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A double-time temperature-dependent Green's-function technique has been used for the first

time to study the static and the dynamic behavior of antiferroelectric ADP (NH4H2P04), DADP

(ND4D2P04), and ADA (NH4H2As04) crystals with a four-sublattice pseudo-spin-cluster

model. The spin-phonon interaction has been included, and the renormalized energy spectrum

and the transverse and the longitudinal electrical susceptibilities have been calculated. It has

been shown that the temperature-dependent "hard" E mode and the "soft" 82 symmetry

mode are strongly coupled in the ADP antiferroelectrics. Like the ferroelectric soft mode in

KDP (KH2PO4), a linearly temperature-dependent antiferroelectric mode is also present in

ADP, agreeing with the neutron-diffraction results of Meister, Skalyo, Frazer, and Shirane.
Unlike KDP, the antiferroelectric mode should occur at the z point [q = (2m/c)c] in ADP.
"Pseudo-soft-mode" behavior of the E mode, similar to that observed earlier in KDP, has been

predicted in the present antiferroelectric system. Furthermore, the transverse electrical suscepti-

bilities of KDP and ADP which are assumed to be associated with the "hard" F. mode behave

in a similar way, indicating the validity of a unified theory applicable to both KDP and ADP.
From fitting the transverse and longitudinal susceptibilities of ADP, DADP, and ADA it is ob-

served that the proton-proton interaction is much stronger in ADA compared with those of
ADP and DADP, which might be responsible for the positive value of the Slater configurational

energy in ADA. Our derived expresssions for the longitudinal and transverse susceptibilities

which fit the respective experimental data very well are found to be quite different from those
of Havlin, Litov, and Sompolinsky. This is partly due to the inclusion of spin-lattice and tunnel-

ing terms in the Hamiltonian and partly due to the different method of their calculations.

I. INTRODUCTION

Compared with the hydrogen-~(H-) bonded fer-
roelectric (FE) crystals like KDP (KH2PO4), very lit-

tle theoretical work has been done on the isomor-
phous antiferroelectric (AFE) crystal like ADP
(NH4H2PO4). The latter crystal undergoes a first-
order transition' at about 148 K. The AFE transi-
tion in ADP causes a change of structure from tetrag-
onal3 4 (D2 —42m) to orthorhombic (D2 —222)
below T~. The main structural feature of both KDP
and ADP in their two phases is the (H2PO4) ' net-
work in which each phosphate group is linked by

0—H 0 bonds to a tetrahedral arrangement of
phosphate-group neighbors. But the significant
difference between the two structures as shown in
Fig. 1 is that in ADP each ammonium group is
tetrahedrally connected to four phosphate groups by
N —H . 0 bonds. The large isotope shift in the
transition temperature from 148 to 242 K in ADP in-

dicates that the tunneling effect in ADP is as impor-
tant as in the KDP crystal. However, this isotope

dependence of T~ and the dynamical behavior of
ADP have not yet been studied theoretically. Even
the tunneling effect has been completely neglected in
the previous theoretical work. ' 7 For this an attempt
has been made in this paper to study the static and
the dynamic properties of the ADP-type AFE crystal
with pseudo-spin-lattice-coupled Hamiltonian contain-
ing the tunneling term.

The recent theory of Havlin, Litov, and Sompolin-
sksy7 (abbreviated as HLS) which explains the dielec-
tric constants of the ADP-type crystals along the
transverse (e, ) and the longitudinal (e, ) axes is de-
finitely an oversimplified model for ADP, where both
the proton tunneling effect and the proton-lattice
coupling have been neglected. The theoretical ap-
proach of Broberg et aI. to fit the low-frequency Ra-
man spectra of ADP and the B2-mode character con-
sidering the model of two coupled harmonic oscilla-
tors seems to be overdetermined for obvious reasons
(see Lines and Glass9 for details). In the present pa-

per the behavior of the B2- and E-symmetry Raman-
active modes (similar to those observed in KDP crys-
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FIG. 1. Positions of the H atoms in the ferroelectric phase of KDP (a) and in the antiferroelectric phase of ADP (b). The

four sublattice model of ADP is also indicated in (b). Here the H bonds along each transverse direction are divided into two
sublattices, denoted by 1 and 2. n and P denote phosphorus atoms and the numbers near them indicate the heights along the
c axis. (c) Dipole moments induced in P04 groups (Ref. 5).

