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The nonlinear reversible hydrodynamic equations for the superfluid phases of He, i.e., He-

A, He-A i, He-B, He-A in high magnetic fields, and He-B in high magnetic fields, are

derived. The Mermin-Ho —type relations for He-A in high magnetic fields and He-Bin high

magnetic fields are given for the first time. The influence of higher-order gradient terms in all

phases is discussed, and a new class of nonlinear terms containing the various kinds of velocities

is given which have not been considered so far for any of the five superfluid phases. In addi-

tion we show that the hydrodynamic equations for He-A in high magnetic fields contain as a

special case the hydrodynamics of superfluid He-A i and the orbit part of the hydrodynamic

equations for He without external field. Furthermore, we point out some structural similarities

in the equations for He-A in high magnetic fields and He-B in high magnetic fields. As an ad-

ditional effect we find that the higher-order gradient terms imply a preferred direction in the hy-

drodynamic equations for superfluid 3He-B.

I. INTRODUCTION

In the last few years the study of the properties of
the superfluid phases of 3He has become, from the
theoretical as well as from the experimental point of
view, one of the most fascinating fields of low tem-

perature physics, "
In the present paper we study in some detail the

nonlinear reversible hydrodynamic equations for all

superfluid phases of 3He. The hydrodynamic theory,
which is rigorous in the limit of small wave vectors
(much smaller than any microscopic wave vector of
the system) and sufficiently small frequencies (i.e.
much smaller than any microscopic frequency), has
been applied to many systems of condensed matter
systems. In the linear domain the phenomenological

hydrodynamic equations have been given, e.g. , for
crystals, ' nematic liquid crystals, ' ' cholesteric
liquid crystals, "'uniaxial discotic liquid crystals, '

smectic-A and -C liquid crystals, ' and spin-
glasses" "; the method using correlation functions
has been applied to paramagnets and simple fluids, '

superfluid He, ' and nematic liquid crystals. '

In the nonlinear domain, hydrodynamic equations
have been presented, e.g. , for superfluid 'He, "su-
perfluid solids, 2 ' ' magnetic systems, and various
types of liquid crystals. 6 '"'

For the superfluid phases of 'He the linearized
phenomenological equations have been presented in
Refs. 25—35 and the formulation in the framework of
correlation functions has been given in Refs. 33—36.
Nonlinear theories of the A phase have been con-
sidered by Hu and Saslow, Lhuillier, ' and Hall and
Hook. Corresponding work for the B phase is due
to Liu and Cross: and for the A i phase, due to Liu. '

For the B phase in high magnetic fields there
seems to exist no nonlinear hydrodynamic theory,
and for the A phase in high fields the authors know
only of a preprint by Saslow and Hu dealing with the
macroscopic dynamics incorporating explicitly nonhy-
drodynamic variables. Therefore it will be the aim of
the present paper to derive the nonlinear hydro-
dynamic equations for the A phase in high magnetic
fields and the B phase in high fields.

In addition to the appropriate linear equations'
we give the generalized Mermin-Ho relations and in-

troduce nonlinear terms on the static as well as on
the reversible dynamic level. These nonlinear terms
come roughly speaking in three classes: there are
terms characterizing nonuniform textures in spin and
orbit space; there are higher-order gradient terms in-

cluding gradients of the conserved quantities; and
there are terms quadratic in the various velocities
present in the superfluid phases of 'He in high mag-
netic fields. The latter kind of nonlinearities is also
introduced in the nonlinear theories of He-A, and -B
(without fields) and of 'He-A

~ thereby amending pre-
vious theories.

We will concentrate especially on a rigorous hydro-
dynamic approach to the problem which is not con-
fined, e.g. , to the Ginzburg-Landau regime and we
leave open the microscopic calculation of the parame-
ters occurring in our equations to future investiga-
tions (which are now in progress for some of the
novel terms).

%e restrict ourselves to the reversible part of the
dynamic equation for practical reasons. Since the
condition of positivity of entropy production is much
less restrictive than that of vanishing entropy produc-
tion, a systematic and complete nonlinear theory
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would bring about a host of irreversible terms with
lots of phenomenological parameters.

The paper is organized as follows: In Sec. II we
outline the general hydrodynamic properties of the
superfluid phases. In Sec. III we give explicitly the

hydrodynamic equations for 'He-A in high magnetic
fields. These results contain, as special cases, the hy-

drodynamic equations for 'He-A ~, for He-8 in high
magnetic fields, and (to a great extent) for 3He-A

without a magnetic field. Explicit formulas for the
latter phases (and 'He-8 without magnetic fields) are
given in Ref. 42. In Sec. IV the similarities in the
structure of the hydrodynamic equations of the vari-
ous phases of superfluid 'He are examined. In Sec.
V we give the conclusions summarizing the results
which seem to be most important and discussing
which of the nonlinearities will be the ones most
easily accessible to experiments.

