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Dynamic scaling for the isotropic ferromagnet:
e expansion to two-loop order'
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The fluctuation spectrum for an isotropic ferromagnet at T =T, to O(e) is studied by a
direct application of the equations of motion. The amplitude of the momentum-

dependent relaxation rate is obtained to two-loop order and compared with experimental

results.

I. INTRODUCTION

The critical dynamics of isotropic ferromag-

nets, ' although conceptually quite straightfor-

ward, have proved to be mathematically somewhat
intractable. The calculations of spectral shape
have been restricted to single-loop order, and even

at this order the fluctuation spectrum does not lend

itself to analytic evaluation in the e expansion. At
T=T„ the self-consistent calculation has been per-
formed by Wegner on a computer. The e expan-
sion was studied by Dohm using the field

theoretic-renormalization group, and later by No-

lan and Mazenko with strikingly different

answers. While Dohm obtained a spectrum that
qualitatively resembled Wegner's self-consistent

calculations, Nolan and Mazenko found well-

defined structure in the spectrum at T„similar to
that predicted for antiferromagnets and liquid heli-

um.
In this paper we study the fluctuation spectrum

and the amplitude of the relaxation rate at T =T,
by e-expansion techniques. A subsequent paper
will deal with the analytic study of the self-

consistent method at D =3. There the scaling
function for T & T, will also be investigated. Our e
expansion is not based on the renormalization
group, but on a direct perturbative solution of the
equations of motion. This provides an indepen-
dent check on the work of Dohm and of Nolan
and Mazenko and should help settle the contro-
versy regarding the structure in the spectrum.
This equation can be settled by calculating the
zero-frequency curvature. It is possible to do this
analytically. As shown in Secs. II and III, our
answer agrees with that of Dohm (apart from one
minor detail) and supports his conclusion regarding

the lack of structure in the spectrum in a first-
order e expansion. However, our spectrum differs
somewhat from the form of Dohm's spectrum be-

cause of the different exponentiation. For very

high frequencies, the self-energy has a definite scal-
ing form which is not given correctly in a strict e
expansion. Taking this correct high-frequency
behavior into account gives us a spectrum with a
tail that dies out more rapidly than found by
Dohm.

We have also carried out a two-loop e-expansion
calculation of the universal amplitude that fixes the
frequency scale. Thus we can predict both the
shape and scale of the spectrum. The two-loop
amplitude is compared with the amplitude for EuO
and Co, as measured by Dietrich et al. and Glinka
et al. , respectively. This is done in Sec. III, while

Sec. IV provides a brief summary.

II. FLUCTUATION SPECTRUM

The order parameter llj for the ferromagnet is the
magnetization vector with components ll ~, tttq, and

The equation of motion is the Landau-Lifshitz
equation

—— =ggXV g, (2.1)

where g is some coupling constant. It is con-
venient to write this equation in momentum space
as

Pl( p I ) g y (p2 p3 )tl'2( P2)tl'3( p3)
P2+Pg=Pl

(2.2)

and its cyclic permutations. P (p) is the Fourier
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component with momentum p and {
~
g~(p}

~
)

=p for all a. Because of isotropy the decay
rates associated with the different components are
equal. This common rate which, in general, is a
function of frequency, will be denoted by y(k, ~).
The corresponding Green's function is

g (k,co) = 1

iso —~y(k, co)
(2.3)

(2.4)

where p+p'=k.
The above integral equation for y(k, co) has a

solution of the form

y(k, z) =ak", (2.5)

provided x =1+8/2 and where z is the dimen-
sionless imaginary frequency

a(0)k'+D" (2.6)

The convolution integral of Eq. (2A) can be per-
formed as explained in Ref. 7, leading to

y(k, z) I(z)
kl+D/2 'a(1) ' (2.7)

yDp (
2 i2)2

2 &2 a(0)P P zy &+D/2p ~ &+D/2

a(1)

(2.8)

(k)

FIG. 1. Single-loop diagram for the order-parameter
relaxation. Momentum conservation holds at the ver-
tices.