tal'0 ") has also been studied, at least qualitatively
because of very complicated nature of these modes in

ADP.
It is well known from the work of HLS and Ishi-

bashi et al.6 (abbreviated as IOT) that the dielectric
constant data of the ADP-type AFE crystals can be
fitted well both for the positive and negative values
of eo (the Sister configurational energy parameter).
To avoid this sign ambiguity we have not directly in-

cluded this energy parameter which is, however, in-

voked through the exchange integral in the usual
way. This makes us convenient to elucidate the
difference in the transition mechanisms of the anti-
ferroelectric ADP and the ferroelectric KDP families
and to show conclusively the unified behavior of
these crystals starting with a pseudospin model of the
Kobayashi type. From the calculations of the model
parameters we find that the stronger proton-proton
coupling in ADA along the c axis compared to that of
ADP might make eo positive for ADA while it is neg-
ative for ADP and DADP.

Another drawback of the assumption made by HLS
arises in the following way: The previous model'
used by HLS to explain the AFE character and the
behavior of the E-symmetry mode in KDP along the
a axis was later extended by them for showing the
antiferroelectricity in the case of the ADP crystal.

But it has been observed in recent theoretical' "as
well as experimental' studies that the previous
model of HLS cannot adequately explain the low-
temperature behavior of KDP. Thus their assump-
tion of a unified model7 for the transverse electrical
susceptibilities in KDP and ADP needs further clari-
fication. Our present calculations of the static and
the dynamic properties of ADP crystal shows a com-
plete uniqueness in the character of the transverse
electrical susceptibilities of these two crystals.

To study the behavior of AFE phase transitions in
the ADP-type crystals and to clarify the discrepancies
mentioned above we have discussed the model used
for our calculations in Sec. II. Sections III and IV
deal with the theoretical calculation with Green's
function wherein we have derived theoretical expres-
sions for the static dielectric constants of the HLS
type (Sec. III) and the dynamic properties, viz. , the
energy spectrum and the frequency-dependent
transverse and longitudinal electrical susceptibilities
(Sec. IV). In Sec. V the experimental values of e,
and e, have been fitted with the corresponding
theoretical expressions for e, and e, to find the
model parameters for discussion comparing with the
results of the KDP-type crystals. Finally, the paper
ends with the conclusion (Sec. VI) on the unified
behavior of KDP and ADP crystals.
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II. MODEL

The model used in the present paper has already
been described by IOT and developed by HLS as well

as Vaks. '7 The four sublattice model of ADP is
shown in Fig. 1(a). Unlike KDP, where two

"upper" or two "lower" proton sites (with respect to
the c axis) are filled for an arbitrary H,PO4 group in
thc ordered phase, ordered ADP has one upper and
one lower site filled. For this configuration of the
hydrogen bonds (Fig. 1), the pseudospin model in
the cluster approximation can be written

where SP»()- ) are the mth component of the pseudospin for the sublattice r) (q = 1, 2) associated with the direc-

tion + a (a = a, b). y represents the long-range dipole-dipole interaction, and )( is the long-range AFE interaction

constant as defined by HLS.
To include the tunneling term we have to consider the additional Hamiltonian

Xgx+ X X(gx()n) gx(-a) ) (2)
i Nub

q~l, 2

where 0 is the effective tunneling frequency. Since strong evidence of proton-lattice coupling has b~:n predicted

for the arsenates KDA and ADA using electron-nuclear double resonance (ENDOR) and EPR techniques' one

should also take into account the proton-lattice interaction Hamiltonian. The quasielastic scattering'9 near the z

point, confirming the existence of a soft mode at that point, also indicates the importance of proton-lattice in-

teraction in the ADP-type crystals. Following Kobayashi very simplified form of the proton-lattice coupling

Hamiltonian can be written

%=—& '" X ~i-, Q-, ~f &'" XX—XV; , (~f(»-)' ~f(')')Q-, +X—,'(P-, P -„+~-„Q-,Q -, ) .
i q e e,b

l, q

For a highly overdamped system like ADP we should

replace the particularly simple form
& = X-, uP-, Q» Q -, by the effective Hamiltonian

with complex frequency»)- = (0)-+i /r-„) and re-

laxation time r- so that H = X» (cu- —i/r-)
xQ-, Q -, .