II. GENERAL PROPERTIES OF THE NONLINEAR
HYDRODYNAMIC EQUATIONS

OF SUPERFLUID 3He

When the hydrodynamic equations for a special
system under consideration are formulated, the first
problem is the determination of the hydrodynamic
variables. For the conserved quantities one has in

the superfiuid phases of 'He, as in any hydrodynamic
system, the density p, the density, g, of linear
momentum, the energy density e (or the entropy
density o ), and the magnetization density M. In ad-

dition to these conserved quantities one must consid-

er the variables characterizing the spontaneously bro-
ken symmetries. In all superfluid phases of 'He one
has broken gauge symmetry which leads to the phase
deviation 8@ as a hydrodynamic variable. In addition
to the broken gauge symmetry one has to face bro-
ken rotational symmetry (in the A phase, the A ~

phase, and the A phase in high magnetic fields)
which gives rise to deviations, Sl, from the preferred
direction 1 in real space. Furthermore one has to in-

clude variables which characterize spontaneously bro-
ken rotational symmetries in spin space. As will be
discussed in more detail below one finds two addi-
tional variables in the A phase without external field,
one additional variable in the A phase in high exter-
nal magnetic field and in the 8 phase in high magnet-
ic fields. For the B phase without external field one
must keep three variables which characterize the
spontaneously broken spin-orbit symmetry of this
phase.

It should be kept in mind, however, that by the
complicated structure of the order parameter in su-
perfluid 3He these variables are connected not only
with one broken symmetry (by which they are de-
fined) but with two or three more, e.g. , the phase de-
viation Sf' characterizes partially broken rotational
symmetry in orbit space and (for some phases) in

spin space, too. We will discuss this point in detail
below.

The starting point of the hydrodynamic description
is the Gibbs relation. As usual, local thermodynamic
equilibrium is assumed to hold.

If one chooses the energy density e as a convenient
thermodynamic potential, one finds

e V=E =E( V p VgVM V o V VpV'~P, Vpg, V'7~p, VV&o, Vr7/MJ) (2.1)

where V is the volume, $ are the variables charac-
terizing the spontaneously broken symmetries. We
have assumed V,$' to be an intensive variable (i.e.,
a mass density). As usual for nonlinear theories the
energy depends not only on gradients of the variables
characterizing broken symmetries but on the vari-
ables themselves. The latter dependence has to van-

ish, however, in the homogeneous limit. As an ex-
ample we mention the I dependence of 'He-A (tex-
tures in orbital space).

Furthermore, it should be stressed that we have
kept in Eq. (2.1) the gradients of the conserved
quantities. The necessity to do this has become clear
in connection with the so-called gauge wheel ef-
fect '~ and has been devised in a general framework
in a recent paper by Combescot. In the following
we will count the order of our hydrodynamic contri-
butions in the way proposed by Combescot, i.e., con-

I

served variables and gradients of the variables charac-
terizing broken symmetries will be considered to be
first order whereas the gradients of the conserved
variables will be treated as second-order quantities.
We will take into account in the free-energy terms up
to the third order and in the current terms up to the
second order. While doing this, one should always
keep in mind that it is necessary to keep fourth-order
terms in the free energy to preserve positivity of the
free energy, a fact which seems to have been over-
looked so far. These fourth-order terms will, howev-
er, never occur in the final hydrodynamic equations,
because they would be inconsistent there (cf. Ref. 23
for a discussion of an analogous situation in liquid
crystals).

After these preliminaries, we are prepared to draw
the first conclusions from Eq. (2.1). We obtain via
Euler's relation for bulk hydrodynamics the Gibbs re-



6432 H. PLEINER AND H. BRAND 24

lation

and

p = —e+pp+ Tcr+ v g+H ~ M

+7;V;p+8;V';0. + A J'7,Mj

de= p, dp+ T der+ v dg +H. dM

+II, d'7, /t/ +I' d/t/ +r;d'7;p

+e,-dV, ~+A,,dV, M, (2.2)

(2.3)

The explicit structure of q„~&, g, Y, and j,k is,
of course, different for each superfluid phase and
therefore the currents will be examined in detail in
the following Sections reflecting the different sym-
metries of all phases. Nevertheless it is possible to
give constraints which have to be satisfied by the
currents. From the Gibbs relation (2.2) and the con-
servation and quasiconservation laws (2.5) —(2.9), we

have
(

RT/T—= '7/Q/ —
(/, '7 g

—XkV, vk

where d. . . refers as usual to distinct points in space
and time. The thermodynamic conjugates are given
by

where

—H, V„j~+(q, /T) V, T —I Y, (2.11)

Q, = j/ —(r/ 7 g +8//r V v +r,p'7 u

+ A(JMj '7 v + A(~ V'kgb~

+ q, T/T e,R/T)—, (2.12)

80

BE

/r /k 8 (k ( Vjp rj + '7j /r t(j + V /// Mj A ///j )

a (2.4)

+11;vk@ +r, Vkp

+ g, ri'„m+ A,)uk'), (2.13)

where the ellipses in Eqs. (2.4) mean that during the
differentiation with respect to the variable indicated
all other variables are kept fixed.

