the problem
of dilute magnetic 80oys, and has been developed by
Klein and others. ' ' ' The other was started by
Matsubara, " independently from the above, in his
treatment of disordered spin systems and then ap-
plied to the study of the spin-glass state in a binary-
bond mixture. 22 This approach has been further
developed by others, '6"23 26 as we now describe in
some detail.

In treating a disordered magnetic system, Matsu-
bara introduced the concept of a fictitious thermal
average of the spin ' which was calculated by assum-
ing that one interaction bond was removed from the z
(coordination number) interaction bonds surrounding
the spin. He further introduced the distribution
function for the fictitious thermal average of the
spin, 8nd dci'ivcd 8 nonlinear integral equation foi' it.
Matsubara and Sakata applied the method of the dis-
tribution function to a binary-bond mixture, i.e., an
Ising spin system with 8 random distribution of fer-
romagnetic and antiferromagnetic interaction bonds,
and successfully obtained a spi'n-glass state named
GLP (glasslike phase). " A distribution function for
an effective field was used to calculate the internal
field of amorphous fcrromagncts. Katsui'8 and
Fujiki" also used another effective field, under which
a thermal average of a spin gave the fictitious ther-
mal average of Matsubara, 2' and derived an integral
equation, using the 8 function in 8 compact form for
an arbitrary distribution of the interaction bonds,

which of course reduced to the integral equation of
Matsubara in the case of the binary-bond mixture.
Morita26 introduced a concept of a single-bond effec-
tive field acting upon a spin through a single interac-
tion bond, and gave a free energy for the disordered
system and an integral equation for the distribution
function of the single-bond effective field (which will
be referred to as the single-bond distribution func-
tion). He also showed that the stationarity condition
for the free energy led to an appropriate integral
equation. Katsura, Fujiki, and Inawashiro2" showed
that the two integral equations derived by Katsura
and Fujiki'3 and by Morita26 werc equivalent to each
other. They2 used a relation which expressed the ef-
fective field of Katsura and Fujiki as a synthesis of
(z —I) single-bond effective fields which they called
the (z —I)-bond field, thereafter. " In the case of
the binary-bond mixture, the stationary character of
the free energy was examined in detail for z =3 and
4 at absolute zero."

The notations and descriptions used in the above
works seem to us to be complicated and often
confusing and thus it is most worthwhile to give a
self-contained and compact formulation of the
method of the distribution function including the
proof of the stationarity of the free energy. This pro-
gram is carried out in detail in this paper. In the
course of our generalization of the method of the dis-
tribution function to describe the DMLG we will find
it necessary to introduce the new concept of an effec-
tive potential bcsidcs that of an cffcctlvc field.

In Sec. II, the spin-1 lattice-gas model is presented
and a pair approximation for the random distribution
of magnetic and nonmagnetic interactions is
described. It is emphasized here that the concept of
an effective potential is necessary a1ong with that of
the effective field for portraying the disordered spin-1
system. In Sec. III, two distribution functions are in-
troduced for both the single-bond and the (z —I)-
bond field and potential. Appropriate integral equa-
tions are then derived. The thermodynamic potential
for the magnetic lattice gas is given in Sec. IV. It is
also shown that the stationarity condition for the
thermodynamic potential is satisfied by the integral
equation derived in Sec. III. In Sec. V, the standard
disordered spin system, wherein each lattice site is
occupied by a single spin, is discussed as 8 limiting
case of our model. This enables us to then discuss
and clarify the relationship between the integral equa-
tions derived by previous authors. Section VI is de-
voted to 8 sumn18ry and discussion.

%C consider the DMLG where particles with spins
interact with each other through magnetic and non-
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magnetic interactions which are randomly distributed
over the lattice with a certain specified probability.
Spin-1 operators are used to represent a particle with

up or down spin at a lattice site by 5 =1 or —1,
respectively, and a vacant site by 5 =0. Then the
disordered magnetic system is described by

X = —x JsS;Sg —$ UJS SJ'
(~.g) (i;g)

—8 QS, —p, QS,2 (S, = 1, 0, —1) (2.1)

FIG. 1. Spin S~ and the z-bond field which is denoted by
a single dashed line. The external field and the z-bond po-
tential are not shown.

where J& denotes the magnetic interaction between
lattice sites i and j, U~ is the potential interaction
between lattice sites i and j, 8 is an external magnetic
field, and p, is the chemical potential. It is assumed
that JJ and U& are distributed randomly over the lat-
tice bonds with a probability distribution (P(J, U).

