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Magnetic susceptibility and spin waves in ferromagnetic metals
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The transverse magnetic susceptibility of a ferromagnetic metal is studied within the
framework of the local-density approximation. An expression is derived for the wave-

vector- and frequency-dependent susceptibility matrix which does not contain explicit
reference to the exchange-correlation potential. This result leads to an explicit formula

for the spin-wave stiffness, which is evaluated for nickel.

I. INTRODUCTION

This paper is the first of a (projected) series deal-

ing with the magnetic susceptibilities of ferromag-
netic transition metals within the framework of the
local-density approximation. In this paper, we will

present a new expression for the transverse suscep-
tibility matrix from which the spin-wave stifFness

constant can be derived, and report the results of
the evaluation of the latter quantity for nickel.
Subsequent articles are intended to present results
of numerical calculations of wave-vector and
frequency-dependent susceptibility matrices.

In a fundamental paper, Izuyama, Kim, and
Kubo' obtained expressions for the cross section
for neutron scattering by a ferromagnetic metal in
terms of wave-vector and frequency-dependent sus-

ceptibilities, which could be evaluated given the
electron energy bands and wave functions. The
susceptibility has poles at the energies of spin-wave
modes, and an important contribution of their
work was the development of a procedure for the
determination of spin-wave energies, leading to an
explicit expression for the spin-wave stiffness coef-
ficient in terms of first and second derivatives of
the band energies.

Izuyama, Kim, and Kubo applied the random-
phase approximation (RPA) to the simplest form of
Hubbard model: a short-range interaction in a
simple tight-binding band. This work has been ex-
tended by many authors. Two major directions of
subsequent research can be distinguished: (l) re-
finements of the techniques of many-body theory
employed, and (2) extensions of the band model to
enable a more realistic description of a real metal.

The practical use of the Hubbard model requires
parametrization of the electron interaction. Since
real transition metals are many band systems,
several parameters are required —and these can

only be estimated rather crudely. The situation is
complicated by the fact that band calculations nor-
mally include some description of electron interac-
tions at the level of a self-consistent field. The
proper treatment of electron interaction corrections
must first separate out that portion of the interac-
tion which is included in the band calculations.

We have observed elsewhere ' that the local-
density approximation contains enough of the elec-
tron interaction so that from a self-consistent cal-
culation of the susceptibility, spin-wave energies
can be directly determined without introducing any
additional parametrization of the interaction. Our
objective in this and the following papers is to in-

vestigate the extent to which quantitative results
are in agreement with experiment. In this way, we
expect to develop understanding of the range of ac-
curacy and of the applicability of the local-density
approximation.

In a pioneer calculation, Lowde and Windsor"
studied neutron scattering from nickel on the bases
of a simple tight-binding model of the energy band
structure and a Hubbard model of the electron in-
teraction. A momentum-dependent effective in-
teraction was introduced. Calculations were made
over a range of temperatures from 0.5T, to 1.9T, .
They were able to reproduce many of the essential
qualitative of the observed neutron scattering cross
sections.

The approach of Lowde and Windsor has been
extended to more realistic band-structure models in
an extensive series of computation summarized re-
cently by Cooke, Lynn, and Davis. ' These authors
retain the band and wave-vector dependence of the
matrix elements relevant to the calculation of the
susceptibility. A RPA treatment of the electron
interaction is employed. They retain only two con-
stants to describe this interaction, which are, essen-

tially, diagonal matrix elements of a self-consis-
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tently screened potential, referring to states of tz~
and e~ symmetry. These quantities can differ sig-
nificantly: En nickel, Cooke et al. propose that the
exchange splitting of t2g states is 0.4 eV, while that
of eg states is much smaller, 0.1 eV. This makes
the generation of a semiempirical spin polarized
band structure possible, which is in reasonable
agreement with recent photemission measure-
ments. ' However, in iron, the exhange splitting
of the t2g and e states does not differ significantly.
In a calculation restricted to T=O, Cooke et al.
find spin-wave dispersion relations for both iron
and nickel which are in good agreement with ex-

periment. Optical spin-wave modes are also
predicted.