The relaxation rate corresponding to the single
loop of Fig. 1 (in the sense of a skeleton graph ex-
pansion) is given by

y(k, co)=
2k2 { 2 l2)2

p pP~P

X fg(p, co )g(p, c0 co )dr0,—

=I(0}+F(z), (2.9)

where the subtracted integral F(z) can be evaluated
at D =6 at this order of accuracy. Consequently,

1 I ~'p(p' —p')'
PS

1 1
X

~+I +Jp Jp +P

(2.10)

The leading I(0) in Eq. (2.10) needs to be calculat-
ed in thc high momentum approximation only and
yields I(0)=2/3e. Equation (2.7) can then be
written as

y(k, z) =y(k, 0) 1+ F(z)
36

2
(2.11)

I

Analytic evaluation of F(z) is not possible. After
angular integration the remaining radial integration
has to be performed numerically. The fluctuation
spectrum results by taking the real part of Eq.
(2.3). The results of the computation agree with
Dohm's. The small —z behavior of F(z) can be
computed analytically and yields

F(z)= — (6+6 ln2 —3m )
12

Z+ 1 ~ + o e s

4 4

in agreement with Dohm. This expansion settles
the question of the sign of the curvature at z =0.
It is elementary exercise to use Eqs. (2.3), (2.11),
and (2.12) and show that to lowest order in e the
curvature is downward for all eg 3.85. Thus at
8 =3 (i.e., s'=3), the curvature is certainly down-

ward. The work of Nolan and Mazenko shows an
upward curvature at the center. This can only be
attributed to computational error. Before ending
this section we wish to point out the true high fre-

quency behavior of the self-energy and suggest a
simple one-parameter approximation to y(k, co)

which we compare with thc numerical computation
in Fig. 2.

We turn now to the outer portions of the spec-
trum. Not being able to evaluate F(z) exactly we
look for an interpolation formula. To this end, we

This integral is logarithmically divergent at D =6.
To study the shape function to lowest order in
@=6—D, we perform the following subtraction

I(z)=I(0)+[I(z)—I(0)]
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I
I
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1.0

Present work
———Dohm
———Nolan and Mazenko P= (6+6 ln2 —3m. ),

(8—e)
8

(2.15)

where P is a numerical parameter. The derivative
requires

CV

O
O

0.5

which for @=3becomes

@=0.46. (2.16)

0
0 0.5 10 1.5

GJ /P(l )

FIG. 2. Shape of the spectrum in the e expansion at
the single-loop order. All the curves are normalized to
equal area.

study the limit z » 1. Returning to Eq. (2.9), and
being permitted to ignore the difference between
a (0) and a (1) to lowest order in e, we find in this
limit

4 " pD-'dp
I(z)=-

D p +2 1+D/2
' e/(8 —e)

2 2

D z

XD-'dX
P 1+x1+D/2

~/(8 —~)
4 2

D(D+2) sin[irk/(8 —e)] z

(2.13)

We see that y(z)-z '~' ' for z&&1. This is the
correct high-frequency behavior of the self energy,
as recognized by Dohm. Subsequently, in a strict
e expansion, the e in the denominator was dropped.
Since in three dimensions e is large (@=3)this can
have an effect in the tail of the spectrum.

%e now propose a one-parameter interpolation
formula for I'(z). It is required to have the correct
value both for the function and its first derivation
at z =0, as well as the correct form for z g~ 1.
These conditions are satisfied by

1+ F(z) =(1+Pz)36
2 (2.14)

III. THE UNIVERSAL AMPLITUDE

In this section we calculate the universal ampli-
tude ratio' associated with the frequency scale at
T, . This is effectively the zero-frequency ampli-
tude ao =a (0) in Eq. (2.5). The O(e) contribution
of self-energy insertions [Fig. 3(a)] in the single

loop can be handled by a self-consistent treatment
of Eqs. (2.7) and (2.8). It is seen from Eq. (2.11)
that

a (z) =a0[1+—,F(z)].

From Eqs. (2.7) and (2.8) we obtain

aoai ——I(0)
2 1 1+ —, ——„(n.+ —,—41n2)+O(e).