The method of the distribution function for the ef-
fective field has been successfully applied to disor-
dered magnetic systems, e.g. , spin-glasses and amor-
phous ferromagnets. In order to apply the method to
the DMLG, a specific generalization is necessary. In
addition to the effective field, we must introduce an
effective potential at each lattice site and represent
the distribution function as a function of both the ef-
fective field and effective potential.

We formulate the problem utilizing the pair ap-
proximation which is a natural generalization of the
Bethe-Peierls-Weiss approximation to a disordered
system, as sho~n in detail in Sec. III. Within the pair
approximation we consider a single-site Hamiltonian
and a pair-site Hamiltonian simultaneously, and re-
quire a self-consistency between the single-site densi-

ty matrix and the pair-site density matrix.
The single-site Hamiltonian is introduced by

lattice sites is given by

X12 = —JS)S2 —US(S2 —(8 + h) ' ' )S1

(8 + h (z —1) )S ( + l (z —1) )S 2

( +l(z —1) )S2 (2.3)

p) = exp (—pX1)
and the trace of it is expressed as

(2.4)

Z (h(z) l(z) ) (2.5)

where

where h;(' ') and l " (i =1,2), respectively,
denote an effective field and an effective potential at
the ith site coming from the (z —1) neighbors out-
side the pair sites. The quantities h,' " and I,

' "
are referred to as the (z —1)-bond filed and (z —1)-
bond potential hereafter (see Fig. 2).

A single-site density matrix is given by

X1=—(h)* +B)S1—(l)(') +lz)S) (2.2) Z)(xy) —= 1+2ea "+ 'cosh)8(8+x) (2.6)

where h)'*' (l)" ) represents an effective field (poten-
tial) at the site 1 coming from z neighbors through
each interaction bond, and is hereafter referred to as
the z-bond field (potential) for simplicity (see Fig. 1).
The pair-site Hamiltonian for a neighboring pair of

A pair-site density matrix is given by

P12 exp ( PX12)

and the trace of it is expressed as

(2.7)

Trp(2 ——1 +2 expp( p + l1(' ') ) coshp(8 + h)(' ') ) +2 expp(p + l2(' ') ) coshp(8 + h2(z ') )

+4exp)8(2p, +l)* ' +l2' ' + U) [cosh)8Jcoshp(B+h('* ' ) coshp(8+h2' ' )

+sinhpJsinhp(8+h(" ")sinhp(8+h2* ' ) 1 (2.8)

As a self-consistent condition, we require that

Tr2p~2 tx: p~ (2.9)

where the index 2 on Tr means that the trace is to be taken with respect to the lattice site 2. The condition (2.9)
leads to a certain relationship between the z-bond field and potential and the (z —1)-bond field and potential.
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Performing the partial trace over the site 2, ~e have

Trzp}z=exp[P(8+h * ")S +p(p+I'* ")S'] [1+2expp(p, +I'* "+US') coshp(8+h' "+JS )]

Making use of the formulas

sinhXS =SsinhX, coshXS =1+S'(coshX —1), exp(XS') =1+S'(e»—1) (S=0, +1)

we find that (2.10) can be rewritten as

Tr2p}2 ——exp[P(8 + h ( ) )S +P( p + /(~ 1) )S}z] Z1(h2(~ 1) /(~ 1) )

1+ 2 exp p( p, + l2' "+ U) sinhp(8 + h j' ") sinh(8J

Z (/ (x-1} /(x —1})
Si

2exp}8(p, +iq~' ") coshp(8+hz(' '})(es~coshpJ —1)
Z (h (x-)) I(x-}))

The expression within the large parentheses on the right-hand side of (2.12) can be written as

1+es~(sinhPH) S1+(e" coshPH —1)S1

(2.10)

(2.11)

(2.12)

(2.13)

eS sinhPH = [Z (h'* "I' ")] ' 2exp}8(p, +I ' "+ U) sinhP(8+h' ")sinhPJ (2.14)

and

es coshpH —1=[Z (h(* ') I(* ")] ' 2expp(p+I(' ')) cohsp(8+h(* '))(esUcoshpJ —1) (2.15)

