
PHYSICAL RRVIE% B VOLUME 24, NUMBER 11 1 DECEMBER 1981

N-color Ashkin-Teller model

Gary S. Grest'
Physics Department, Purdue Uni versity, West Lafayette, Indiana 47907

Michael Widom
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

(Received 9 June 1981)

%'e study a model Hamiltonian consisting of N Ising models coupled pairwise through a four-

spin interaction K~. %hen N =2 this model is the well-known Ashkin-Teller model which

shows nonuniversal critical behavior in two dimensions in the neighborhood of K4 =0. To see
if this behavior persists for N & 2 we perform a first-order-perturbation expansion around the
decoupling point in two dimensions. As an aid in interpreting the results of this perturbation
expansion we have determined the phase diagram of the system through mean-field theory and

Monte Carlo studies in 10th two and three dimensions for N = 3. The results show that N = 2

is special because the coupling between Ising models is marginal over a range of values of K4.
%'e discuss the effect of the coupling K4 for N W 2.

I. INTRODUCTION

Recent work in critical phenomena' ' has sho~n
that the critical points and lines of many two-
dimensional systems can be mapped into each other.
By introducing new models we hope to find qualita-
tively new behavior which will enrich our under-
standing of critical phenomena. We have studied the
model Hamiltonian

X = HlkT—
N

=E2 X Xa (r)a (r')
&~ a~1

+ —,
'

Eg X X ~a'(r) a' s'(r) a(r')

x a'&'(r')

where n and P label different Ising spins (dis-
tinguished by their color) at a site and (rr') denotes
a nearest-neighbor bond on a lattice. For N =1 this
is the Hamiltonian for the Ising model whereas N =2
gives the usual Ashkin-Teller model. The limit

N 0 is relevant to problems with quenched ran-

domness. 4 In general we could add in coupling
between several colors, but these are expected to be
irrelevant near K4-0 which is the limit of greatest
interest. These generalized models are called 2 -state
cubic models' since the states of the system can be
represented by a vector pointing along the diagonal of
an N-dimensional cube.

We have studied this model for small E4 and arbi-
trary N through renormalization-group methods and
specialized to the case N = 3 to determine the phase
diagram through mean-field theory and Monte Carlo
studies. We begin this paper with a review of opera-

tor expansion methods in renormalization-group cal-
culations.

II. PERTURBATION THEORY %1TH A

MARGINAL OPERATOR

We present a general method for deriving
renormalization-group flow equations in two dimen-
sions as a perturbation expansion in the coupling
strength of a marginal operator6' (the generalization
to other dimensions is simple). We then apply this
method to study the Hamiltonian (I) for arbitrary N,
with EC4-0.

Consider a Hamiltonian + close to its critical point
X". Let {O,j be a complete set of eigenoperators of
the linearized renormalization transformation (i.e.,
LO, =y, O, ). Following Wegner, s we write
X=X'+ $, p, ;0;. The renormalization-group fiow

equations are

di
=yi({pkj)~i . (2)

A fixed point of (2) is defined by d p, ,/dl =0 for all i

The values of the fields p.; at a fixed point are denot-
ed p,;. In general the critical exponents y;( {pkj) do
not vanish so we must have JM,

&" =0 for a fixed point.
If O~ is a marginal operator, however, y ( {pk})=0,
so it is possible to have a line of fixed points with

p,~ 4 0. In this case the critical exponents are func-
tions of g~,y, (0, 0, ..., p~, 0, 0, ... ) =y;(iM~). Note
that y~(p~) must vanish for all pM if the critical
exponents are to vary continuously, for otherwise
there could be no fixed point where p, M WO.