(3.1)

(3.2)

We note at this point that our result for I(0)
differs from that of Dohm in the coefficient of
ln 2. Equations (3.1) and (3.2) yield

The coefficient of the high frequency tail comes out
about 1S% higher than that expected on the basis
of Eq. (2.13). We thus expect Eq. (2.14) to be a
good fit at very low frequencies, and then gradually
deteriorate with a maximum error at 15% for
z yp 1. We note that at smaller values of e, the er-

ror is less and the interpolation even more satisfac-
tory.

The fluctuation spectrum based on the self-

energy of Eq. (2.14) is shown in Fig. 2. The corre-
sponding spectra of Dohm and of Nolan and
Mazenko are also exhibited for comparison. Note
that the spectra have been normalized to equal
area.

Qp 1 1 1 3
ao ——aoa i

—— [1+a[ 6
——,(m.+ —, —41n2) —, E(1)]]. —

0 i 36'
(3.3)

where E(z) is defined by Eq. (2.10). Since the integration cannot be done analytically, we have computed it
numerically to find F(1) —0.02. Equation (3.3) is the O(e) result for the amplitude without the vertex
correction.

The "vertex correction" diagram of Fig. 3(b) also contributes at this order. The contribution of this dia-
gram to the zero-frequency relaxation rate is
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1 2 d Pld P2(pl Pl )(P2 P2
y„(k)=

ll 1(Q IQC) 2 i 2 1+D/2 i 1+D/2

t

P2-
I
PI- P2 I

'
X

I+D/2 i 1+D/2 I+D/2 i 1+D/2 i

i

I+D/2
|

(3.4)

Thc overall factor of 2 arises from the two possible time orderings in Fig. 3(b}. The frequency' dependence
of thc Intermediate lines can bc neglected as tile error lllvolvcd ls of 0(e ). ln tllc lllgll Illolllclltulll approxi-
mation pi pi and. p2 p2. Averaging over the direction of the external momentum k leads then to

4k
&(P 1 -P 1')(P2-P2) &= P 1 P2.D

(3.5}

Using a momentum scale in which k =1, and using alas 2/3e, we can write Eq. (3.4) in the form

3e 1 d PI 1 d P2 (PZ- I PI-Ã2I')V 1-
I PI-P2I')0=

2 1+D/2 C 2 I+D/2 t i 2( 1+D/2+ I+D/2+ i

i

1+D/2) '
Pili P2P2

where u denotes the contribution of the vertex correction to coal. Using the scaled momentum p =@2/pl
for the second integral, we can write Eq. (3.6) as

3C 1 d PI 1 de (1 p)(1—
i

1 —pi2)(p2 —
i 1 —pi')z's"'" ~ s'p'""

i
1 —p i'(1+p"'"+

i
1 —PI'+'"} (3.7)

The integration over pl brings a factor of 1/e.
The remainder of integration may therefore be per-
formed at B=6. Hence,

1 I d p 1 p(1 —
i 1 —p i )(p —

i
1 —p i }

S 'I 1 —p I'(1+p"+
I

1 —p I'}
(3.8)

1/2
2

Qo=
36

1+—[———(++——41n2)6 8 3

——,F(1)+—,U ]
3 3

I

Thus the universal amplitude ratio to two-loop or-
der is

Equation (3.8) increases Eq. (3.2) to

aoa I
——I(0)+u

so that Eq. (3.3) for aII now becomes

a = t',1+@[6 ——,(m+-, -41n2)2, ,
l l 1

(3.9) In order to obtain a number for u, the six-
dimensional integral of Eq. (3.8) has to be per-
formed. Because of the quartic powers ofp in the
denominator, this integral cannot be performed
analytically. Numerical evaluation, as seen in Ap-
pendix A, yields U 0.06. Thus, for a=3 the
zero-frequency relaxation rate is——,F(1)+-,u] ( (3.10}

y(k) =0.61k'/'. (3.12)

To compare with experimental results it is neces-
sary to introduce the nonuniversal prefactor arising
from the coupling constants. This can be repre-
sented by 0., where

CT = )/kD Tc(I2Dg) P 1 /2 fPXO. (3.13}

FIG. 3. Two-loop contributions to the relaxation rate.
Figure (3a) sho~s the self-energy insertion while Fig.
3(b) shmvs the vertex correction. Momentum conserva-
tion must hold at each vertex.