For the equations of motion we have for the con-
served quantities

8p/Bt + '7 (p u + g ) =0,
Bo/Bt+ V' . (/ru +q/T) =R/T,

(2.5)

(2.6)

(2.7)t(g /dt + 7j(g/uj +pg/j + rr/j) =0

86/Bt+ '7 [(e+p) u + j '1 +&j(o/ju/) 0 (2 8)

I)M/8/+tVj(M/uj+ jj ) = y(H, „,x M); (2.9)

and for the variables characterizing the broken sym-
metries there are the quasiconservation laws

8$ /Bt + u, V', P + Y =0 (2.10)

In the most general case the currents q;, o-&, j, and
Y consist of a reversible as well as of an irreversible
part, whereas the dissipation function R is purely ir-

reversible. In the present paper we concentrate on
the nonlinear reversible hydrodynamic equations.
Therefore one should add the irreversible terms from
the linear theory (which can be made nonlinear in

the usual trivial manner; e.g. , ( () and then one
has to add, for a specific experimental configuration,
the other nonlinear irreversible terms which seem to
be most important.

p jM +(Ti

H; =H, —'7gA,J
T= T —V;8;

(2.14)

~here denotes the terms which come from the
eventual anholonomity of the variables characterizing
the broken symmetries. An example for this
behavior is the phase deviation in the A phase. In
addition we would like to stress that it becomes obvi-
ous from Eq. (2.10) that the currents should be ex-
panded in terms of the "renormalized" quantities p, ,
H;, T, and I

Since we are dealing with reversible hydrodynam-
ics, we put R =0 in the remainder of this paper. We
neglect the tiny magnetic dipole energy in the follow-

ing, since there is a well known procedure ' by
which it can be incorporated into hydrodynamics, if
necessary. The conservation of angular momentum
density will be taken into account by an appropriate
choice of the stress tensor. From the three com-
ponents of the magnetization density M, only the
longitudinal one m = M H,„, survives as a true con-
served quantity in a strong external magnetic field

H,„,~ Of course, one may also set up a "macroscopic
dynamics" taking into account the transverse com-
ponents of the magnetization density and this path of
thought has been pursued for the A ~ phase, ' and for
the A phase in high magnetic fields, ' yielding gaps
in some of the normal modes occurring in such a
theory.
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In the following we concentrate on a rigorous hy-

drodynamic theory and therefore we have to consider
only the longitudinal magnetization density for the A ~

phase, the A phase in high magnetic fields, and the 8
phase in high magnetic fields. In the equations for
the conserved densities we have already displayed ex-
plicitly the terms which ensure Galilean invariance
and this implies that o.

&~, q&, j&k and Y are not al-

lowed to contain contributions proportional to the
velocity whereas terms —V&e; are sti11 possible.

III. NONLINEAR HYDRODYNAMICS OF THE A PHASE
IN HIGH MAGNETIC FIELDS

In this section we present the nonlinear reversible
hydrodynamic equations for the A phase in high mag-
netic fields. As is well known' these phases are
characterized by the following order parameter

T&(r, X,t)=F(~ r ~, X,t)Aj(X, t)e'~'" ", (3.1)

where

(3.8)], which is parallel or antiparallel to the external
magnetic field, and n, which is orthogonal to 8'.

To set up the hydrodynamic equations one has to
establish first the hydrodynamic variables. This has
already been done in the literature (Refs. 25, 26, 30,
31, 33, 34, and 36), and in Ref. 42 we have listed the
variables and their behavior under various symmetry
transformations.

For the A phase in high magnetic fields we have,
for the conservation and quasiconservation laws

(2.5)—(2.10),

p+ '7 (pv +g ) =0

m + V ( m tj + j ")=0

g/+ 7j(v(gj+pStj+o(j) 0 y

o'+ V;((rtj;+ q;/T) =0

+~, 7,q +I,=O

I] + vg Vgl] +X; =0

n +v)Vgn + Y=O

and the preferred axis in real space is therefore

1 =i(L xh )

The spin part V&(X, t) can generally be written as

V=(hl —Al)d+Atri

(3.3)

(3.4)

or

V=(bl —h, )d+h, tt

with the complex spin vector d, for which

d d =1 and d d=0

(3.5)

(3.6)

and the real spin vector n. In the A phase without a
magnetic field or with a vanishing one the gaps for
spin-up pairs, ht, and spin-down pairs, 4~, are equal
and n is the only preferred direction in spin space. In
the A ~ phase, there are only spin-up pairs (At =0) or
only spin-down one pairs (At =0) and from (3.4) or
(3.5) we can construct the preferred direction in spin
space,

Atj(X, t) = Vj(X, t) hajj(X, t) (3.2)