The critical exponents can be evaluated using the
perturbation theory developed by Kadanoff and
Wegner. ' Let X =Xo+ h. g, U(r), where Xo is a
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24 N-COLOR ASHKIN-YELLER MODEL 6509

critical Hamiltonian whose correlation functions are
known and X, U(r) is a marginal operator in JCO. If
we wish to find the critical exponent for the operator
oi we consider the correlation function

obtain

exp[ —(x(+x~)l]O, (xe ')OJ(ye ')

(0( r ()0(r 2)) = (3) = $A((k(x —y)e "~0~
k

~here 0,( r ) is the corresponding fluctuating local

operator, x, = d -y(, and ) r ( —r 2) is assumed to be
much larger than the lattice spacing. We will investi-

gate the dependence of xi on X.

The value of xi is known at A. =0 from the proper-
ties of Xo. If we differentiate the correlation func-
tion (3) with respect to h. we find

X(0 ( r ))0(( r 2) U( r ))0

dxi= —2
dX „

(0,( r ()0;( r 2) )Oln) r (
—r 2)

(4)

=q, (0,( r ()0,( r g))Din
b

(5)

Differentiating (5) with respect to the cutoff we get

This equation can be used to evaluate (dx(/dA, ) ) & 0 if
we determine the sum on the left-hand side and pick
out the contribution that is proportional to

(0,( r ) )0(( r 2) ) 0 in) r )
—r zl

Let us write the sum in Eq. (4) as an integral and
introduce a cutoff b « ) r )

—r 2) so that the in-

tegration excludes circles of radius b around r ~ and
r 2. Now we seek q; such that

I —= J
d' r (0,( r ()0(( r 2) U( r ) )0

(10)

Conformal covariance' implies that the correlation
function of two operators will always vanish unless
their exponents are equal. Two operators with equal
indices are either identical or are said to be degen-
erate. We assume that we have a complete set of
operators {0() in which each degenerate subset has
been diagonalized so that (0;( r ))Oz( r;) 0 is propor-
tional to 8((. Setting x =0 and O~(y) = U(b) in Eq.
(8) we have

(0,( r (
—r 2) 0,(0) U(b) )0

~iui
0&( r (

—r 2)0; —,(11)b2 2
( )

where the subscript U in a i denotes the marginal
operator U. Recalling that b « ) r (

—r 2), we find

p =a&i and

dxi

dZ
2% 0/gi (12)

Now consider the Hamiltonian given by Eq. (1).
We can ~rite the fluctuating local-energy density on
color o, as

(9)

Multiplying (9) by exp[(x, +x&)l] and requiring that
the equation hold for all values of l we find

(0(( r ()0(( r 2) )0
dI
db b

from the logarithmic expression, and

2mb[ (0,(0)0,(—r 2
—r () U(b))pdI

db

(6) s (r) = —Xo (r)o (j(r)) —a
J(r)

where j(r) denotes the nearest neighbors of r, and—(e) .
is the average energy density on o,. The Hamil-

tonian becomes

+ (0&( r (
—r 2) O((0) U(b) )0], (7)

from the integral expression. If
(0(( r ( —r 2) 0,(0) U(b) )0 can be expressed as
p, /b (0(( r (

—r 2) O((0) )0, Eqs. (6) and (7) give

q, =4np„hiwle Eqs. (4) and (5) give dx&/dh. = 2np, —
Note that O((0) and U(b) are local operators

evaluated at nearby points. According to operator
expansion ideas~ we can write

where

and

geo=@, X X o.(a)( r )o(a)( r )
(~~) O~1

U(r)= —' X E (r)e(&(r)
o gtl p

(13)

(

0,(x)OJ(y) = XA((g(x —y) Og
k )

2
(8)

Now, the exponent for a local operator is defined by

e 0(((x) =e '0, (xe ') Applying e.'~ to Eq. (8) we

y( ) 1

X [ (a)( )
—()n + ()n ( ) (a)]

2
e kg P

+const .

V(r) simply renormalizes the coupling constant in



Ho and will not be considered further.
To determine the critical index of U when P =0 we compute the correlation function"

(14)

Thus X„(0)=2 and we identify U as a marginal
operator when A. =0.