V is the volume of the unit cell, r& and +0 are de-
fined by the Ornstein-Zernike susceptibility
X=Xor 1 (k +q ) ', and the other symbols have
the usual meaning. For EuO, Ro.a is 5.52 MeV

. Thus Ry(k)=3. 37k MCVA . The spec-
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trum as given by Eq. (2.25} has the median fre-

quency I =0.90y. Thus our predicted width
parameter for EuO for a two-loop calculation is

~r=3.03k ~ M.VA ~. (3.14)

The observed amplitude is about 30% higher.
For Co, we find the median frequency to be 82

k ~ MeVA ~ as compared to 171 k ~ MeVA ~

observed by Glinka er; al. The iron" and niCke'
data were not analyzed in terms of non-Lorentzian
spectra and hence cannot be compared with the
theory. The e expansion is known' to give an un-

derestimation of mode-coupling integrals owing to
the neglect of the infrared divergence. The above
discrepancy between theory and experiment is
therefore not surprising.

IV. SUMMARY

We have determined the shape of the fluctuation
spectrum of the isotropic ferromagnet to 0(e) from
the single-loop diagram. Our e expansion, which
is independent of the renormalization group ap-
proach of Dohm and of Nolan and Mazenko
would seem to settle the controversy regarding the
existence of structure in the spectrum. Our analyt-
ic result for the curvature at the center agrees with

that of Dohm (apart from a minor detail} and thus
confirms his conclusion that there is no peak in the
spectrum at this order in e. We are in definite
disagreement with the spin-wave-type peaked spec-
trum reported by Nolan and Mazenko and shown
in Fig. 2.

%'e point out the existence of a very definite
scaling form for the high-frequency tail of the spec-
trum. This condition on the high-frequency
behavior has to be satisfied in the exponentiation of
the t. expansion results. The work of Dohm and
of Nolan and Mazenko ignored this fact.

We have also carried out a two-loop calculation
for the universal ratio associated with the ampli-
tude of the zero-frequency relaxation rate. This
leads to an expression for the width of the critical
point spectrum, somewhat smaller than the experi-
mental values, as expected for the e expansion. Be-
ing more qualitative, the e-expansion results for the
shape can be'expected to be more reliable.
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APPENDIX VERTEX CORRECTIONS

In this appendix, we provide the details behind the calculation of the integral U defined in Eq. (3.8). Intro-

ducing the weight factor appropriate to the six-dimensional space and using a simple identity we can write

U = P d 0 sin 0 cos0(2p cos0 —1 }(2cos0 —p )
oo Qfp

'II
4

3m 0 1+@4

(1+p —2p cos0)

1+p +p +2p cos 0—2p(1+p )cos0 I

=Ui —U2, (A 1)

g " pdp ~d0 . 40 0 fp(1+4cos 0)—2(1+p )cos8]
vi —— — d8sin 8 cos&

3m 0 1+@~ 1+@ —2p cos9

p dp . 4 (1+p 2p cos0)[p —2(1+p—)cos0+4p cos 0]
U2= d8sin Ocos

3m' o 1+@4 1+p +p —2p(1+p )cos0+2p'cos'8
(A3)
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U~ can be evaluated exactly by noting that

sin 8(1+4cos 8)= —,(5—Scos28

—cos48+cos68}, (A4}

find

1 1T
U =

)~ ln2-
&z

(A8)

cosn8d8
0 1+p —2pcos8

KP

P2

7Tp

P2

sin 8cos 8=—„(2 c—os28 2—cos48

+ cos68), (A5}

(A6)

The integral uq cannot be done analytically. %e
see from Eq. (A3) that for p ~0, the angular in-

tegration yields —m/8. For p —+ ao too, the angu-
lar integration yields —~/8. Numerical evaluation
of the integral for various values ofp shows it to be
remarkably constant and approximately equal to
—0.40 or ——,. Thus,

4 z " pdp 4X2X~
o 1+p' 3X5X~X4

and

~ cosn8cos8d8

1+p —2p cos8

m 1+P n —t
2

,P P&
1 —p

p+1 z

2 n+i z
P P—

(A7)

leading to

2

15 &

0.06,

u =u& —uz ———„(ln2——+ —,}

(A9)

(Alo)

Carrying out the elementary radial integrations we the result quoted in the text.
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