For the orbital part we have the complex vector 4,
with

A A A A=1 and 4 4=0

where m =M H is the longitudinal magnetization
which is now a variable being even under parity and
time reversal. Thus m has the same symmetry prop-
erties as a- and p, and j the same as q and g . We
disregard the transverse components of M, H x M
and the transverse components of W, A x W (where
n ~ S W = —W Sn), since they are neither conserved
nor connected with a spontaneously broken sym-
metry (there are theories which deal with these vari-
ables ' ). Therefore, Sn =

Ktjk jlj WiSnk, which is
transverse to both n and W, is the only hydrodynam-
ic variable characterizing a spontaneously broken
symmetry in spin space. Sn is odd under time rever-
sal and even under spatial inversion. With respect to
these symmetry transformations Sn ( I') can be treat-
ed on equal footing with Sq' (I~). However, with

respect to gauge transformations, and rotations of
spin and orbit space, both variables have different
(and quite unusual) behavior.

In two recent papers"' by the present authors, a
linearized theory of He-A in high magnetic fields
was given and the properties of St and Sn were
derived; the main features are listed in Ref. 42.
Since Sf is connected with rotations in orbit and spin
space, it is affected by the anholonomity of finite ro-
tations in orbit and spin space. Thus, the Mermin-
Ho relation is generalized to

or

W=i(d xd )

W=i(d x d)

(3.7)

(3.8)

(S,S2 —828, )9' = i [(St 1 ) x (82 I ) 1

+ pt W [(S)W) x (82%)] (3.10)

with pt =
~

62t —heal~/(42t+ 52t). In the same way one
finds, for Sn,

In the A phase in strong magnetic fields, there are
two preferred directions, W [defined by (3.7) or (St82 —828t)n = W [(Bt) x (82m)l, (3.11)
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reflecting the fact that the various rotations in spin
space (Sn, 5 W/) do not commute. Of course, there is
a corresponding relation for 88'j, which we will men-
tion here for completeness only:

(8,8, -8,8, )W = W x [(8,W)(8,n)-(8,%)(8,n)] .

(3.12)

The term. P/ in (3.10) arises from the fact that the
components of &j, the spin part of the order parame-
ter in Eq. (3.4), carry prefactors —(dt —&I) and
—(Et+ Et). It is easily checked that Eq. (3.10) con-
tains as a special case the Mermin-Ho —type relation
for the A ~ phase which has been derived by Liu ',
because At or ht equal to zero implies P/= I Furth-
ermore Eq. (3.10) reduces continuously (as it should,
because there is no phase transition between the A

phase in high external fields and the A phase without
external field, contrary to the case A ~ A phase in

high fields which is accompanied by a phase transi-
tion) to the Mermin-Ho relation of the A phase
without external field. 9 Eq. (3.11) does not exist for
the A ~ phase because Sn does not exist in 'He-3 j and
in addition Eq. (3.11) is satisfied in a trivial manner
(with the right-hand side identically zero) in the A

phase without external field because 8'does not exist
when the external field is switched off, i.e., we have

de= p, dp+ Tdo+ v dg+0 dfPl

+ A. d'7 ///+/@»d('7JI;)

+ I / dl; + /I/; d '7, n + r / d '7/p

+Ojd V jar+ A, d Vjm (3.14)

In addition to the gradients of o. and p we have also
kept in (3.14) the gradients of m, which can now be
treated on an equal footing as the density and entro-
py.

For the pressure (2.3) we have, for the A phase in
high magnetic fields,

+OjV, O. +AIVjm (3.15)

For the energy density (expressed in v )F =—

e —g ~ v we find, up to third-order terms (cf. Sec. II
for a discussion of this terminology),

F =F""+F +F (3.16)

On the other hand, Eq. (3.12) does not exist for
the A phase in a vanishing magnetic field, since W
does not exist there, and Eq. (3.12) is always satisfied
in the A ~ phase, since 5n =—0 there.

The Gibbs relation (2.2) can now be specified:

~jjk~j ~k&

a relation which is well known for the A phase.

(3.13)
where F""&s the express&on from the hnear
theory,

F/'" = —,
' X-„'(Sm)'+ —,T,C (5~)'+ g, (Sp)'+ g, (Sm) (5~) + g, (Sp) (5~) + g, (Sm) (Sp) H,„,m—

p»v/ vJ —p/J( 7Jtp) v; —
p» ('7&n) v/ —CIJ' v,"( '7 x I ).

g + pj(V/ p) (—&gp)

+(p» pQ„)-(V,n)(V, V ) ——,
'
p, (p» —p, m„)(V,V )(V,q) +CJ'&( V x i ),(V,q) + ,'Q „(V,n)(V-, n)

(3.17)

(3.18)

F~s= (Sp)A»(v;" '7f') (vg —VJ/P) + (So )8»(v;" V';/j/) (v," '7)/P) —+ (Sm)D»(v—,
" V', /P) (vj" '7~/P)— —