All that remains is to compute the operator expan-
sion coefficients a,„,. In addition to the marginal
operator Uwe consider: energy density,

E(r)= Xe' '(r)
N, i

polarlzatlon,

crossover operator,

%e mill determine a~UE to illustrate thc technique.
Consider Eq. (g) with 0;(x ) =E ( x ) and
0&()r) = U(y) multiplied on both sides by E(z).
Recalling that (0,( r ~) OJ( r 2) &0 =0 unless xJ =xi,
we find

(E(X)U(y)E(z) &0=
"'

Z "+" E(Z)

The renorglalization flow equations fol E2 and E4
becofYle

dE4 8(N-2) ~)
dl

d(X, -ft, )
dl

(i7)

%e can see immediately that, except when N = 2,

Using

(et-'(r, )e'@( r,))e=
r 1

—r2

and taking [z —l(x+y)/2)( » (x —y( we find
aEuE =2(N —1)/e' . By similar manipulations we ob-
tain acuc 2(N 1)/n2, atuJ =1/2n2, and
auuu =4(N 2)/n' .

Together with Eq. (12) these results show that, to
first order in E4,

g(N —2) 4(N -1)
XU =2 — ——K4, LE =1 — K4,

(16)
4(N —1) 1 1

XL = E4, Xp= ———K4 .
fr 4 m

I

U(r) is a marginal operator only at X =0. Equations
(17) and (18) predict that for N & 2 and EJ, & 0 the
flow mill be to larger K4, awhile for K4 & 0 the flow
mill be towards K4=0. For X & 2 the situation is
just the reverse. %hen the flow is away from K4
there are tmo alternatives for the nature of thc phase
transition. If K4 continues to grow without bound,
the transition is likely to bc first order. Alternatively,
higher-order corrections to Eq. (17) may lead to a
nem fixed point at finite K4 in mhich case the transi-
tion will be continuous and most likely not in the Is-
ing unlveI'sallty class.

%hen the flow is toward K4=0 the critical
behavior is almost certainly in the Ising universality
class. This behavior may be unstable, however, as
can be seen from the following example.

%hen N =4 the complete set of marginal operators

0 = ( e' e~ + e' e3+ e' e4+ e2e3+ e2e4+ e3e4)1

02= (2ee —ee —ee —ee —ee+2ee)121314232434
03 =

2 (e e - e e —e e+e e )'13 14 23 24

04 = (e'e' —e'e'),1

i2

Og= (e'e —e e )1

K2

Oe= (ee ee)1
6

These operators are chosen so that (0,0&&o =
SJ& and

(0;0&U&0= m;SJ. We find that OJ, the original mar-
ginal operator, is the only marginally irrelevant opera-
tor for K4 & 0. 02 and 03 are relevant and tend to
drive the system towards being two decoupled
Ashkin-Teller models. Thc remaining operators are
truly marginal to first order in E4. Thus it is possible
that the system mill behave like two decoupled
Ashkin-Teller models rather than four decoupled Is-
ing models when % =4 and K4 & 0 if Hamiltonian
(1) is slightly pertur'bed.

The remainder of this paper will be devoted to a
study of the phase diagram of this system through
mean-field, Monte Carlo, and e-expansion tech-
niques. In determining the phase diagram wc hope
to establish the nature of thc fixed points of thc rc-
normalization flow equations.
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III. MEAN-FIELD THEORY

To gain insight into the possible fixed points for
flow away from K4=0, we have studied the Hamil-
tonian (1) in the mean-field approximation (exact in
~ dimensions) and through an e =4 —d expansion in
an attempt to sneak down in dimensionality towards
d =2. Mean-field calculations have been performed
before in the case N - 2, ' so we will concentrate on
the case N =3.