In Eq. (3) V, -„ is the usual spin-phonon coupling

term, Q-, and P-, are the normal coordinates and

the conjugate momenta, respectively. To make our
calculations simplified we assume V, q ~i q,
Q=' = Q-, , and P- =P , and henc-e the present+I +Q

model can be treated as a modified Kobayashi model.

For the antiferroelectric case, where the stability oc-
curs'9 at the zone boundary along c' axis (called the z

point and c is the reciprocal-lattice vector in the c
direction) the order parameter (Q- ) AO and we

qo

have (Q-, ) = Q-, exp(i q() R, ) = + Q-„. One may
/ q0

also write

Q-=Q- +gQ-
q0

In the paraelectric phase (PE) Q- =0 and in the FE

phase Q- %0; SQ = Q- (say) denotes the fluctua-

tions around the average value.
Here it should be noted that thc Green's-function

method and the procedure of our calculations used in

this paper have already been discussed in our earlier
papers. 2' 24

III. THEORY

A. Calculation of static susceptibility

The total Hamiltonian obtained from Eqs. (1)—(3)
can be written

This is a generalized form of the pure pseudospin
model originated from the Slater-Takagi ' protonic
configuration26 around the PO4 group with
U= —2»)+2»(), V=2») —

»() (where Uand Vare the
short-range interaction energies; J~2 = J34 = U,

J~3= J2q= J23= J~q = Vas in the KDP system. Fo1-

lo~ing Zubarev, 2' the thermodynamic Green's func-

tion can be written (in units of t =1)
Gmn( r r') ( (gnt(r ).gw(r') ) )
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The Fourier transform of (6) has the form

E ( (Sm Sn) ) (2~)—1([Sm Sn] ) + ( ([Sm H].Sn) )

(6a)

where

E I'a" 0
a = —I'a" E —120

0 120 E
where ( ) denotes the statistical average of the
enclosed operators. The Bruevich-Tyablikov-type
decoupling used in the present calculations has al-

ready been discussed in our earlier papers. ' To
calculate the correlation functions we use the spectf'al
theorem, viz. ,

.
,

t""((S .S")) + -(&S .S'))—
S/"S;" = lim i

pm+ expPE —1

x exp[ —/E(t —t')] dE

g+n(1)(E)

g +n(1) (E)
g +a(1)(E)
g +a (1)( E)

G = G& (E)
g +a(1)(E)
g +a (1)(E)
g+a(1)(E)

g +a(1)(E)

8= I

2m

0
(S[(+a) )

(S~(+a) )
(S[(+a) )

0
(S((+a) )
(St(+a) )

(S~(+a) )
0

where P =1/ksT (ks is the Boltzmann's constant and
T is the absolute temperature). For different values
of m and n (m, n =x, y, or 2) and considering the to-
tal Hamiltonian (5), the equation of motion has the
form

AG =B

G+a(n)(E) ( (SP(+a) .S~(+a) ) )

a" = X' —p, E —V-(Q-)
(10)

(ios)

(lob)

Now applying the procedure of our earlier work '

one finds

G+„("'(E) is the Fourier transform of the Green's
function ((SP„(+ ) (t), Sfn()+ ) (t') ) ) represented as

II

(S[I)+-') = y- „. . ./, tanh —,'P[(a")2+402]'/2,a" 2+40' '/2

II

(S[))'- ) ) =+ „ tanh-)8[(b")2+402]'/2,
[(b«)2+402]1/2 2

where

b" = )("—
/2, E Va ( Qp)—

)"=)((S[I;)—S[(-, ))) .

