
PHYSICAL REVIE% B VOLUME 24, NUMBER 11 1 DECEMBER 1981

Dependence of T, on the normal-state resistivity in granular superconductors
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The transition temperature of a granular superconductor is derived from a percolation descrip-

tion for the onset of superconductivity in these systems. The variation of T, with the normal-

state resistivity is calculated and found to be in agreement with experimental data.

I. INTRODUCTION

In a recent article' we have suggested a percolation
model for the description of superconducting proper-
ties of granular systems. We have assumed that the
coupling between the superconducting grains is esta-
blished through the Josephson interaction, and that
the grains become coupled when the coupling energy
EJ exceeds the thermal energy (of the order of ks T).
Since EJ increases when the temperature decreases,
more and more grains are coupled as the temperature
is lowered. On the other hand, EJ is inversely pro-
portional to the normal-state resistance of the junc-
tion between two grains, and depends on the grain
size. ' When it is assumed that the normal-state resis-
tance and the grain size are randomly distributed, the
coupling between the grains is accomplished at ran-

dom, with a temperature-dependent probability.
Then, at the temperature at which the coupling pro-

bability equals the percolation threshold p„an infin-

ite cluster of superconducting grains is formed. This
temperature marks the electrical transition end point
of the granular sample.

The main feature of our model is the randomness
in the coupling between the grains, which arises from
the distribution of the junction resistances and the
grain sizes. In this sense our model differs from oth-
er models invoked to treat granular superconductors
(see Ref. 1 and references listed there). In these
treatments it is assumed that the grains are ordered
on a certain lattice, and that the interaction between
them is the same everywhere. Namely, the granular

system is considered as a "pure" XFmodel, in which

the randomness in the coupling is neglected. ' We
have shown' that the percolation model gives good
agreement with specific-heat data and describes well

the electrical transition in a certain class of granular
materials.

In this article we investigate in detail the electrical
transition temperature of a granular system. This is

carried out using the percolation description, which is
modified to include the effect of the charging energy.

Electrostatic effects are not important in metallic
samples (e.g. , Al-A1203 with p„& 10 ' 0 cm, where

p„denotes the normal-state resistivity). However, in

high-resistance specimens the charging energy cannot
be neglected. ' Indeed, the inclusion of the charg-
ing energy in our percolation model is essential. The
reason is that when the charging energy is neglected,
the percolation model yields a transition temperature
(although very low) for high resistance samples. '

This feature is unphysical and does not agree with
experimental data. '

We therefore assume that in high resistance sam-
ples the grains become coupled when the Josephson
energy exceeds the thermal energy and the charging
energy. We relate the charging energy to the
normal-state resistance of the junction, and in this
way obtain a criterion for the coupling which depends
on grain size and the temperature. Then, invoking
an argument by Ambegaokar et al. ' which relates
the normal-state resistivity to the percolation proba-
bility p, we find an expression for the transition tem-
perature.

The details of the calculation are given in Sec. II.
In Sec. III we discuss our results and compare them
with experimental data.

II. DETERMINATION OF THE ELECTRICAL
TRANSITION TEMPERATURE

Granular superconductors may be roughly divided
into two classes. ' In the first, the grains are strongly
coupled and the grain-size distribution is rather wide. '
The grains become coupled immediately after the ap-
pearance of superconductivity in the grains. In the
second class, the grains are weakly coupled, either by
a thin bridge of metal, i.e., a weak link, or by the
Josephson coupling which connects two supercon-
ducting grains separated by a thin insulating
layer. "'" In this class the grain-size distribution is
narrow. ' We may assume that the grains are equal
in size and consider only the distribution in the
separating layers between them.

In this article we focus on the second class for the
following reason. The transition temperature of a
single grain depends on its size. Ho~ever, there
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is no quantitative theory for this dependence. We
therefore cannot treat a system consisting of grains of
various sizes. On the other hand, when all the grains
are of the same size, it can be assumed that they
have the same transition temperature. In this case
the randomness in the coupling arises from the distri-
bution in the link sizes.