In contrast to these calculations, we will use just
the description of the electron interaction that is
contained in the self-consistent band calculation. It
must be noted that in the case of nickel, the band
calculations have an exchange splitting which is
larger than that deduced from photoemission ex-

periments. However, for iron substantial agree-
ment between the calculated band-structure and
photoemission experiments' seems to exist. Our
approach leads to an expression for the transverse
susceptibility which does not make explicit refer-
ence to the electron interaction (it is, however, con-
tained in the energies and wave functions). This
result may have some usefulness beyond the boun-

daries of our specific calculation.
The self-consistent method leads to a general ex-

pression from which spin-wave energies and widths

may be obtained. Explicit results have been ob-

tained for the spin-wave stifFness. " ' Our prelim-
inary numerical result for this quantity (in the case
of nickel)" has turned out to be incorrect because
of an error in the computer program. A revised
value is reported in this paper.

II. FORMULA FOR THE SUSCEPTIBILITY

We begin with an apparently single-particle
Hamiltonian Ho which contains an exchange-
correlation potential V„, , which depends on the
electron-spin densities po. We will use the nota-
tions p, and p, to designate the densities of elec-
trons of majority and minority spins, respectively,
in the ground state of the ferromagnet. The term
"apparently single particle" is intended to describe
a situation in which there is an efFective Hamil-
tonian for single particles which depends on the

charge and spin densities of all particles, and so
contains in fact a partial description of the electron
interaction at the level of a self-consistent field.

We write the Hamiltonian in the form

2

H = + Vo(r)+ V~(r)0 n",
2ppz

(2.1)

in which Vo contains the Coulomb potential, and
the spin average of V„,

Vo(r) = —g " ye' J ~ d'r'
fr —R„/ [r —r'/

(2.2}

In this expression the nuclei of the system are lo-
cated at sites R& and have charge Z&, p is the total
electronic charge density, and the last term repre-
sents the spin average of the exchange-correlation
potential. The last term in (1) contains Vy(r),
which is given by

V~(r)= —,[V„„(r)—V„„(r)], (2.3)

X=(1—Xo&) 'Xp. (2A}

In this expression, go is the non-self-consistent sus-
ceptibility matrix, and we do not explicitly write
the + —subscripts. We have

o. is the usual Pauli spin operator, and n is a unit
vector in the direction of the magnetization of the
material. The explicit form of V„, is not relevant
until numerical calculations are discussed.

The calculations of spin-wave energies in this
procedure follows from the transverse susceptibili-

ty. This is determined by a self-consistent pertur-
bation calculation as described in Ref. 2. An exter-
nal magnetic field which depends on both position
and time is applied perpendicular to the magneti-
zation, and the response of the system is deter-
mined. It is essential to take account of the rota-
tion of the direction of magnetization, n, in (2.1).
Furthermore, if the external field has periodicity
characterized by a wave-vector p, the respoDse of
the system will involve a set of periodicities
p+K„where K, is a reciprocal lattice vector.
The result of these considerations is the formula
for the wave-vector- and frequency-dependent
transverse susceptibility matrix derived X+ in
Ref. 2. In matrix form (the matrix indices denote
reciprocal-lattice vectors)
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(gpss) N„(k}—NI(k+p)
[Xp( p~~)]gs =

I„k E„(k) E—((k+ p)+a)+i'
+ +f

X(nk ~e
' s+ ~lk+p)(lk+p ~e

' s ~nk) . (2.5)

g(Vf)~(Mo ')u.
gga

(2.7)

where ( Vf ),„ is given by an expression similar to
Eq. (2.6), etc. In the case of a crystal with inver-

sion symmetry it is straightforward to show that
the order of the factors V~ and Mo, is irrelevant.
The spin-wave spectrum is determined by the poles
of 7, or equivalently, from the equation

The following conventions and notations apply:

~

n k ) is a Bloch state belonging to band n and
wave vector k, its energy is E,(k), and its occupa-
tion number is N„(k). Since we are working at
T=O K in this paper, NN(k) is either 1 or 0 ac-
cording to the relation between E„(k) and the Fer-
mi energy. The operators s+,s raise (or lower)

the electron spin, while the quantity p, is

Ps =P++s ~

g is the electron g factor -2, and pz is the Bohr
magneton.

The other important object in Eq. (2A) is A.
This quantity is a matrix representation of
Vf (r )/[gp&Mp(r )] on a plane-wave basis, Mp(r )

being the ground-state magnetization density.
Specifically,

.-, V (r)

gpss Q
0 Mp(r)

The integral includes a single unit cell of volume
Q. It is convenient to regard A as a matrix prod-
uct

det(I —XpA) =0 . (2.8)

det(gPsMp —Xp Vf ) =0 . (2.9)

Let us consider the matix representing (XpVf )

We multiply (2.5) by
—j(K —K ) I

Vf(Kg —Kg)=Q ' I Vf"'(r ")d r",
(the superscript A indicates the contribution from a
single cell), and sum over K, using the identity

(2.10)

in which R& is a direct lattice vector. We find

Since the quantities in Eq. (2.8) are matrices, this
equation may lead to optical spin-wave modes.

