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The size effect for the heat transfer between small particles and liquid helium is theoretically

investigated at low temperatures. The general expression is presented for the thermal boundary

resistance due to phonon conduction between a small particle and liquid helium. The resis-

tances are calculated under some experimental conditions, which exhibit a T variation above

some temperature. Above this temperature the absolute magnitude of the calculated resistance

also coincides with that of the acoustic mismatch theory for a bulk solid. Below its temperature

the resistance increases exponentially with decreasing temperature. This temperature depends

on both the size and the elastic properties of a small particle.

I. INTRODUCTION

It is known that a finite-temperature discontinuity

develops between a solid and liquid helium when a

heat flux is maintained across the interface. For
small temperature differences, the ratio of the tem-

perature jump to the heat flux is defined as the ther-

mal boundary resistance Rg. The discontinuity was

first discovered by Kapitza, ' and Rg is now referred
to as the Kapitza resistance. The theory of the Kapit-
za resistance has been given by Khalatnikov, ' which

(the so-caiied acoustic mismatch theory) predicts that
the conductance h~ =R~' exhibits a T' variation.
The physical ground of this temperature dependence
arises from Debye spectrum of the phonons in a solid

and therefore one would expect a close T depen-
dence of the conductance h~ for most bulk solids.
The experimental data are generally in qualitative

agreement with the acoustic mismatch theory' below

about 0.1 K, although the actual magnitude of Rg is

often one order of magnitude smaller than the calcu-

lated one. 3

In the experiments on the thermal resistance below

about 100 mK, solids have been often used in the
form of small particles with micron size in order to
make the surface-to-volume ratio large. There are
several cases7 9 using metallic particles which contain
magnetic impurities in low concentration. Mills and
Beal-Monod' "discussed in detail the contribution
of magnetic coupling for these systems. At low tem-
peratures the finite size of small particles may play

some important roles for heat exchange. Harrison
and McColl' and Harrison' have recently made re-
marks on the importance of the size effect for pho-
non conduction to the heat transfer between small

particles and liquid helium at very low temperatures.
However, no theoretical attempts have yet been

made in order to clarify the size effect on the heat
transfer.

This paper presents a theory for the thermal boun-
dary resistance due to phonon conduction between
small particles and liquid helium. In Sec. II, we
describe, at first, the expression of the phonon emis-
sion from a small particle to liquid helium. From this
expression the explicit form of the thermal boundary
resistance R~ is written down in such a form as it
depends on the surface displacement due to thermally
excited phonons in a particle. Particles used in ex-
periments take various form such as flakes or
powders with micron size. ' ' In this paper, an elas-
tic sphere is employed as a model of small particles.
It will be argued later that the shape of particles does
not seriously give rise to the correction against the
main result of the present work. In Sec. III, the
eigenmodes of elastic waves in a spherical particle are
discussed in detail. We show that only the spheroidal
modes contribute to the heat transfer. The discrete-
ness of the eigenfrequencies and the presence of the
finite lowest eigenfrequency will become clear in this
section. In Sec. IV, the displacement field due to the
spheroidal waves is quantized. In Sec. V, the thermal
resistances R~ are calculated by illustrating copper
and silver particles with various radii. It is shown
that the Rg increases exponentially with decreasing
temperature below the temperature corresponding to
the finite lowest eigenfrequency. Above this tem-
perature, the R~ shows the close T ' dependence as
well as those between most bulk solids and liquid
helium. In addition, it will be shown that the present
theory recovers the acoustic mismatch theory2 at
large particle size. In Sec. VI, we summarize and dis-
cuss our results. Some remarks are made about the
experimental data on the thermal boundary resistance
R~ between metallic particles and liquid helium.
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II. GENERAL EXPRESSION FOR THERMAL
BOUNDARY RESISTANCE Rg BET%BEN A SMALL

PARTICLE AND LIQUID HELIUM

closed surface of the integration to be a sphere of ra-
dius r, the mean energy emitted per unit time and
unit area is found to be

A. Emission of sound vraves from a sma11 particle

Let us consider an elastic body with finite size os-
cillating in liquid helium, which causes a periodic
compression and rarefraction of the density of liquid

helium near it. These propagate in the form of
sound waves. The mean rate of emitted energy from
the small particle is given in terms of the square of
the fluid velocity v( r ), 'q

q=p, c, J Jt~v(r)~'dS, (2.1)

Pq'( r ) =fq(8, P) pe[xiq(r R)]/r— (2.2)

where 8 is the radius of the particle. The function

fq(8, @) is determined from the boundary conditions

on the surface of the particle. By taking the gradient
of Eq. (2.2), we obtain the expression for the square

of velocity at r in terms of the surface velocity
v (R, 8, $) of the particle as

[v'( r )]'= '
[v,'(R, 8, y))'2r' I+(qR)'