Defining the polarization along the a axis (transverse) as

((S'+' ) + &S'+' ) —(S'-' ) —&S'-') )

we calculate the corresponding susceptibility along the a axis from

9P,
X~=

8Eg E W

(12)

(12a)

(12b)

Na @o2 X2 y2

kate'

(x2 +402) (y2 +402)
tanh

2
p(x2+402)'/2

(x'+402)
802k T. ./, —x'tanh , P(x'+4—02)'/2

(x +40

tanh —,P(y'+40')' '
(y2+402)

80k TB 2tanh 1
P( 2+402)1/2

( 2 +4 02) 1/2 2 (i4)

where
I I I

x =h, '
Vp', y =)(" Vp', Vp = Vp (Q ) (14a)
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Similarly we get the longitudinal susceptibility along c axis having the form

x'
2k, T (x'+4n2)

tanh —,P(x'+4 02) 'i'

(x'+4 I)2)

802k@T —x'2 tanh-P(x'2 + 4 ()2) 'i2
(x'2+4 II2)1/2 2 (ls)

IV. DYNAMIC BEHA VIOR

x'= (Jll +y+ Vo) (S'}
(ISa)

A. Energy spectrum

Jo = XJs
)

(S') is defined by (S') =(I/2%) (X,. ", S,") In the.
absence of tunneling and proton-lattice interaction
terms, the above expressions for X, and X, reduce to
those of our earlier calculations. 24 The longitudinal
polarization has been defined as P, =N, il, (S'). ,

Here we have for the ferroelectric phase (S') = I and
for antiferroelectric phase

It was pointed out by Cochran' that the antifer-
roelectric transition is due to a zone-boundary
temperature-dependent mode which becomes un-
stable before the ferroelectric mode. %e have ob-
served this fact from our calculations as would be
discussed below. The antiferroelectric mode should
occllf at tile z polllt [q = (217/c)c ] ill ADP, willie ill
KDP it is at the zone center (q =0). To study the
characteristic dynamic behavior we transform the
pseudospin operator such that

(Sz(+a) Sz(-al ) (Sz(+a) Sz(-a) )

similar to that considered by HLS. It is to be noticed
that the expressions for X, and X, are quite different
from those derived by HLS though we used a similar

type of Hamiltonian for our calculations with Green's
function. This is due to the fact that a different
mathematical procedure was used by HLS. They
(HLS) also modified the Hamiltonian into a more
simplified form,

S'- = XSfexp(iq r, )
/

J-, = XJ„exp[i q ( r, —r, ) 1

ij

In the present case the required equations of motion
can also be written by the matrix equation

~here

eo —/A - 0
q

/3 «cia —/20

0 i20
0 0 0

0 0

0 0

0 0 0

0 0
0 0

—'i 20
0 0

0 0 i V'S' 0

0 0 0 0
0 0 0 0

—/V'5" 0

0 0
0 0

0 0 0 0 0 0 0

{16a)

0

0
0

~ ff r

/8 o) —i2 0
q

0 /20 0)

0 0 0

0 0

i V'S 0

0 0
QJ —

/

/6)«M
q
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~6xg(+a)
q (q)

6&Q(+a)
q (q)

G~g(+a)
q (g)

GxQ(-a)
q (g)

Gyg(-a)
q (g)

6 = 6'~(-'
q (q)
gxg

q

GPQ
q

Gzg
q

GQQ
q

GPQ
q

(16b) S = I

2'

'
(S+Q(+a) )q (g)
(Sxg(+a) )q (g)

0

(S g(- )
)q (g)

(Sxg(—al
)q (g)

0
(S&Q )

(s~)
0
0
0

(17b)

0
0
0
0
0

S= 02'
0
0
0

—1

(16c)

A-, =I.E. . z'+v—, (0 ),
B, =(J, +y, ) (s'-, ) +I,E, + v, (0„),
20 =20 —(J-+y-, ) (S"-, )

S' —(Sxt+a) ). S«(Sip —I) ). S (Sx

(17c)

All the Green's functions and the corresponding
correlation functions can be obtained from (16) and
(17). The energy spectrum given by the solution of
the secular determinant ~M~ =0 has the form

i3 =0
~ (18a)