It follows from very general considerations that
there must be a spin-wave mode of energy m =0
when p=0. This is not an immediately obvious

property of Eq. (2.8), but it is possible to transform
this equation to a form in which the required prop-
erty is apparent. A subsequent calculation also
leads to an explicit expression for the spin-wave
stiffness.

To do this, we note that Eq. (2.8) can be rewrit-
ten in the form

det(gPsMp —XpVf )[det(Mp)] '=0,
or since det(Mp) should be nonsingular, it is suffi-

cient to consider the equation

(gps) N„(k) —N((k+ p)
(Xp Vf ),„=—

I„k E„(k) E&(k+ p)+co+—i'
X(nk

~

e ' s+
~
lk+p)(lk+p

~

s Vfe
"

~

nk) . (2.11)

If we take the direction of the magnetization in the ground state to define the z axis, we then have

[H,s+]=+Vfs+ .

This relation enables us to rewrite the right-hand matrix element in (11}as

(2.12)

(lk+p ~s Vfe "
~

nk)

= —
2 j [EI(k+p) —E (k)](lk+p

~

e " s
~
nk)(k+p

~

e " s (2ip„.V —p )
~

nk) j .
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From this, it follows that

2

(XOIf )t„=— g [N„(k) Ni—(k+ p)](nk
~

e "' s+
~

1k+ p )2EQ

(/k+p ~e
"" s (p„—2ip„.V' —co) ~nk)

/k+p ~e
" s )nk

E„(k)—E i(k+ p)+co+iri

(2.13)

This formula may be simplified through the use of closure and the properties of spin operators as follows:

g[N„(k)—N&(k+p)](nk ~e
' s+ ~/k+p)(/k+p ~e

" "s ~nk)
ink

=2+N„(k)(nk ~e
' " s, ~nk) .

nk

However, the magnetization density matrix is given through

M,'„'=M' '(K, —K„)= ( —gpB)g(nk ~e
' " s, ~nk) .

nk

Thus, finally,

(0)(~p~f )tu gP'BMtu ~tu

in which

(2.14)

(2.15a)

(Pt —P )[&p(P ot)]t. I't.(P rP)— (2.15b)

and

(gpB) [N„(k) Ni(k+ p)]-
p't„(p, ~)=

2NQ ug, E„(k) E&(k+ p)+to+i'

&&(nk ~e
' s+

~
1k+ p I(/k+p ~e

" s (2ip„.V) ~nk) . (2.15c)

Thus the determinantal Eq. (2.9) becomes

det[h(p, ttt)] =0 . (2.16)

&=ggaMO~ +0 ~ (2.17)

This expression for the susceptibility does not

Note that if p=O and co=0, the column of the
matrix D corresponding to the zero reciprocal-
lattice vector vanishes. In consequence, (2.16) is
automatically satisfied under these circumstances,
and there is necessarily a zero-energy spin-wave

mode; the spin-wave spectrum is gapless. We can
finally combine Eqs. (2.4), (2.7), and (2.15) to ob-
tain a formula for the self-consistent susceptibility
matrix, which we write in matrix notation as fol-
lows:

contain explicit reference to the exchange-corre-
lation potential. The quantities involved, Mo, 6,
and Xo, are determined from the energies and wave
functions of the electron states. Of course, the
exchange-correlation potential is explicitly involved
in their determination. Equation (2.17) has the de-

fect of requiring the evaluation of the inverse of an
infinite matrix, which necessitates consideration of
convergence problems. However, a problem of this
sort is unavoidable if the possibility of investigation
optical spin-wave models is of interest. Finally, we
note that the element of X with E,=E,=O in the
static limit, Xoo(p, 0), is for long wavelengths given

by an expression which resembles that derived
from a variational principle by Liu and Vosko. '

However, no detailed equivalence has been derived.
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III. THE SPIN-WAVE STIFFNESS

For long-wavelength spin waves, we have

co =Dp

where the constant D is known as the spin-wave stiffness. The general theory described above leads to a
general expression for D." ' The result obtained by Edwards and Rahman' is equivalent to

(3.1)

n, —n,

N„(k) —Ni(k)
n, +n, +-

N i„j, E„(k)—Ei(k)