+ (Sp) E»(V, n —P, V, V) (V, n P/'7, e) + (So)F,(—V, n —P, V, tP) (V, n P, r7,m)—
+(Sm) G»(V/n —P, '7, f)(V,n P, 7)/P) +(Sp)H»('7, n —P—, 7//P)(7 x 1),
+(So )K»(V';n —p/V, f')('7 x I )&+ (Sm)L»('7;n p, '7;/p)('7 x 1)&+—(Sp)I/I»(7/n —p/v, ")( 7 x 1)j
+(So)R/J(V;n I3/v;)('7 —x 1)i+( )SSm('»n 7p/v, ")('7—x 1)i (3.19)

+/8, (C» —
C// )(7 n)(/7 x 1)J+ K/Jk/(7/Ik)(— 7~1/)

The tensors p», p», etc. , are of the axial form p» =
p~~i, iq+ pq(5» —I;IJ) and K/Jk/ is the same as in the A phase

without magnetic fields. For details, especially the restrictions due to positivity, we refer to the linear theory.
For the contribution F we have (the terms which are similar in structure to those which have been given by

Combescot for the A phase without external field; ho~ever, Combescot has not considered the A phase in high
magnetic fields)

Fc= ('7//p —v;") e»/ IJ(///c'7kp+I3c'7/, o+yc'7km) + (. '7;n p/'7;/p) ~ Jklj(0/"V—kp+I3"'7k/r + y"'7km)

+at,(7 1 )(I8,p) +a2 I/(8;&~)(8, /r) +a/ (7 1)(I,S;/r) +a2,1;(8,IJ)(8jp)
+a/~( 0 ~ 1 ) ( I, 8/m) + a2~ I/(8/I~) (8jm)

For I'~~ we obtain the rather awful looking expression
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The tensors A/I, S/J in Eq. (3.19) are of the usual
axial form. Note that not all combinations of "velo-
cities" which one can think of are allowed in (3.19)
because of Galilean invariance.

The equations of state can be derived from Eqs.
(3.16)—(3.19) by differention:

9E 9Ep= 7i
Bp B(V/p)

= p /717'I

T= —Vi = T —%10~I
Ba B(Via)

eralization of the linear terms,

g/ = p2//" + 1//'+ pl/II/ ~

Y '
ply+ p2T+ps l (V x 2/ ) +yH

Iq~'I p, +y 1 (V x 2/ ) —ypIH

P&/p—a JaI'p(&)

( Ia I ( SIj II tJ ) Ik + ///2 ( Slk il Ik ) Ij) VJ2/k

+ ~3IkIp+pjj+k+ jT + ~sIplk+pij+k+ JH

8E 9E—Vl —

( )
=H —V/A/,

8E 9EVj B(V i) + Jl/sklpikVjip
l j l

T/ VJl/l'/J + 1// &k/p Ik VJ Ip

BI"

B(gq)
' ' B(V,n)

(3.2O)

= Tp24/ IIs Tspj/V a JaipI J

+ 51p/jkIJVk T + 52sljkIJV kH

ia "'-V4a PIV) k
—~s&pj/VaIkI I'j

+ 4kI/alj VaH —( J;2/T) s/jkIJV a T,
P3Ip&pj/V Ill/I VIp&p/JV k J/k

—[la/ (Sji IJII) II+ &2(SII JIII) Ij—jI'I

+(V/k sj~+yj, s/pa
(1) (2)

+vaj &/p//+y/q &jpa)ipVp 6(3) (3)

(3.23)

When Eqs. (3.9), (3.14), and (3.1S) are taken into
account, the yet unknown reversible currents are re-
stricted by

o=v/Ql —p, O g +(v, T)ql/T )/.
* 0I~—

HVIJ/ I'/X—
/
—/i/IVI —Y+X/kV/uk, (3.21)

X/k = &/'V aq'+4 JIVaIJ+ 4/Van + 8/Va/r

The higher-order gradient terms 03 and II5 have
been given very recently by the present authors. ' In
addition to those terms given in Eqs. (3.23) which
are generalizations of the linear terms to the non-
linear domain we find some novel terms which exist
only in a nonlinear theory, and it seems important to
notice that none of them exists in 'He-A without
external field~ These terms are

q//2/ = 1;/j(p/Sf' —Sn) VJH

J/ $/j(p/Sf Sn) VJT p

+~i+k0 + AI +k Ik

2

Ql Jl r/+ g 0/Vk pr/o' ' v
I

(3.22)

—0//p V 2/ —$/JXJ —
q/ T/ T —A/ln V 1/

—S/a(VJ(pr j) +Vj(a 8J) + Vj(/n Aj) ],

Ig& = &„"'(P,Sq Sn) V,—vj"

+q&"(P,Sq —an) V,y, ,

Yt» &st2&(p=, S q Sn) V,—~j"