MG' =S', (17)

Similar matrix equation is obtained for the other set
of equations of motion which can be written mtt=Bq +20[20 (J +y )(Sx )] (18b)

rump, = —,
' [(co' +B' )+ [(~'-, B-, )'+y ]—'~'], ,

(1gc)

where

gxz(+a)
q (g)

gyg(+a)
q (g)

Gu(+a)
q (g)

gee(-a)
q (g)

gyr (-a)
q (g)

O'= G-, (-„.)
q (g)

Gxg
q

Gyg

6xz
q

g Qsi

q

GPs
q

(17a)

where

2
—2

'

160 V- o,- ) 8
,
' tanh2PB-', + tanh —,pA-,

CX~
q q q

-, =( „,-A-, )/( „,-B-„),2
—2 2 -2

3- =32 +402

(18d)

B =B +20[20 —(J-+y-) (S"-„)]

8'2 =8~ +402

The required expressions for the thermal averages
(S"-„t-„&') and (S"-) calculated have the following
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forms:

(go+a) ) (gxQ+u) ) (gx(+b) ) (gx(+b) )
20

tanh —,PA -„

q

(S",~-„;~) =(S., „»)=(S",~;,", ) =(S",~&,b,&)

20
tanh —PA—

2

q

(S"- ) = tanh —PB-'20
B-' 2

q

(18e)

(18f)

(I gg)

the present case can be written
1

d o (F( )[2
d II dc@ ( T —Tp) +f(d q)2 ~2+ ( —y)2

(20)

which is identical to that derived by Meister
et al. 'o ~F(Q) ~

is the inelastic scattering factor and I'

is the damping constant with the quasielastic energy
broadening y =2&oft/I'. The temperature dependence
of f(hq) has the form

f(~q)'=(T-T, )G(~q)' .

The existence of both the B2- and E-symmetry
Raman-active proton modes which interact with like
symmetry lattice mode were reported by Ryan, Kati-
yar, and Taylor and also by Broberg et al. s It is evi-
dent from (18b) that the behavior of even the B2
mode in ADP (having soft-mode character'o'4 as in
KDP) is much more complicated than that of the
KDP system. It is also clear that the analysis due to
Broberg et al. , following the procedure of Ryan
et al. as mentioned earlier is nothing but an over-
simplification for the case of the ADP crystal. Furth-
ermore, the soft-mode behavior in ADP as reported
by Meister et al."has a very complicated behavior.
The dispersion relation ~» in (18b) gives rise to the
Tokunaga and Matsubara" frequency, namely,

Since the curvature of the eo»-dispersion curve at the
z point decreases as the transition temperature is ap-
proached, G(hq) should be independent of tempera-
ture. To fit the intensity profile, Meister et al. '

showed that

f(aq)'=(T-To)(aq A ~q+ )

having A = 163„and A„=O. This characteristic of
the AFE mode indicates that the polarization fluctua-
tions are strong within the ab plane in, contrast to the
critical scattering due to the ferroelectric mode in
KDP where the polarization fluctuation" is parallel to
the c axis.

It also appears from (18c) that cot2u should vanish at
q = qp (say) when

~,', =2n[2n-(J„+y, )(S )] .

Expanding (19) around (T —Tc) we have

~n(qo) = ~(qo)(T Tc)&TC

with

(19)

(19a)

2 2B~ GO~
q qp

4V- 02 ~p
tanh —,P,B-'„

2 C qp
qp qp

+ tanh —P,A - . (21)
qp

n' J(qo)
X qp

4 ksTc cosh' —P II
(19b)

and P, = I lks Tc. For small values of q and I-,
ro2n(q) can also be expanded in the reciprocal-lattice
space at the Brillouin zone boundary ( q = q p

= qs»),
4ve find (for cubic lattice)

This shows an antiferroelectric soft-mode character at
the low-temperature phase, which was also shown by
Meister et al. ' from inelastic neutron-diffraction
studies. Following KDP, we may ascribe this mode
co~~ as the B2 mode.