From (2.14) and (2.15), we obtain

Z (h' "+1 l'* "+U) —Z (h' "—J l'* "+U)

z (h'* "+J/'* "+U)+z}(hz(* " J, /2* "+—U) (2.16)

and
Z (h (*-"+J I (*-"+ V) Z (h ( -'}-J I '-'} + V)I. =-I. (hz(*-'), I,'-}),J, v) = '

in
2P [Z (h (x-)} I (z-}}) ]2

1

(2.17)

Using the formula

expP(XS + YS') = 1+Ses "sinhPX + S'(es "coshPX —1) (2.18)

Tr p =Z (h' "I' ")exp}8[(8+8' "+H)S +(p, +/(' "+L)S'] (2.19)

h' =h' ' +h (2.21)

Then it easily follows that

Z (h(x-}) i(x-})) Z (h(r-}) +H i(x-}) +I)
(2.20)

The z-bond field and potential at the site 1 no~ con-
sists of the (z —1)-bond field and a single-bond field
hi coming from the site 2,

S„"

/l
/

/
/

/

FIG. 2. Pair of spins Si and S2 and two sets of the
{z—1)-bond fields. The (z —I)-bond potentials are not
sho~n.
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as shown in Fig. 3. Likewise we have

((~) ((i-1) + ( (2.22)

where (~ denotes a single-bond potential coming from
the site 2. The single-site density matrix can now be
written as

P) =(3((~+ht "+h))&&+(p, +I)' "+I, )S(2]

(2.23)

From (2.9), (2.19), and (2.23), we obtain finally

1

FIG. 3. Spin S&, the single-bond field h&, and the

(z —I )-bond field.

III. DISTRIBUTION FUNCTION FOR THE EFFECTIVE
FIELD AND POTENTIAL

and

h) =H(h2* ', l2' ', J, U)

I(=L(h2' ', lg' ',J, U)

(2.24)

(2.25)

which are the two important results expressing rela-
tionships between the single-bond field and potential
at the site I and the (z —I)-bond field and potential
at the site 2; pictorially this now means that Fig. 2

can be replaced by Fig. 3.

The single-bond field and potential vary from bond
to bond and also from site to site. We assume that
the distribution function for both of them over the
entire lattice is denoted by a single-bond distribution
function g(h, l). Further, the distribution function
for the (z —1)-bond field and potential is denoted by
gt' '~(h, l). The single-bond field and potential at the
site 1 is connected to the (z —1)-bond fields and po-
tentials at the site 2 through (2.24) and (2.25); the
relation between the single bond and the (z —I)-
bond distribution functions is thus given by

g(h, () = jl a(h H(h2' "(—'-" J, U-)) g(i —L, (h,'-" ('* ",J, U))-

x(P(J, U) dJdUgtg '~(h,t* '~, (2tg '~) dh,t* '~ dl,'* " (3.1)

where we have neglected the correlations between (z —1)-bond distribution functions and the random distribu-
tion for Jand U.

Now we assume a general M-bond distribution function, which is expressed in terms of the single-bond distri-
bution functions as

M M M

gt ~(hl)=jig h —Xh 8( —Xl g (h l)dhdl
J~] J~] J~$

(3.2)

Then (3.1) and (3.2) with M = z —1, constitute a fundamental set of integral equations for g and g' '~.

Eliminating gt' 1 from (3.1) and (3.2) with M =z —1, we have an integral equation for g alone given by
z —1

g(h, l) = Jl 8(h —H(ht' '), I(' '~, JU))6(l —L(hi' '), lt* ",J, U))tP(J, U) dJdU Qg(h, , l ) dh d(,.
m~1

(3.3)
We have introduced the general relations

and

h( = gh/~ ((=1 2)
m 1

M

I,
&~& = g I,. (I =1,2) .

(3.4)

(3.5)

In (3.3) we have used (3.4) or (3.5) with M =z —1. The fields h, are shown in Fig. 4. Using (3.4) with
M = z —1, we see immediately that Figs. 3 and 4 are equivalent. Using (3.1) and (3.2) with M = z —1, we find
that the integral equation for g' ' is given by

r 'I )z-1 z-1 z-j.
g

* (A I) = JA A H(XI/ d/A/Uj) A I XL(A/ IAJAU/) rr[0 (I/ U/) dd/ dU/g *
(A/ I/) dA/dl/]

Jm] J~]
J

J~]
(3.6)
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FIG. 4. Spin S~ and the z single-bond fields. Figure 4 is

equivalent to Fig. 3, for hl(* ') = g 1' hl& and h» ———hl.