~"'(P,Sq Sn) V,J,'—,

X//22 =
$/jk (p/ Sq/ —Sn) Vj2/kp,

Xp = (p/Sq/ —Sn) gg~'iVkl/k

+ vt/II 2(p/S O' —Sn) Vali/k

—4a/j( p/S /p Sn) I'a, —

(3.24)

—Ai&kJ'k

To close the set of our nonlinear reversible hydro-
dynamic equations of 3He-A in high magnetic fields
we expand the currents (q/, Ipi/, X/, Y, Xia) into the
"renormalized" thermodynamic conjugate quantities
(p „T, )/. ,H, I',, /i//, V/2/k). At first we obtain, in gen- /TII =

2 ( /r// + 0'j/) + VkII/Ik (3.2S)

A A A

4/Jk Hp(IkslJp+ Jl&kjp)

The last point to show is the conservation of angu-
lar momentum. To reach this ajm we have to bring
the stress tensor 0.~ to the form
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with II~~ = —IIJ&~.
'""%e now investigate the

behavior under rigid rotations of the hydrodynamic
variables. All scalar quantities remain unchanged,
i.e., 0-Se=Sp=So =SM, while vectors (in real

space) transform like Sgi= ft jgj, S'7;= f1&'7j (where

0// is a constant antisymmetric rotation matrix). The
transformation behavior of Sl~, Sg, and Sn can be ex-
tracted from the exact commutator relations and we

obtain
1 1Sn = , p/—epjkl Ojk Sl~ ft /jlj 8/F

2 epjkl ft jk

(3.26)
and, with (3.10),

$Q jf 0 tjVJf 'Ep+ V I lp 0Jff + Kpg lp 1 0J)g V I lg

Therefore, for rigid rotations the Gibbs relation (2.2)
takes the form

0 /// 0 J gj+X /(0 /j 7' Oj k~ej k7'1 + pejlk I Qj 7/tk) +d j(Ojk Vk! + VjQ/klk) +r, n jlj
1

+ nfl jk 7kn + r/ft/j 7jP + O/t)/j 7j/r + A/f)ik+k/n +
2 Pl/1//~/k&pjk7jtp (3.27)

With the help of (3.27) the antisymmetric part of oij
(3.25) can be brought into the required form (3.25)
with

1 g 1
fi/jk I/O jk Ij/t//k

2 ep/tip)/k 2 p/&pj/lp/I/k

if we postulate y= —,, O.2
—0'~ =1, y~i=yii=y~i

1'yl='yi. and P3= 2P/.

(3.28)

In this section we will not give the explicit formu-
las in order to conserve space. The hydrodynamic
equations are listed in Ref. 42. %e carry out here a
comparison with the results for the A phase in high
magnetic fields and show similarities and differences.

A. Ai phase

In the A ~ phase one of the two gaps At or b
~

is
zero. Therefore /8/ =1 and there is no hydrodynamic
variable characterizing a broken symmetry in spin
space. Thus, deleting all expressions of Sec. III in-
volving Sn or its thermodynamic conjugate and put-
ting P/ =1 lead, in a straightforward manner, to the
nonlinear hydrodynamic equations for the 3 ~ phase.
The equations for 3He-A

~ derived in that manner
present a generalization of the work by Liu"; e.g. ,
Liu's generalized Mermin-Ho —type relation emerges

IV. NONLINEAR HYDRODYNAMICS OF THE OTHER
SUPERFLUID PHASES OF 3He

I

naturally from our Eq. (3.10), We find in the equa-
tion for the current of the magnetization density a
term (-Q), which has not been considered previ-
ously. In addition we have found various novel
terms of higher gradient order in the static as well as
in the dynamic equations; some of these terms,
which are already present in the linear domain, have
been given by the present authors recently. '0

Although the hydrodynamics of the A phase in high
magnetic fields contains that of the A ~ phase as a
special case, there is, of course, a phase transition
between the two phases, which is —on the hydro-
dynamic level —manifest by loosing one degree of
freedom (Sn).

8. A phase (without magnetic field)

Since the A phase in high magnetic fields reduces
continuously into the A phase by switching off the
magnetic field, the hydrodynamics derived in Sec. 3
is applicable to the A phase without magnetic fields,
if H 0. However, one has to add the additional de-
gree of freedom Sn, (with n, Sn, =0 and H, Sn; =0),
which regains its hydrodynamic character in the limit
H 0. By doing so, one obtains nonlinear hydro-
dynamic equations (cf. Ref. 42) which generalize pre-
vious results (Refs. 37—39 and 47) with respect to
higher-order gradient terms. Especially we find addi-
tional contributions to the pressure (3.15) and some
additional terms to the free energy F (3.16):

F dd
= t(Sp —I Ip) tkM/epjke/ „(&jn )('7;n„) + (Sp)Aj(v;" —V;F) (vj" —7j )