Using (18b) and (19a)—(19c) the inelastic scatter-
ing cross section for the overdamped normal mode in

~tt(q) = &(qo)
' +F~(q. —q;o)'+(q& —

q&, o)'
C

+(q, —q,,o)'l+
(19c)

But due to the presence of a-, as defined in (18d)
the condition (21) should not be strictly satisfied for
showing a proper soft-mode character. This mode is
a hard antiferroelectric mode. However, it might be
pseudosoft as it is coupled with the soft B2 mode.
%e call this cu»& mode pseudosoft since this mode
does not vanish at T& but may show a minimum
around Tc as in the case of the E modt; observed in
the KDP crystal. The "cusp"-like singularity of the
transverse susceptibility' versus temperature curves
in both KDP and probably in ADP (not yet ob-
served) are due to this pseudosoft nature of the F.
mode associated with co~~~. Detailed Raman spectro-
scopic studies in the low-frequency range might be
very interesting to elucidate this behavior of ADP
crystal.

B. Calculation of susceptibility from
dynamic Green's functions

Similar to the case studied" in KDP one may find
the expression for the longitudinal susceptibility
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along the e axis calculated from the Green's function
((Q-, ~Q -, ) ) having the form

r 1

2V- Oyqp
2 18- o.-
qp qp

2
Pl Pc

X,(a)=O, q =qp) =
qp

(22)

~here
2 2n'- =A- /8-

qo qo qo
—2 =A~ +402; A- =(A-)--
8- =(8-)--

qp

8- =82 +20[20 —(J-„+y-„)(S"-)]

and

y=x( -, (s-, )+(s.„';,, ) —(s*-,—;,), )),
a,y

X (0) =O, g = gp)

5 20(s"- )y.
—2 2 2 —2

&p 8«(n- cu- 8- —20 V- y)qo qo qo qo qp

(23)

where

y, = a- cu- 8- +40 V- (S& ('s) )2 2

qp qp qp qp qp 8 (23a)

It is observed from (23) that the expression for X, in

ADP is very complicated compared to that of KDP
[see Eq. (9b) of Ref. 14). But the interesting point is

that both the equations give identical results to be
discussed in Sec. V. The lattice-coupling term in (23)
having the form [using (3)1

X V-, (Q-, ) =—V-, ~(Q-, )'+ X V (Q
q q

(24)

has a very important role on the behavior of X,. The
first term on the right-hand side of (24) might be
considered to be arising from the proton-lattice in-
teraction of spontaneous distortion (or polarization).

P'c Kp lc

(aa is the effective charge, I, being the distance
between the double-well potential minima at the H
bond. ) n is the number of pseudospins per unit
volume and vp is the volume of the unit cell. In the
above expressions for A - and 8 we h-aveyut the

qp qp

fields E, =E, =O. Following the procedure of our
earlier paper for the calculation of transverse suscep-
tibility of KDP crystal, ' the corresponding expres-
sions for ADP crystals can be derived. The final
result 3 comes out to be of the form

Thus if polarization appears abruptly, as occurs in
KDP" as well as in ADP" (reported recently) the
reduction in the susceptibility X, (O, T) at Tc should
also occur abruptly. The second term of (24), on the
other hand, is a consequence of the softening of the
lattice due to the presence of soft mode. This term is
very important around T~ to reduce the value of
X,(0, T) as observed experimentally36 37 in KDP or in

similar other crystal systems.

V. RESULTS AND DISCUSSION

Equations (14) and (15) are used to fit the experi-
mental'" values of transverse (X,) and longitudinal

(X,) susceptibilities of ADP, DADP, and ADA crys-
tals. The single set of model parameters, being dif-
ferent for the respective salts, are shown in Table I.
For all the three crystals we find a very good fit of
the experimental data'" (within 1%) with the respec-
tive theoretical expressions for X, and X, as shown in