The weakly coupled granular systems can be fur-
ther divided into two categories, according to the per-
centage of the metal in the samples. (i) When the
metal percentage is such that the normal-state resis-
tivity decreases with the temperature, the samples are
metallic. In this range the grains are connected
mainly by weak links. For weak links the charging
energy is negligibly small ' whereas the opposite is
true for Josephson junctions. Therefore, even
though there is a certain fraction of Josephson junc-
tions in the metallic samples, the infinite supercon-
ducting cluster consists mainly of weak links, which
become connected more easily than the Josephson
junctions. (ii) When the normal-state resistivity in-

creases as the temperature decreases the samples
are nonmetallic. In this range the coupling between
the grains is through Josephson junctions, and the
charging energy cannot be neglected. In particular, in
the nonmetallic samples the charging energy leads to
the disappearance of superconductivity at a certain
value of the normal-state resistivity.

We now turn to the determination of the transition
temperature in metallic and nonmetallic systems.

A. Metallic samples

In this regime the coupling between the grains is
established by the interplay between the supercon-
ducting coupling energy and the thermal energy, and
the charging energy can be neglected. That is, two
grains become connected when"

Eg~
2 AT,1

where

perconducting) is

t 4x(5
dy. f(y.).

X(T) = tanha(T) a(T)

(4)

The electrical transition temperature occurs when

p =p„where p, is the percolation probability at
which an infinite cluster of superconducting grains is
formed. Hence

&4x(r, )

p. = J, dy. f(y") (5)

On the other hand, the normal-state resistivity p„ is
proportional to the percolation threshold resistance R
introduced by Ambegaokar et al. ' They stated that
the sample resistance (in the normal state) is mainly
determined by the percolating cluster of smallest
resistances. That is

f 8/a
pc= J p

dynf(yn) (6)

where

R =p„/L (7)

Tc&Tco

and L is a certain characteristic length (this length is
discussed below). From Eqs. (5)—(7) we obtain

4LuX(T, ) = p„

To compute Eq. (8) we need to know the order
parameter in the grains, b ( T) [see Eq. (4)]. the or-
der parameter of a small grain is calculated in Ref.
15, where it is found that it is much affected by criti-
cal fluctuations. In our model we neglect fluctua-
tions, and use the BCS form for 6( T). (This point is
discussed in Ref. 1.) We have solved Eq. (8) on the
computer and found T,/T, p as a function of p„/uL
Here T,o is the transition temperature of the single
grain with 25(0) =3.52ksT p. The results are depict-
ed in Fig. I (the circles). In two limiting cases it is
easy to analyze Eq. (8) analytically.

(2)

y„=R„/u, u=zrt/4e2=31520 (3)

Then, from (1), the fraction p of "connected" grains
at each temperature (i.e., those links which are su-

Here R„ is the normal-state resistance of the link and
b ( T) is the order parameter in each grain. The
normal-state resistances R„are randomly distributed
across the sample since the link size is randomly dis-
tributed. Let us denote the distribution function by

f(y„), where y„ is the normal-state resistance in
dimensionless units

0.5-
BOA )

I 2 Ria
FIG. 1. T,/T, p as a function of R/a computed from Eqs.

(8) (circles) and (19) (solid lines). The circles are computed
without the charging energy and therefore are independent
of the grain size. (a = ail/4e2).
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1. Tp —T && Tp

Thus, from (8),

T /T p= 1 —0.1p„/Ln

and T,/ T,p decreases linearly with p „.

(10)

2. T, && TG

When the transition temperature is well below T,p,

X( T, ) — ' — —0.88
2k' Tc 2k' Tc Tc

and, from (8),

T/Tp —3.52Lu/p„ (12)

It should be stressed that the range T, « T,p is

probably not accessible experimentally. For p„high
enough so that Eq. (12) is valid, the sample will not
be metallic and therefore the charging energy cannot
be neglected. The percolation model relates T,/T, p to
the normal-state resistivity p„. Recently Laibowitz
et al. ' have presented a calculation of T,/T, p based
on the assumption that the granular system can be
described by an ordered XYmodel. Their calculation
relates T,/T, p to the average junction resistance.
However, it should be noted that the average junc-
tion resistance differes from pn/L. '