%e write a single-site effective Hamiltonian

3 3

JC~(r) = X h (r) a (r) +
2 X h s(r) a (r) ae(r)

4gm] I grg]1

where

h (r) =
2 K2 X (a [j(r)l)

J(r)

phase diagram. For x & 0 each color of spins orders
with a sign which is independent of the sign of the
other colors. As a consequence all products are or-
dered with sgn( ( a a s) ) = sgn( (a. ) ( o.~) ) and
(a'a2) (a 2a3) (a 3a') )Q. In analogy with the usu-
al (N =2) Ashkin-Teller model we call this phase the
Baxter phase.

As the temperature is increased, for x ( 3 (to the
left of point C), there is a transition directly from the
Baxter phase to the paramagnetic phase. At x =0
(point A) we recognize this as an Ising transition at
K2 = K,' in the three decoupled Ising models. The Is-
ing transition continues up to point B, where the
four-spin coupling becomes important. The transi-
tion is first order along BC.

Near point D we can study the model through
second-order perturbation theory in K2 = K4lx
When K2 =0 the Hamiltonian (I) becomes

and

H &(r) = 2K4 X (a'[j(r)]ae[j (r)])
J(r)

Q = Ky $ [ Tt2(r) Tt2(r ) + r23(r) 'T23(l' )
(rr')

+ rt2(r) r23(r) rt2(r') r23(r')], (22)

and j (r) are the nearest neighbors of r. The single-

site partition function is Z(r) = Xi t ~t &le
r and the

free energy is approximately

F = —glnZ(r) +K2 X X (a (r)) (a (r'))

3

+-,'K4 X X (a (r)a&(r))(a (r')a~(r'))

(20)

The averages are given by the formulas

(a'(r) ) = X a (r) e ~ Z(r)
configs

atr

(a'(r) as(r) ) = X a (r) as(r) e f Z(r)
configs.

atr

where r,s(r) = a (r) ae(r). This is the Hamiltonian
for the N =2 Ashkin-Teller model at x =1, which is
also the Hamiltonian of the four-state Potts model.
From Ref. 12 we know that the transition, which oc-
curs at K4=K„ is second order in two dimensions
and first order in higher dimensions. Adding a small
K2 term does not alter the Hamiltonian to second or-
der in K2, beyond reducing the coupling strength:

K ff K4 K2 (23)

Thus we expect that near D we will have a first-order
transition betwe'en the paramagnetic phase and a
phase in which products of colors are ordered:
(a o&) AO, (a ) =0, and(a'a2) (a2a3) (a a') )0.

Near point E we expect that (a'o~) = +1 for all
products. Thus a (r) =+as(r) with high probability
and the Hamiltonian takes the form

These equations can be solved if we make some as-
sumptions about the relationship between averages at
r and averages at r'. %e will only consider K2 & 0,
so we will always assume (a (r) ) = (a'(r') ). For
K4) 0 we assume (a. (r)as(r)) = (a. (r')as(r')),
while for K4 (0 we also consider staggered products.
Kith these assumptions we look for solutions of Eqs.
(21). The solution which gives lowest free energy is
taken to be the true mean-field solution.

X =3K2 X a (r) a'(r') +const
(rr')

(24)

B. K4&0

This shows that there will be an Ising-like transition
at K2=

3 K,', where each color orders conforming to

the requirement sgn( (a ) )sgn( (as) )
=sgn((a a&)).

A. K4 &0

The mean-field phase diagram for the W =3 model
is shown in Fig. 1. This diagram gives a suggestive
picture of what to expect in high dimensions, but we
expect substantial differences in the two-dimensional

For K4 ((0 it is energetically unfavorable to have
the products of colors ordered ferromagnetically, so
we must consider states with a staggered product
magnetization, (a'o&) &F. In this case the system
divides itself into two sublattices A and B with points
on sublattice A (or B) being the nearest neighbors of
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points of sublattice 8 (or A). The product o. o.a al-
ternates in sign between the sublattices.