+ [[vq(R, e, y) ~'+ ~v~&(R, e, y) ~']

(2.3)
Since the second and third term in Eq. (2.3) are

negligible compared with the first term at large dis-

tance r ))8, we have

[vq( r )] = ~vq(R, 8, y)~ (24)
2r2 1+q 8

Substituting Eq. (2.4) into Eq. (2.1) and taking the

~here pL, and cL, are the mass density and the sound
velocity of liquid helium, respectively. The integral is

performed over a closed surface surrounding the
small particle. The energy carried away by sounds is

supplied from the kinetic energy of the surface
motion of the small particle. e take the velocity

potential in liquid helium as the scalar function

p( r, r) defined by v( r, r) =grad&( r, r). The equa-

tion of motion for the velocity potential is derived
from the Euler's fluid equation, The general solution
can be written as the superposition of the velocity po-
tential Qq( r ) exp( —i &oqt) belonging to the eigenfre-

quency so~ = cL,q. At sufficiently far from the spheri-
cal particle, having its center at the origin, the solu-

tion may be written simply in the form

(2.5)

where d 0 = sine d ed/. It should be noted that in

the limit R ~ Eq. (2.5) reduces to the rate of
emission of sound waves per unit area from plane
surface. On the surface of the small particle, the
fluid velocity v(R, 8, $) must be equal to that of the
surface motion of the small particle. Provided that
the surface displacement of the small particle is de-
fined as u (R, 8, p, r), its time derivative is simply
the velocity of the surface motion, i.e.,
v(R, 8, f, r) = BU(R, 8, $, r)/dr. Thus, we can esti-
mate the rate of emitted energy ~~ from the small
particle by the surface displacement u (R, 8, P, t)

8. Expression of the thermal boundary resistance R~

Equation (2.5) is the classical formula for the rate
of emission of sound waves due to surface oscillation
of a particle. In order to obtain the expression of the
heat transfer it is convenient to ~rite down the for-
mula (2.5) in terms of the quantized displacement.
The displacement vector u( r, r) at an arbitrary posi-
tion r in a spherical body is expressed by the sum of
the eigenrnodes. If the eigenmode belonging to the
eigenfrequency coJ is defined by u J( r ), the elastic
~aves are quantized by replacing the amplitude of the
expansion by the boson operators aJ and aJ. J
stands for a set of possible quantum numbers speci-

fying the eigenmodes in the spherical particle. The
explicit form of quantum number Jwill be given in

the Sec. IV. The displacement-field operator is writ-

ten in the general form

u,q( r, r) = $u, q( r, r)

&/2

[aJuj( r )e "'+H.c.],
J 2ppEd jV

(2.6)

where V and p p are the volume and the mass density
of a spherical particle, respectively. Putting
u, (R, 8, $) =i,(R, 8, P) into Eq. (2.5) and taking the
thermal average of the square of velocity at a finite
temperature, the heat flux density Qp( T) into liquid
helium is given by summing up over all of the eigen-
modes (J]
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~QP= Qp(Tt) —Qt (Tt), (2.8)

where Qt, (T3) is the heat flux density from liquid
helium into the particle. Since the net heat flow has
to vanish at equal temperature (Tt = T3), we have
the relation Qt. (T3) = Qp(T]). If the difference in
temperature (t3.T = Tt —T3) is small ( T3 ))AT),
Eq. (2.8) becomes

where H = g~ttruJaJ aJ and P = I/ks T. We have

used the relation that the eigenfrequency ~J in the
particle is the same with that of the compression
wave in liquid, i.e., eoJ = qc~, originating from the en-
ergy conservation law.

Let us consider the heat flow from a small particle
at temperature T~ into liquid helium at T2. The net
heat flux across the interface is given by the differ-
ence of the heat flux per unit area,

mining the eigenmodes in the spherical body.
Now we consider sma11 particles in contact with

liquid helium. Since liquid helium has a small mass
density (pt. —0.142 gctn 3 for 4He, pc —0.0815
gcm ' for 'He) compared with those of small parti-
cles, the appropriate boundary conditions determining
the eigenmodes may be taken as those for a stress-
free surface. The boundary conditions are written in
terms of the potential functions

[(x'7 '7+2pB„)yt+2pB„(A/3/r)]„g =0, (3.4)

[Bz[2B„(p~/r) +2B,(1/r) B„(r&3) —2%3&3]

+ r B~B,($3/r)/sin8], R =0, (3.5)
and

[B~[2B,(y)/r) +2B,(1/r) B,(r p3) —2'7'p3]/sin&

lt Qp(T) = hx/3, T

where the heat conductance is defined as

(2.9)
—r BqB,(&3/r) ) „ tt =0, (3.6)

where the angular momentum operator A in Eq.
(3.4) is defined as

BQp( T)

aT
(2.10)

The thermal resistance is obtained by the inverse of
the conductance R~ = h~'. The rest to be done is to
determine the eigenmodes of elastic waves in a parti-
cle and to quantize them.