When the transition temperature of the sample is

close to the transition temperature of the single grain,

(,)
2k' Tc Tcp

R„=e~"'I 6rrn/AkF' (15)

where n =mt/4e'0, sand A are the junction's thick-
ness and area, respectively, kF is the Fermi wave vec-
tor, and

constant was discussed in the literature. '" It is ar-

gued that el for tunneling mechanism between
grains, is probably smaller than the dielectric constant
of the insulating matrix, The argument is based on
the fact that the characteristic tunneling time is much
shorter than the relaxation time of the accompanying
polarization wave. The numerical factor P (of the or-
der 0.1) is invoked in order to account for the influ-

ence of the surrounding grains. That is, each grain
participates in several junctions and the charge
transferred from one of them is spread over the rest.
Such an argument suggests that" P —1/Z, where Z
is the coordination number (Z =12 in random close
package structures'). The conclusion that the cou-
pling energy should exceed about 0.1 of the charging
energy of a single junction for a superconducting link
to be established is also reached in the XYmodel" -'

for different reasons.
Our approximate derivation for E, differs from

other treatments given in the literature. "' We cal-
culate directly the insulating barrier capacitance, and
we assume that the charge transfer is q. The result
[Eq. (14)], differs by a numerical factor from the
former results. However, the difference is not signi-
ficant for the results we derive„as discussed below.

The spacing s between the grains is related to the
normal-state resistance R„of the junction. To show
this we note that R„enters the expression for EJ [see
Eq. (2)] from a calculation of the transition probabili-

ty through a tunneling barrier. ' In the WKB approx-
imation" the normal-state resistance of a junction is

given by

B. Nonmetallic samples
X= [2m( V —E )/t']'t' (16)

EJ ~
2 k~T+Ec1 (13)

The charging energy E, has been given consider-
able attention in the literature. ' It can be easily
evaluated in the limit s « d, where d is the grain di-

ameter and s is the spacing between grains. In this
case we may approximate the junction by a plate
capacitor, and obtain

E=2qs (14)

Here el is the dielectric constant, and q is the charge
transferred. The appropriate value for the dielectric

In this case the infinite superconducting cluster
consists mainly of Josephson junctions. The charging
energy E, cannot be neglected, and the criterion (1)
for a junction to become coupled should be modified
as follows. '

Here Vp is the height of the potential barrier. [It
should be noted that (15) is valid for Xs )1.] The
WKB calculation leading to (15) is carried out for a
rectangular barrier; in order to take into account the
fact that tunneling between grains is not strictly one
dimensional, Abeles et a/. " have introduced a
correction factor, y = [(d +s) X] ', where d is the
grain diameter. This factor seems to be too small.
We have recalculated the factor y (see the Appendix)
and found

It should be noted that the factor in front of the
exponent in Eq. (15) is different from the one given
in Ref. 8 ~ We treat the junction as a link between
metallic grains whereas in Ref. 8 the grains are as-
sumed to be small enough so that quantization ef-
fects become important. In our opinion, in the
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granular specimens discussed in Sec. III the grains are
metallic, as is verified by electron microscopy.
From Eqs. (15)—(17) we find

TABLE I. Parameters used in the computation of Eq.
(19). The values for T,o are from Refs. 9 (Al-Ge); 7

(Alp03), and 23 (Al-SiO~).

R„AkFs= ln-"y
2X u 16m

(18)
d (A) Tco

4X(T) ~y„+K(T)y„ln y„y
Akp-

(19)

Inserting (2), (14), and (18) into (13), we obtain
the following criterion for a Josephson junction to be
connected:

Al-Ge
Al-Alg03
Al-SiO~

120
30
30

0.74
7.3
8

16
12.2
4.5

1.8
2.2
3.1

where y„ is the normal-state resistance of the junc-
tion in dimensionless units (R„=uy„), X( T) is

given by Eq. (4), and

z(T)=«', '
X Kid k9 T

Equation (19) provides us with an upper bound on

y„. Once this upper bound is found, we can deter-
mine T, as has been done in Sec. II A above. Name-

ly, the temperature at which the upper bound is equal
to p„/La is T,. [See Eqs. (4) —(7).] Thus we have
to solve Eq. (19) when the inequality sign is replaced

by an equality sign (and then T = T,). This was car-
ried out on the computer. The results are the solid
lines in Fig. 1. The parameters used in the computa-
tion are discussed in Sec. III.