Using the Fourier-integral representation of the 5
fullctlolls ill (3.6), wc obtatn

g'-"(h I) = 1
I exp[-i(ph+si)){2n)' "

x [G(p,s)]* 'dp ds, (3.7)

G(p, s) = 'l exp[ipH(h, i, J, U) +isL(h, I,J, U) j

)((P(J U) dJ dUg' "(h I) dh di . (3.8)

Equations {3.7) and (3.8) are in a convenient form to
allo~ numerical calculations to be readily carried out.

Now we will show that the integral equation (3.3)
ensures that the density matrices pj and p~2 give the
same value of the thermal and configurational aver-
age for A (Sl), where A (Sl) is an arbitrary function
of S~. The thermal and configurational average of
A (Sl)~ by p)1 is given by

((g (S )) )
1 p)1 (p(J U) dJ dUg(x-))(h(z —1) I(s—1) ) dh(z-1) dI(z —1)Tr[W (S,)p„]

TrpI2

)(g(z—1)(h (z-1) I (z-1) ) dh (z—1) di(g-1) (3.9)

where the bracket with indices 12 on the left-hand side of (3.9) means the thermal average by p(1, the bold angu-
lar brackets with a subscript 8 mean the configurational average over the randomness which is calculated here by
integrating over the probabihty distribution for J and U and the two distribution functions for the (z —1)-bond
fields and potentials at both ends of the pair sites. The thermal and configurational average of A (Sl) by pl is
likewise given by

((~(S)) ) = ' ' '-"(h'-"I'*-")dh)(*-"dI'*-" (h i)dh dI
t'Tr[A Sl pl

Trpb

wllcrc wc 11avc llscd tile cxprcsslo11 fol' pl given by (2.23). Substltllti11g (3.3) fof g(hl, il) ln (3.10), wc llavc

& TrIA(sl) expp[(8+h)' "+H)Sl+(p, +Il' "+L)sj'1j (, , )
p[(a+h '-') +H)s +( +I * "+L)s,'1l-

)((p(J U) dJ dU (s-))(h(x-1) I(x-1) ) dh(s-1) dI(x-1)
(3.11)

Using (2.19), the first factor incorporating the traces
in the integrand of (3.11) becomes

I

regular spin system to that of the disordered magnet-
ic system.

Trt[A (Sl)(Trip)1) j Tr[A (Sl)p)1]
Tf1(Trip(1) Tfp)1

e now have the equality for the two kinds of aver-
ages for A (Sl),

IV. THEMODYNAMIC POTENTIAL
AND STATIONARITY

The thermodynamic potential per bond in the pair
approximation is given by24 26

((& (sl) )„},= ((w (s,) ),)„. (3.13)

This shows that the pair approximation, which we
have used in our formulation, is a natural generaliza-
tion of the Bethe-Peierls-gneiss approximation for the
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where

4 n= —)r fin(Trpn)rP(d U) dddU

&& gg(h)k, ltk) dhtkdl(k

x g g(h, , l,.) dh,.dl,.
w;th Trp„g)ven by (2.20), and with h,' "and ll

*

given by (3.4) and (3.5) with M = z I respectlvei»
and

g

y, =-p-' ~ in(Trp, ) gg(h)k, itk) dhtkditk ~

k~1

with Trp( given by (2 5), and with h)(*' '"d 1)t' given

b„(34) and O 5) with l = I and ~=z. For notation

purposes eve have defined h1, =—h1 and 11,—= l1, with

h1 and 11 as used in Sec. II. The physical meaning of
~g h, l dhd/=0 .

The variation of 4t)z gives

(4.4)

the factor 2(1 —I/z) in (4.1) is most readily under-
stood by employing an argument specifically involv-
ing the limit of absolute zero. In the limit of abso-
lute zero, (t )q gives the energy of the pair which con-
tains 2(z —1) single-bond interaction energies
between the pair and the surrounding medium. The
integral in (4.3) contains z single-bond interaction en-
ergies between the single site and thc medium.
Therefore, the 2(z —1) single-bond energies in (t))2
must be canceled by subtracting the term
2(z —1)z 'hh), where @) is the sum of z single-bond
energies at absolute zero.