+ (8/r) J&(v,"—V,p) (uj"—Vjf') + [(Sp)D,j+ (8/r) Ej)](u," '7, q/) ('7—x 1)j, (4.1)

where A~. . . EJ are of the axial form. The four last
terms can be vie~ed as generalizations of Khalat-
nikov's ( v —u *)2 terms. '~

C. B phase in high magnetic fields

The linear hydrodynamics of He-8 in high mag-
netic fields was recently given by the present au-

I

thors. " In high magnetic fields the gaps for spin-up
pairs, At, spin-down pairs, 4~, and symmetrically
mixed pairs A3 are different from each other. The
equilibrium order-parameter matrix, therefore, takes
the form"

n; =
2 Ate j; +

2 tkte f;+ 53(e x e ) (f x f );—

(4.2)
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~2
e e =f f =1, e=0=f

and the gap 4(k) is neither isotropic nor unitary. "
The existence of the external magnetic field A de-
fines a preferred direction in spin space

gext/(gext(

By Eq. (4.2) this implies the existence of a pre-
ferred direction in orbit space, too, which is given by
the vector"

1
5%=

3 plKJApHp 0jk

SH =
2 SPY HP 0 ' (4.6)

and the antisymmetric part of the stress tensor reads

(4.7)

1 1
with 7 = T, p3 =——,pt.

0 0 (4.3) D. 8 phase (without magnetic field)

Pi =-(hj —hj(/(LLj+/3. t+hj) (4.4a)

(if the formulas are connected with 5%') or by

(4.4b)

(if the formulas are connected with 58). In particu-
lar, the "Mermin-Ho" relation (3.10) reads, for the
8 phase in high magnetic fields,

(8t83 —838t)&=t8tHt(8td) x (83d)] . (4.5)

For the behavior under rigid rotations one obtains

A A

Since H~ is parallel to H, we will not discriminate
between the two unit vectors and between spin and
orbit indices in the future. This preferred direction is
identical with the quantization axis d.

Apart from the conserved quantities there are two
hydrodynamic variables connected with spontaneous-
ly broken symmetries, the phase deviation St and ro-
tation angle (about H) 58. Thereby Stp (characteriz-
ing broken gauge symmetry) is affected by rotations
in spin space and orbit space, while 58 (characterizing
broken rotational symmetry) is affected by gauge
transformation, too. Thus, we are left with a set of
hydrodynamical variables, which have the identical
symmetry properties than those in the A phase in
high magnetic fields. In the 8 phase in high magnet-
ic fields, however, the rotational symmetry in orbit
space is not spontaneously broken, but only external-
ly (by Ht) and, therefore, there are no variables like
SlI in the A phase. Thus, deleting all expressions
containing Sit (or its thermodynamic force or its
current) from Sec. 111 and identifying Sn with 58, 5IYt
with Sd&, and II with HI, we obtain the nonlinear hy-
drodynamic of the 8 phase in high magnetic fields,
which is, therefore very similar in structure to that of
the A phase in high magnetic fields (cf. Ref. 42).

There are, however, some differences in detail,
which we will mention here. Because of the different
structure of the equilibrium order parameter, the
quotient Pi = )hj —5j)/(5j+ hj) of the A phase in
high magnetic fields, has to be replaced in the 8
phase in high magnetic fields either by

F""=2X 'm +
2

T0C„' Scr

+ (4 Sp + Q Sp Str

i x( ~ Qtp)Q i
( ~)3

+Mtl gg ktp ( 7 tRJ(g ) (VkR is ) (4.8)

and the higher-order gradient terms of Combescot '
are reobtained from (3.18)

F =y (Vtt ut")etjkR~kV3M~—

+ (~ +kp+/3 +k~) eskR ~je~pvR p~+tRym

+(ttt" VttP)DM~e~syRpkVtR (4.9)

There are novel third-order terms coming from F~~

The linearized hydrodynamic theory of 'He-8 was
given by Graham and Pleiner and generalized to
the nonlinear domain by Liu and Cross. In this
section we will show how the expressions of the
preceding subsection change in the limit H'"' 0;
thereby we will give some novel higher-order terms
in the statics, which may have experimental conse-
quences.

For H'"' 0 the gap becomes isotropic
(4t 4 j 43 40) and the order parameter matrix
RI is a real rotation matrix. Therefore, the parame-
ter Pi and Pi (4.4) tends to zero and 5% is a true
scalar quantity and 8& describes simply rotations of
spin space against real space. The preferred direction
in spin and orbit space due to the external magnetic
field vanishes, of course.

Thus, the "transverse" components of the mag-
netization d x Itt] and the rotation angles about the
quantization axis d, d x Sd, become true hydrodynam-
ic variables for H'"' 0. Equation (4.5) reduces to
8t839'=838ttp and Eqs. (3.11) and (3.12) express the
well-known 8-phase Mermin-Ho relation~ (replacing
Sn by 58 and 5 W; by Sd,).