&((nk ~(5V 2ip V—)s+
~

lk)(lk ~(2ip V)s. ~nk) (3.2)

Here, n, (n, ) are the numbers of t (1) spin elec-
trons per cell, and p is a unit vector in the direc-
tion of the spin-wave vector. The sum over k ef-

fectively averages this over directions of p. The
quantity 5V is the first-order (in p) change in the
exchange-correlation potential produced by the
presence of a magnetic disturbance of wave-vector

p in the system:

5V= Vf(r )—(m~ —1),1

P
(3.3)

where m& is the change in the magnetization densi-

ty, which can be obtained from a self-consistency
condition. ' Equation (3.2) can be derived accord-
ing to the procedures used here by introducing the
Ansatz

g[Vf(K )+5Vf(p K )]6 O=0, (3.4)

in which 5Vf(p, K, ) is a Fourier coefficient of 5V
defined in Eq. (3.3). The argument is, in detail,
sufficiently close to that given by Edwards and
Rahman so that it will not be repeated here.

The quantity 5V is rather complicated to evalu-

ate, and actual computations so far have neglected
this quantity. We believe that better calculations
of D could be made based on the direct evaluation
of the determinant b, in (2.16), a procedure which
would allow study of the lifetimes as well as the
energies of spin waves. However, our present re-
sults are for D only.

If 5V is neglected and the system is assumed to
have cubic symmetry, the equation for D simplifies
to

1 Nn(k) Ni(k+p)—
(ni+ni)+ g [ (nk ~s+( —2iV}

~

lk)
)3N ink En(k) Ei(k)

(3.5)

This form is not particularly convenient for numerical calculations because it gives D as the small difference
between large numbers. It can, however, be transformed with the aid of the so-called f sum rule, which we
can write (again assuming cubic symmetry} as

n, +n& ————QN„(k)V E„(k)—4 g N„(k)( (nk
~
|i

~
lk) [

2 „k i(i~„) E„(k)—Ei(k)
(3.6)

in which p = i V is now the—momentum operator. Equation (3.5} can then be transformed into the expres-
sion

D= QN„(k)V E„(k)+8+ ) (nk
~
ps+ ~lk) )2

1 2 N„(k) —Ni(k)
6(n„n, N „k—" "

&„k E (k) —Ei(k)

2 N„(k)[1—Ni(k)]—8
i knfp [1k

Ink E„(k)—Ei(k)
(3.7}
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This expression was evaluated for nickel using
energy levels and wave functions obtained from an
energy band calculation based on the von
Barth —Hedin (vBH) exchange potential. ' A set
of independent Gaussian orbitals (13s, 10p, 5d, If)
was used as the basis for the band calculation.
The use of Gaussian functions facilitates computa-
tion of the momentum matrix elements required in
(3.6},and the full k dependence of energies and ma-
trix elements is included in our calculation. The
evaluation of (3.7) involved 505 points in —„th of
the Brillouin zone [corresponding to dividing the
(100) axis into 16 equal parts]. Our result is

D =0.148

in atomic units (Ryao).
The experimental value of D has been the subject

of some controversy, as there appears to be a con-
siderable discrepancy' between values obtained
from neutron scattering measurements, ' spin-wave
resonance, ' and studies of the temperature depen-
dence of magnetization. ' We choose the value ob-
tained by Mook, Lynn, and Nicklow' from anal-

ysis of the temperature dependence of inelastic neu-
tron scattering D=555 meVA (0.146 atomic
units) for comparison with our result. The agree-
ment, perhaps surprisingly, is excellent. However,
it should be noted that results obtained by the oth-
er techniques mentioned (typically D-0 10—0.11.

atomic units} are substantially lower. In view of
the fact that the underlying band calculation pro-
duces an exchange splitting which is most likely
too large, one would have expected the calculated
D also to be too large. The convergence of the cal-
culation with increasing number of k in the Bril-
louin zone needs to be investigated, as does the ef-
fect of including 5V according to (3.2).

There may be some interest in comparing the
present result for D obtained using the vBH poten-
tial with a value based on the Kohn-Sham poten-
tial. We estimate the latter to be 0.270, larger by a
factor of almost 2 than the vBH result. The
surprisingly large change results from the fact the
second term in Eq. (3.7) (which in spite of its ap-
pearance is actually negative) is quite sensitive to
the exchange splitting at the top of the d band.
The exchange splitting obtained with the vBH po-
tential is smaller by a factor of approximately 0.72
than that found with the Kohn-Sham potential.
This factor accounts for most of the difference be-

tween the values of D.
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