Now we show that $ is stationary with respect to
the variation of the single-bond distribution function.
Consider an arbitrary variation preserving thc nor-
malization condition of thc single-bond distribution
function,

g-1
hpn= )(*—()(r f)n(Trpn)rp(lU)dddU jJT(hrr(rr)dh„din

"Dg(h2~ l2~) dh2 diz ~g(h&), l))) dh), dl„,
m

(4.5)

and that of @) gives

hdr = rP ' fin(Trpr) rt—p(hrrlrr) dh „dl,„hp, (h l) dh dl.
k 2

(4.6)

Inserting (2.20) into (4.5), we can write the variation of @ as

g(t) = —2(z —1)P ' Jtgg(h)), l()) dht(dl)(

x g g (hlk ilk) 4h1k 41(k

Ig-1 g-1 g-1

J ln Z) g h2, x hz 6'(J, U) djdU Qg(h2„, 12 ) dh2 di2
', m 1 m 1 m 1

*

+ Jtln Z) xh)k+0, xl,„+L tp(J, U) didU gg(h, , l, ) dh,
k 1 k 1 m 1

l, ) ~

(
g g

—Jtln Z) X h)k, $ l)k g(h)d, 1(,) dh), dl),
)k 1 k 1

(4.7)

The first term in the' braces is independent of thc variables h11 and l11 and thus the contribution from this term
vanishes because of the preservation of the normalization, (4.4). Stationarity then gives the following identity for
the g function of h11 and l11'.

g-1 g-1 z —1 g-1

J"IIg(h)k*l)k)dh)kdl)k J In Z) Xh)k+K Xi&k+1. 5'(LU)dldU ffg(hz, i2 )dh2 dlz
k 2 ', k 1 k-1 m~1

r

—
Jr ln Z( Xh)k, gl)k g(h)p, l), )dh), dl(,

~

=0 . (4.8)
k ) k-)
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It is easily seen that the substitution of the integral equation (3.3) for g(h~„l~, ) in the above equation assures
the vanishing of the right-hand side of (4.8). Thus the integral equation (3.3) is a sufficient condition for the
stationarity of the thermodynamic potential. "

The thermodynamic potential is also expressed in terms of the (z —1)-bond and z-bond distribution functions.
Using (3.2) with M z —1, (4.2) is rewritten as

y/z- —P ' in[Z[(ltzt' ', ip~' ' )Z/(hj~' ' +H/$' ' +L)](P(J,U) dJ dU
ai

(z —1)(i (x—1) i(s-1) ) di (x—1) di(x-1) (x—1)(i (x—1) i(s-1) ) dh (x—1) di(z —1) (4.9)

and using (3.2) with M z, (4.3) is rewritten as We find that

P-& lnZ (h (s) i(s) )g(x)(h (s) ib) ) di (z) di(x)

P1 P1

Trp1 p, ~ oo Trp1
(5.1)

(4.10)
pi = exp( —pXi) (5.2)

These expressions are particularly useful for taking
the limit of infinitely-long-ranged interactions, which
we will study in detail in the following paper. 2' X)=—{h)+hjt' '~)o) —Bo) ((r)=+1), (5.3)

along with

V. LIMITING CASE p, ~co
P12 P12

Trp12 & Trp12
(s.4)

%'e now consider the limiting case where particles

occupy all the lattice sites and are not allowed to
change sites. We call this case the standard disor-
dered spin system. This case corresponds formally to
the limit where the chemical potential p, ~. In this
limit, it can readily be demonstrated that the effective
potentials tl~'~ and Il~' '~ along with the nonmagnetic
interaction U no longer appear in the normalized
density matrix. Therefore, the standard disordered

spin system reduces to an appropriate spin--, system.

Wc now present this appropriate spin- —, system and

use it to make detailed connection with the works of
previous authors, as quahtatlvcly d1scusscd 1n thc In-
troduction.

pi2 =exp( —p+i2) (5.5)

A

X)z= —Ja)~2 —(B+h)'*-")n)—( B+h *z'-")nz

{o,=+1, i =1,2) . (5.6)

Equations (2.16) and (2.17) become in the limit
|M,
~ OOs

H -0=-e(i &*-'~,J)
=p 'tanh '[tanhp(B+h2'* ")tanhpJl,

(5.7)

coshP (B + h,'* "+J) coshP(B + h 2t* "—J)
2p [coshP(B+hj' ")]' (5.8)

It is to be noted that L is now independent of /2~' ' .
We define the magnetic single-bond distribution
function by

ing I is independent of /2~' '~, wc obtain

g (i) =„' S(h-H(hj -"&,J))p(J) dJ

gkr(h) =
~ g(h, l) di (5.9) g gM( h 2k) dh 2k (s.lo)