Fig. 2. The fits of the experimental data' with
0 ~ 0 and V- ~ 0 seems to be better than those ob-

qp

tained'4 with 0 =0 and V- =0, which points out
q p

the importance of tunneling as well as proton-lattice
interaction. From Fig. 2 we also find that in case of
transverse susceptibility (X,) of ADA only, the fit is
not good in the high-temperature region though very
good fittings are obtained in other salts. This might
be due to the inaccuracy of the experimental data
which was also pointed out by HLS. Another in-

teresting characteristic we notice from the data of
Table I is that the value of A. in ADA is much larger
than that of ADP and DADP. That is, the transverse
long-range interaction is very strong in ADA com-
pared to other salts of its group. This resembles to
the behavior of KDP. The value of direct exchange
J' in ADA also seems to be larger than the corre-
sponding values of ADP and DADP (if we put y =0,
since y cannot be obtained separately from our calcu-
lations). However, the value of J' is about two times
larger than A. for all the three salts. In other words,
the short-range interaction associated with J' (since
J' is related to the short-range energy ao) is found to
be larger than the transverse long-range interaction ).
Here we should note that in KDP the long-range or-
dering interaction is small compared to the short-
range energy. The value of proton-lattice interaction
V-, is also large in ADA though it is comparable to
the values of ADP anad DADP. 0 is larger in ADP
(=20 cm ') but comparable to that of ADA (=15
cm '). This value of 0 is much smaller than that of
KDP (=80 cm ').3s Thus the behavior of ADP is

more contradictory to that of the KDP crystal than
that of the ADA crystal. This difference in the
characteristics of ADP and ADA might also be
responsible for the positive value of @ in ADA with
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TABLE I. Pseudo-spin-model parameters for ADP, DADP, , and ADA crystals calculated from our theory.

Crystal
~c
(K)

/v. /k, (10-36)
(cm K)

Z/ks

(K)
n/k,
(K)

V /k N, /k (10 36)

(K) (cm K)

(J'+ y)/ks

(K) (10' ) p,, (10' )p,

148NH4H2P04
(ADP)

ND4D2PO4 242

(DADP)
NH4H2As04 216

(ADA)

78.33

78.00

77.61

70.00 20.00

73.00 5.00

100.60 15.00

20.00

25.00

30.00

31.26

31.26

39.71

140.00

155.66

205.50

2.95

3.40

4.50

4.70

5.90

3.70

100-

80

60

40-

20-
10

90$-

to

o 70O

I-
O 20
LU

yd

140-
130-
120-

= t-'c

OA DP

Tc = 242K

AQA

Tc = 216K

20-
10-

the corresponding negative values in the cases of
ADP and DADP. This finding is also in agreement
with the observation of Ishibashi et al. ' who sho~ed
that a strong dipolar interaction along the a or b axis
can make an energetically stable APE configuration
as long as a critical positive e& is not exceeded.

To show the analogy between the transverse dielec-
tric behavior of both ADP and KDP, we have also
fitted the experimental values of the transverse sus-

ceptibilities of the two undeuterated salts ADP and
ADA with expression (23) calculated from dynamic
Green's functions. Here also very good fits of the
experimental data (X,) of ADA and ADP are ob-
tained with the sets of parameters shown in Table II.
The values of co- calculated are 153 and 110 cm ',

q&

respectively, for ADP and ADA. Compared to KDP
(where ru- was found to be = 150 cm ') the corre-

qp

sponding values of co- for ADP and ADA are of
q p

equal magnitudes but it is slightly smaller in case of
ADA. Here also we find that the value of J'+ y is
much larger in ADA compared to that of ADP
(Table II). However, owing to lack of experimental
data (particularly Raman spectroscopic data) we can-
not compare our calculated results. It is interesting
to note that the transverse susceptibility data' of
KDP are also found to be fitted well with (23) (see
Table III). The experimental and the theoretically
calculated values of transverse susceptibilities of KDP
with a single set of parameters are shown in Fig. 3.

K

2 75-
0
O
O
K,I-
O

~~ 50-
O

1

50
l

100

c& K)

I

150
l

70
l

190
I

25Q 310

FIG. 2. Thermal variations of transverse (e, ) and longi-
tudinal (~,) dielectric constants of ADP, DADP, and ADA.
~ —experimental (Refs. 1 and 36), continuous line—
theoretical.