With that proviso we are able to transform the en-
ergy expression of Sec. III to the case of the 8 phase
in vanishing magnetic field. Equation (3.17) reduces
to the well-known expression
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(3.19):

F =(v —'7P) (A Sp+B Sa.) (4.10)

These terms imply a dependence of the chemical po-
tential and of the temperature on the relative velocity

Sjj, =A (v —'7&), ST =B(u —'7rjj)2, (4.11)

and a dependence of linear momentum and of A. on
density and entropy

g =2(~ —V~)(W Sp+B 8~),
=2(u —'7%)(A Sp+B So)

(4.12)

or

A A A A

Sjp' p'j=pg( S~~
—W, Wj) + pf( W~ Wj

SgX Xj = Xg(Sj —W; Wj) +X((W; Wj

(4.13a)

(4.13b)

reflecting uniaxiality. This holds as well for the dissi-

pative parameters, like viscosity, heat conduction, or
order-parameter friction. Thus, second-sound veloci-

ty and damping, first-sound damping and spin-orbit
wave dispersion relation become anisotropic even for
He-8 without external field. The magnitude of

these effects cannot be estimated, since the coeffi-
cients of the fourth-order terms are unknown. It
should be mentioned here, that the flow-induced an-

isotropy discussed above is —in its origin but not in

its phenomenology —quite different from the aniso-
tropy due to flow-induced gap distortion.

V. CONCLUSIONS

In the present paper we present the nonlinear re-
versible hydrodynamic equations for all known super-
fluid phases of 'He. From previous linear theories
we take over as hydrodynamic variables the con-
served quantities and the quantities describing spon-
taneously broken continuous symmetries. The ener-

gy density is expressed in terms of the hydrodynamic
variables including third-order terms. The dynamics

These terms were —for He II—already discussed by

Khalatnikov many years ago. ' Although we do not
know the magnitude of the parameters A and 8, the
effects described by (4.11) may be measurable.

As already stated in Sec. II, third-order terms in

the energy expression destroy the positivity of that
thermodynamic potential. From the fourth-order
terms by which one can overcome this difficulty, we

will pick out those, which have a chance to be experi-
mentally accessible. Since 'He-8 is isotropic any ef-
fect (even a tiny one), which lifts this degeneracy of
direction, may become important. There are fourth-
order terms defining a preferred direction
W—= (u —V&)/~ u —'O'P~ due to the relative velo-

city. Thereby the material parameters change into
tensors, e.g. ,

are obtained by expanding the currents or quasi-
currents into partial derivatives of the energy density.

In order to show in a local description that angular
momentum is conserved in the superfluid phases we
use a technique which is different from that used
previously in the field: we consider the behavior of-

the Gibbs relation under rigid rotations. This pro-
cedure is well known from the theory of liquid crys-
tals and allows to state concisely the restrictions on
some of the phenomenological parameters.

The nonlinearities introduced on the static as well
as on the dynamical level contain higher-order gra-
dient terms, contributions due to the inhomogeneous
structure of the equilibrium order parameter, and, for
the first time, terms quadratic in the velocity differ-
ences like, e.g. , (v;"—'7;F)'. Such terms have been
considered in He II a long time ago by Khalatnikov. '

This type of terms becomes even more important if
one takes into account fourth-order terms in the
free-energy density (which are required in order to
guarantee thermodynamic stability!). Thereby a pre-
ferred direction (induced by flow) is established and,
e.g. , the B phase without magnetic field becomes
uniaxial in orbit space. All other phases, which are
uniaxial in orbit space due to I (A or A ~ phase) or
H (Bphase in high magnetic fields), turn over to
biaxial systems (in orbit space) if these flow-induced
fourth-order terms are taken into account. It is diffi-
cult, of course, to give quantitative estimates of these
new effects due to the lack of a microscopic calcula-
tion for the phenomenological parameters involved.
In addition, the effects described above should be
contrasted to recent theories which discuss flow-
induced gap distortions via microscopic calculations.

Another general feature of the nonlinear terms is
the mixing of spin-space and orbit-space variables.
Thereby various couplings of spin space and orbit
space are established. Especially in the A phase
without magnetic fields, where in a linear theory only
magnetic dipole forces provide a coupling of spin and
orbit space, the nonlinear terms introduced in Sec. III
can have measurable effect on inhomogeneous equili-
brium structures, solitons, mode coupling, and spin
echoes. In the nonlinear domain, the spin part of the
A phase without magnetic fields is, therefore, not iso-
morphic to an antiferromagnet.

For the other phases the coupling of spin and orbit
space due to nonlinearities has to be compared with
the coupling of spin and orbit space due to those
linear terms which owe their existence to the external
magnetic field.

In conclusion, we state, that the 3 phase in high
magnetic fields contains as special cases the 3 ~ phase,
the A phase without magnetic fields (apart from de-
grees of freedom, which loose their hydrodynamic
character in an external magnetic field), and the B
phase in high magnetic fields (at least from a struc-
tural point of view).
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