Consider first the limit K2=0. The Hamiltonian
can be written

3C = E4 x [ TI2(r) TI2(r ) + t23(f) r23(r')
(rr')

TI 2(r) r23(r) rt2(r') r23(r') ]

where r'&(r) =S(r)a (r) &ra(r) and S(r) =+1(—1),
when r is on sublattice A (8). This is identical to the
Hamiltonian for the N =2 model at x = —1, and can
also be interpreted as an antiferromagnetic four-state
Potts model. From Refs. 12 and 13 we know that
this model will be disordered for all Jr:4 (0 in two
dimensions, but that in three or more dimensions
there will be a transition to a state with a single stag-
gered product ordered. This transition is in the
Heisenberg model universality class. " In mean-field
theory the transition occurs at E4= —Ir:,'.

For any x (—1 there is a transition from
paramagnetism to the single staggered-product phase
(phase IV) as E2 is increased. Once the system is in
the staggered-product phase the only additional or-
dering that can occur is for the remaining color to or-
der ferromagnetically. This is a continuous phase
transition both in two dimensions and in mean-field
theory. The transition, which occurs at E2 =E,' in
mean-field theory, has an [sing-like order parameter.

With these observations we can understand most
of the x & 0 phase diagram. The line GI' is a
second-order transition in the ferromagnetically or-
dered color. The line HJ is the Heisenberg universal-
ity class in three dimensions but occurs at Ir:4= —Ir:,'

in the mean-field theory. At point I, where these
lines intersect, four phases touch. Phase III has only
a single color ordered, phase IV has a single stag-
gered product ordered, phase V has one staggered
product and the remaining color ordered, and phase
VII is paramagnetic. Phases analogous to III and IV
were found in the N =2 model. '

The remaining transitions are first order. Along JF
there is a first-order phase transition from phase III
to the Baxter phase. As the temperature is lowered,
the large entropy of phase III becomes insufficient to
ensure stability and the system orders into either
phase V or the Baxter phase. There is a first-order
transition between the Baxter phase and phage V
along Jlr:. At T=O the point x = ——, is highly degen-

erate. Many configurations can be found with energy
equal to the ground-state energy [for arbitrary N we
expect to find analogous behavior at x = (1 —N) '].
In particular, the Baxter phase at x = ——, has the

same energy as a configuration with only two colors
and their product ordered ferromagnetically. This
latter configuration has higher entropy, so at finite
temperature we expect to find a phase characterized
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FIG. 1. Mean-field-theory phase diagram of the N =3
model. In phase II all products of colors are ordered. In
phase III a single color is ordered. In phase VI two colors
and their product are ordered. In phases IV and V the
quantities shown are the only nonvanishing order parame-
ters.

by this configuration. In Fig. 1 it is labeled phase VI
and occupies a narro~ region between points E and
L.

IV. MONTE CARLO RESULTS

The importance sampling Monte Carlo technique
was applied to the Hamiltonian (1) for N =3 in two
and three dimensions. The same method was used
here as in the N =2 model and is described in Ap-
pendix A of Ref. 12. The size of the lattice was
10 x 10 x 10 in three dimensions and 30 & 30 or
40 x 40 in two dimensions. Periodic boundary condi-
tions were imposed, and both random and ordered
searches were carried out. The equilibrium nature af
the final states was confirmed by starting with a
variety of initial configurations.

A. Three dimensions

Figure 2 shows our proposed phase diagram for the
N =3 model in three dimensions. In Sec. III we dis-
cussed perturbation expansions which described the
behavior at points D, E, and H. At point A we know
that the system behaves like three decoupled Ising
models, but E4 is a relevant coupling in three dimen-
sions so it can completely alter the nature of the
phase transitions in the neighborhood of A.