FIG. 3. Thermal variations of transverse dielectric con-
stants (e~) of KDP, e —experimental (Ref. 36), continuous
line —theoretical, calculated with Eq. (23),
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TABLE II. The pseudo-spin-lattice-coupled mode model parameters obtained from fitting of the transverse susceptibility data
of ADP and ADA with Eq. (23). The experimental (Refs. 1 and 36) and theoretically calculated values of (X~)T/(X) T are

also sho~n.

ADP ADA

(J'+y)/ks =25g.99 K, n/k, =2O OO K.
~/k~ =70.00 K; V/k~ =20.00 K

(J'+v)/k, =4».64 K; ft/k, =».OO K

X/k& =100.72 K; V/k& ——28.78 K

~2- =110.00cm '
0

Temperature

T (K)

(x, ) ~/(x, ) T

Expt.

Temperature

T (K)

(X.),/(x, ) r
Calc.

(x,),/(x, ) &

Expt.

0.96
0.88
0.81
0.68
0.58

0.95
0.88
0.81
0.68
0.60

303.5
273.5
251.0

0.83
0.88
0.94

0.87
0.89
0.95

Thus the ADP model is also equally suitable for
describing the transverse susceptibility of the KDP
crystaL In the PE phase, according to (23), x, (0, T)
increases as temperature decreases. Experimental
values'16 of x, (O, T) both for KDP and ADP also

behave in this way. At the transition point X,(0, T)
begins to fall sharply (not observed in the case of
ADP; but sublattice polarization is found to fall

sharply" ) caused by the first term on the right-hand

side of (24). This term does not vanish as the phase
transition takes place ln the phonon sublattlce.

489.19 115.11 244.60 36,83 150,00

TABLE III. Pseudospin model parameters obtained from
fitting of the experimental transverse susceptibility (X~) data
(Ref. 36) of KDP ~ith Eq, (23) derived from the ADP
model.

VI. CONCLUSION

%e have sho~n using a statistical Green's-function
technique with a four-sublattice cluster model that
very good fits of the experimental dielectric constant
data of ADP, DADP, and ADA crystals are possible
with a single set of Blinc —de Gennes model parame-
ters. Calculations of the dynamic correlation func-
tions and renormalized energy spectrum indicate that
the energy spectrum is more complicated than those
derived by Broberg et al. s In the phonon subsystem
two complex proton-phonon vibrational branches ap-
pear in both the systems (KDP and ADP), one of
which is the usual soft mode (Bp fllodc llkc) a11d 'tile

otllcf ls tllc pscudosoft 1Ilodc (E mode llkc) wlllcll ls
hard. The latter mode is primarily responsible for the
thermal dependences of X, in both types of crystals.
The analysis of the E mode (lgc) is found to be ex-
tremely difficult in the case of ADP. This mode is
strongly coupled to the 82 mode. This strong cou-
pling might also be responsible for the pseudosoft
character of the E mode. Again, since the phase
transition produced probably by softness of the prom-
inent phonon-proton mode at the zone boundary (in
the case of ADP) occurs earher, the pseudosoft mode
is not allowed to reduce to zero value. The disper-
sion energy au)11 decreases slowly as T Tc from
above and then it increases (without going to zero)
similar to the behavior observed in case of KDP. '"
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In the case of KDP the minimum value of this mode
was observed' to be = 80 cm '. It has not been
possible to calculate this value for ADP because of
very complicated nature of co~~~. The behavior of the
transverse susceptibility should reflect that of co~~~.

This has already been verified in the case of the KDP
crystal. ' It has also been shown that the ADP model
described in Sec. I can also be used satisfactorily for
the study of the transverse dielectric behavior of the
KDP crystal. Thus one can fervently recommend a
unified model for studying the static as well as the
dynamic behavior of the transverse dielectric con-
stants of the KDP- and the ADP-type crystals.

Finally, we would like to conclude that our present

Green's-function theory with four sublattice pseudos-
pin model might also be extended with a little modifi-
cation to enlighten the phase-transition mechanism in

layer structural compounds like squaric acid, tin
chloride dihydrate, copper formate tetrahydrate, and
other similar crystals.
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