III. COMPARISON WITH EXPERIMENTAL DATA

As is explained above, the transition temperature
in the percolation model is determined from Eq. (19)
with the inequality sign replaced by an equality sign.
When trying to compare the calculated T,/T, o with

the experimental results, we encounter two main
sources of possible errors. The first is connected
with the granular structure of the system. In Eqs.
(14) (the charging energy) and (15) (the normal-
state resistance) we have had to introduce correction
factors (p and y, respectively) which are associated
with the granular character. The second source of er-
rors is parameters which cannot be measured. These
are the potential barrrier height Vo which enters the
expression for X [Eq. (16)l and the dielectric constant
er which is lower from that of the (bulk) insulating
matrix. "

In the computation we have used the following
values for the parameters in Eq. (19). The correction
factor p [Eq. (14)] is 1/Z, where Z is the coordina-
tion number, with' Z =12. For y we have used Eq.
(17) in which X enters. In the calculation of X [Eq.
(16)] we have put Va EF = —,E,, wher—e E, is the en-

ergy gap of the insulating matrix. (In doing this we
have assumed that the Fermi energy of the insulator

is at the middle of the energy gap and neglected sur-
face effects. ) The junction area [see Eq. (15)] is
evaluated according to the calculation in the Appen-
dix. For Z =12 we find 3 =O.lied For k.F [Eq.
(15)] we have chosen the value of bulk Al,
k~=1.7S x 10 cm ', and el is taken as one-half the
value of the static dielectric constant of the corre-
sponding insulating matrix. ' %e have used the
value q = e for the charge transfer. However, we
note that, taking into account that P and 7 can
change from the values chosen for them, the choice
for q is not crucial. The parameters used in the com-
putation are given in Table I.

Figure 2 portrays experimental data accumulated
from Refs. 7, 9, and 23. Comparing the experimen-
tal data with the computed curves, we see that the
characteristic length L introduced in Eq. (7) is 2 —3
times the grain size. In view of the large experimen-
tal errors (mostly due to sample inhomogeneities at
high resistivities) the overall agreement between
theory and experiment is rather good.

As was mentioned above, the WKB calculation
leading to Eq. (15) is valid for Xs ) 1, i.e., at suffi-
ciently low values of R„ the calculation is not valid

Tc ~Tco

l.O-
OS 4 8

0
p

p ~

1- Al-Ge (d= t204 )
05-

p 4(-$jas(d "-QQA}

a - Al-A(~O~(d=BOA)

I

6 p ]gd

FIG. 2. Experimental data for T,/T, c as a function of
p„/ad, accumulated from Refs. 9 (Al-Ge); 7 (AI-A1303),
and 23 (Al-SIO3). (n = rrt/4et. )
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any more. At this region the charging energy be-
comes less and less important, and the solid curves in
Fig. 1 go into the circles (calculated without the
charging energy). The regions where the two curves
join each other depend on the grain size.

between two grains we perform the following:

"m
Q = dh 27rh

mh

&& exp( —2g (s +2[r —(r —h') '~'] [)

(A2)
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APPENDIX: CALCULATION OF y

Here we calculate y, which is the correction factor
to Eq. (15) arising from the fact that the tunneling
between two grains is not one dimensional.

According to the WKB approximation" we have to
consider the quantity g

Here r is the radius of the grain, and h is given by

h =r tan& (A3)

1 — + —(1 —tan tl )
1 1 2 ] 2

4Xr 4Xr

where cos8 =1 —2/Z (Z is the coordination
number, i.e., the number of nearest neighbors).
That is, h is defined in such a way that the tunnel-
ing takes place over a space angle 4m/Z, correspond-
ing to one neighbor. Carrying out the integration in
(A2), we obtain

1 1 e-&XS

2Xr tan'8~

fZ
0 =exp —2 Jl kqdx (Al)

&&exp( 4xr[1 —(1——tan'8 )' '][ (A4)

where x is the coordinate along the junction between
xi and x„kq is the wave vector normal to the junc-
tion, kq= X, and X is given by Eq. (16). For a rec-
tangular junction, g =exp( —2Xs). For a junction

For Xr & 5 and Z =12, this gives for the correction
factor y —1/2Xr. The condition Xr & 5 is usually sa-
tisfied. This justifies our approximation.
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