For x ~ 0 the phase diagram is very similar to the
one predicted by mean-field theory. The low-
temperature phase is the Baxter phase in which each
color and each product of colors has a nonvanishing
average. Between the Baxter and paramagnetic
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0.6

0.5—

0.4-

0.2

O. I

I I I
I

Vll

PARA

3-SPIN ASHKIN- TELLER
MODEL

cr&
Continuous Phase
Transition

—-- First Order

BAXTER
\

0
C~ =

D

unambiguously whether the system has a single color
ordered (as in phase III of the mean-field theory), or
two colors ordered (as in phase VI of the mean-field
theory). For some runs the ordering was like that of
phase VI. These states seemed to be metastable,
ho~ever, so we assume that the ordering should be
like that of phase III. No conclusive evidence for the
existence of phase VI was found in three dimensions.

Note that the transitions along GI' and IJ are first
order. In mean-field theory these transitions were
second order, so the first-order nature must be due
to strong local fluctuations. The transition along FJ
is probably weakly first order. There was no apparent
discontinuity in the energy but there was evidence for
the presence of metastable states indicative of a
first-order transition. Note that a similar problem
was found in this region of the phase diagram of the
N =2 model. '

I I-2 s s I s

0 2 4
x= K~/K~

s

6 B. Two dimensions

FIG. 2. Monte Carlo results for the N =3 model in three
dimensions. The labeling of the phase is consistent with Fig.
1, with the exception that the (cr ) phase was not clearly
like either phase III or phase VI. Solid points indicate where
the Monte Carlo simulations were performed.

Figure 3 shows our proposed phase diagram for the
N =3 model in two dimensions, As in three dimen-
sions, the behavior near points E, D, and G is known
through the effective Hamiltonians derived in Sec.
III, and A is the decoupling point where we know
there must be an Ising transition. For x )0 the only
difference between two and three dimensions is the

phases and to the right of point C (x =1.75 +0.1)
there is a phase analogous to phase II of the mean-
field-theory phase diagram in which all products of
two colors are ordered. The mean-field-theory dif-
fered in that C was further to the right and there was
a short line, AB, of second-order phase transitions
before the first-order line, BC.

For x & 0 there are more substantial differences
from the mean-field-theory predictions. At low tem-
peratures we find the phase with one color and the
staggered product of the remaining two being the
only nonvanishing averages (phase V). This ordering
is not perfect, however —even at T =0 (o") and

(a o&)~F are slightly less than 1.0. This is because
it is possible to find sites where a pair of colors can
be flipped simultaneously with no change in energy.
For all x (—0.5, (a as) ap = (o") =0.94 at T =0.
Note that we still have (o'o'a )As 1.0 at low tem-
perature since flipping two colors at a single site
leaves the triple product unchanged.

Mean-field theory predicted a tetracritical point (I
in Fig. 1), where the low-temperature phase met the
paramagnetic phase. In our Monte Carlo simulation
we find instead a line II' of first-order transitions. To
the left of I' there is a phase (phase IV) with only
one staggered product having nonzero average, as
was expected from our analysis of point 0 in Sec. III.

To the right of the point I there is a phase tenta-
tively labeled (a ). It was difficult to distinguish

0.7

0.6

5-SPIN ASHKIN-TELLER
MODEL

0.5
Continuous Phase
Transition

---First Order

0.4-

0.3-

0.2-

O.l-

VII
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I
i
i
t
t

\

C~

BAXTER

0.0
«4 -2 0 2

x= K4]' K~

FIG. 3. Monte Carlo results for the N =3 model in two
dimensions. Solid points indicate where the Monte Carlo
simulations were performed.
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E4 « 0 the transition occurs at E2=E,'. This result
is somewhat surprising because the Hamiltonian (I)
does not treat r ~23(r) as a natural-order parameter.