Integrating Eq. (3.3) with respect to i and remember- where P(J) is the probability distribution for the
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magnetic interaction only and is given by

P(J) = J"tP(J, U) dU

Equation (5.10) is the same equation as derived by
Mprita fpr the standard disprdered spin system.
We define the magnetic (z —1)-bond distribution
function by

gp "(g) = fg~' '~(g )) g(.
Then the integral equation (3,6) leads to

(

g~(' ')(h) = 8 h —QH(hJ' ', JJ)
J 1

(5.11)

gP(J ) dJ ' "(h ) dh, (5 12)
Jm1

which agrees with the integral equation derived by
Katsura et al. 6

Introducing a new variable x by

x =tanhP(B + h) (5.13)

which represents the fictitious thermal average for a

spin subject to both the (z —1)-bond field h and the
external magnetic field B. Using (5.13), the (z —I )-
bond distribution function is converted to a distribu-
tion function for the fictitious thermal average for a

spin, i.e.,

(5.14)

8(h —a) = 8(x —tanhP(B + a))
dh

(5.16)

The integral equation (5.15) is equivalent to the in-

tegral equation derived by Matsubara ' and by
Katsura and Fujiki.

The free energy, up to an additive constant, for the
standard disordered spin system is easily obtained by
replacing p)2 by p)2, p( by p) and g (h, l) dh dl by

g (h) dh in (4.2) and (4.3).

VI. SUMMARY AND DISCUSSION

A spin-1 model of a disordered magnetic lattice gas
with random distribution for both the magnetic and

The integral equation for f (x) is obtained from (5.7)
and Eqs. (5.12)—(5.14) as

r z-1
f(x) = Jl 8 x —tanhp B +p ' Xtanh '(x tanhpJ)

J 1
g

z-1
x ffP(JJ) dJJf(xJ) dxj

J~]
(5.15)

where we have used a formula for the 8 function,

nonmagnetic interactions has been presented as a na-
tural generalization of the magnetic lattice gas
presented in the previous paper. "

We have given a formulation of the problem using
the method of the distribution function. The concept
of an effective potential is shown to be necessary as
well as the usual effective field in order to describe
our system. The distribution functions were shown
to satisfy appropriate nonlinear integral equations.
The thermodynamical potential has been introduced
and shown to be stationary when the single-bond dis-
tribution functions satisfy these integral equations.
We have shown that the pair approximation for the
disordered magnetic system can be considered as a
natural extension of the Bethe-Peierls-Weiss approxi-
mation previously employed for the study of nondis-
ordered magnetic systems.

In the limit ~here each lattice site is occupied by a
single particle, our systems reduces to the standard
disordered spin system, and the distribution functions
and the integral equations they satisfy become
equivalent tp thpse derived by previous authprs6, 21—26

for the standard disordered spin systems.
Having presented a general formulation for the

disordered magnetic lattice gas in this paper, we now
proceed to solve this system for the specific case of
infinitely-long-ranged interactions [i.e., the mean-
field approximation (MFA)] with Gaussian distribut-
ed coupling constants in the following paper. " With
what we have said above and already shown in this
paper, we expect the final solution of that study to
reduce to the spin-glass result' in an appropriate limit
as well as providing results for these new and most
interesting systems, the disordered magnetic lattice
gas (DMLG) and the disordered lattice gas (DLG)'8
(see the Appendix), respectively.
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APPENDIX

In the case of no magnetic interaction and with
B =0, our disordered magnetic lattice gas reduces to
that of a disordered lattice gas. Apart from the dou-
ble counting resulting from the degeneracy of the
up-down spin labeling, the Hamiltonian (2.1) is now
isomorphic to that of the disordered lattice gas, given
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& = —X Ulik(J u—x& (g( =0, 1) . (Al)

a single lattice site; Uo is the average potential de-
fined by

(A4)
~here p, denotes the chemical potential of the sys-
tem. Using a relation and 8I is an effective random magnetic field given by

the disordered lattice gas is now readily transformed
to an appropriate disordered magnetic system
described by

(A3)

where z denotes the number of interaction bonds for

(A5)

It is to be noted that there exists some correlation
between 8& and the interaction bonds at the ith site.
This means that the physical behavior of our system
is expected to be quite different in general from that
of the standard disordered magnetic system
displaying the spin-glass state, as will be seen in the
following paper. 27
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