V. e -4 —d EXPANSION

Returning to arbitrary N, we transformed the Ham-

iltonian (I) to continuous-spin variables. A perturba-

tion expansion in E4 yields the effective Hamiltonian

id x —
2

Vo +I'2 cr;
i 1 i 1

t

(26)+-A8z K2K4 X (r, a
i &i~1

where A is the average of a.; o-&, and z is the coordi-
nation number of the lattice. This Hamiltonian is
well known and is the generalized Cubic model. '"

For K4 & 0 this model shows a first-order transition,
whereas for K4 & 0 there is some N, for which flow
will be to a Cubic fixed point when N & N, and to a
Heisenberg fixed point when N & N, . N, is given ap-
proximately by N, = (4+3.176m)/(I +1.294m). This
gives N, =2.9 in two dimensions, but its accuracy for
e =2 is questionable.

VI. CONCLUSION

The major problem addressed in this paper was
determining the nature of the phase transitions in
two dimensions of Hamiltonian (1) in the four cases,
N &2 and K4&0, N &2 and K4&0, N &2 and
K4 & 0, and N & 2 and K4 & 0. By determining the
phase diagram for N =3 we have established that the
transition will be first order when N & 2 and K4 & 0.
The Monte Carlo studies and the perturbation expan-
sion indicate that the transition will be continuous,
and most likely in the Ising universality class, when
N & 2 and E4 & 0, and when N & 2 and E4 & 0.
The nature of the phase transition when N & 2 and

E4 & 0 is still unknown. If we interpret this model as
an O(N) model with symmetry-breaking terms we

are led to speculate that the transition wi11 be con-
tinuous and possibly in a new universality class.
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location of point C (x = 1.35 +0.5) in. two dimen-
sions.

lFor —,& x & 0 the Baxter phase is stable at low

temperatures. Exactly at x = ——, the model remains
l

paramagnetic for all T. It seems likely that this
behavior will be quite general with an N color model
being paramagnetic for all Tat x =1/(1 —N). We
find a second-order transition between the Baxter and
paramagnetic phases. This is consistent with the per-
turbation expansion described in Sec. II ~here we
have predicted that the transition should be in the
same universality class as point A which is known to
have an Ising transition.

We would like to point out one difficulty that arose
in the Monte Carlo simulation near x = I/(1 —N) in

both the N =2 and 3 models. Because the transition
temperatures are so low the equilibrium time be-

comes too long for us to trust our results for the
magnetization. For instance, in the N =2 model the
transition temperature is known' and the (o ) phase
is believed to be unstable. Ho~ever, on heating the
system from low temperatures the simulations
showed a (rr ) phase which appeared near the
known transition temperature and became paramag-
netic at a higher temperature. The state seemed to
be metastable with a very small energy difference
from the paramagnetic state. We feel that the simu-

lations should not be trusted since a (cr ) phase is

difficult to incorporate into what has been established

regarding the N =2 model in two dimensions. '
Recognizing this difficulty, we choose to identify the
transition temperatures in the N =3 model by the
heat-capacity maximum instead of the vanishing or-
der parameters, since it is known that the energy and

heat capacity are correctly given by the Monte Carlo
simulations even in cases where the time is too short
to determine the order parameter correctly. This is

found to be the case for spin-glass systems. "
For x & ——there is only one ordered phase. No

2

color or product of two colors orders either ferromag-
netically or antiferromagnetically, however

(o a o ) AF was nonzero. There is no intermediate

(a oa) AF phase, as can be seen by noting that the
Hamiltonian (25) is paramagnetic in two dimen-
sions" for all E4 & 0. When the system was initially

placed in a configuration with (o') = (cr a ) AF =1 at
T =0 single-spin flips were never observed and the
system remained ordered. If, however, we allow for
more than a single color to flip at one time on a

given site the system quickly disorders both colors
and products of two colors by flipping two colors
simultaneously. In three dimensions multiple-spin

flips produced only a slight disordering. Note that
this process leaves rtz3(r) = a'(r) a'(r) a(r) invar-i-.
ant. Since the ordering is AF Ising-like in the vari-

able r ~23(r) we believe that this transition is in the Is-

ing model universality class, and we note that for
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