III. EIGENMODES OF ELASTIC WAVES IN
A SPHERICAL PARTICLE

The small particle considered here is assumed to be
spherical and isotropic as mentioned in Sec. II. The
elastic wave equation for the displacement vector
u ( r, t) can be written down as

pp
' ' = (a+2p) '7[ V u( r, t) ]

Bt
—pV x[r7 xu(r, t)], (3.1)

where A. and p, are Lame coefficients. The elastic
motion may include three independent orthogonal
modes. The displacement vector u( r, t) is expressed
through a scalar potential pt and vector potentials p3
and p3, using the equation

u( r, t) = '7P~+ '7 x Q3 + '0 x ('7 x P3) (3.2)

y, =(r, 0, 0)y, (i =2, 3) (3.3)

As will be seen later, the above definition of the vec-
tor potentials gives us a good perspective for deter-

The first term is the longitudinal mode with dilation.
The others indicate the two transverse modes without
dilatation. Without loss of generality, we can take
the vector potentials as

A = —(I/sintt) B~(sinHB~) —B&/sin'8 (3.7)

Now let us specify the explicit form of the potential
functions from the boundary conditions Eqs.
(3.4) —(3.6). According to Eqs. '(3.1)—(3.3), the po-
tential functions may satisfy the wave equations

p&
—cd'73$& =0 (j= 1, 2, 3) (3.8)

The velocities CJ are expressed in terms of the Lame
coefficients X and p, and the density p p of the solid
as

ct'= [(X+p)gi i+ p, ]/pp, (3.9)

where 8J ~ are Kronecker's 5. The general solutions
of Eq. (3.8) are expanded by the associated Legendre
polynomial Pt~ ~(cos0) and the spherical Bessel func-
tion jt(x) as

p&( r, t) = X A&' jt(kjr)P) (costi)
I~N, olk

J x exp[ —i (m d + cok t) ]J
(lml~i. j=l, 2, 3) .

Here the suffix j in Eq. (3.10) means the longitudinal
(j =1) and the transverse (j =2, 3) modes, respec-
tively. [Al' ] are the expansion coefficients. The
wave number kJ is defined by the relation cok = kjcj.J
Substituting Eq. (3.10) into Eqs. (3.4) —(3.6) we have
the boundary conditions as follows:

(3.10)

(2kt'/g) [(l —I)/g —T']B y

+ k3 [2(l —I )/q —I + 2 Tt+/rt] Bttf3

+ B~(B,—1/r) P3/sin0 =0, (3.12)

k~ [—(2p, + h. ) +2pl(l —I)/(3+4pT&+/g]Q,
—2pl(1 +1)k3 [(1—I)/v)3+ Tt+/rt]y3 0

(3.11)
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and

(eq —q/), „=o . (3.14)
[2k,'/(g sine) ][(I—I)/g —T+]B,y,

+ (k32/sine) [2(I' —I ) /v]' —I +2 Ti+/g] oui]i3

+ oii( I/r —8„)i]i2 =0,
(3.13)

where g = kiR, q = k,R = k3JI. T~+ is the raising
operator of the spherical Bessel function defined as
Tij i =ji+i. Equations (3.12) and (3.13) bear two in-

dependent equations, one of which gives the relation
between the potentials i[ii and i]i3, the other is about
i]i2. The independent condition for the potential ill2

The modes obtained from the above condition (3.14)
have no radial component of oscillation as under-
stood from the definition of displacement
u( r, r) = (0, Bi]i2/sin88$, —Biii2/88). These modes
are called the toroidal waves' by seismologists. Then
these waves do not contribute to the heat transfer
between liquid helium and a small particle. The
modes determined from the other condition on po-
tentials iiii and ill3 and Eq. (3.11) are called the
spheroidal waves. These modes have the radial com-
ponent of surface oscillation and contribute to the
heat transfer. By using the relation (k3/ki) = (g/g)
and Eq. (3.10) we have the two equations

(g/g)'[ —(2p +z) +2@i(/ —I)/g'+4(pl() &(+1& ir ji(g) 2@i(i+—1)[(1—I)/q'+ Ti+/v]]a j' J (g) = 0 (3.15)

2((/VJ') [(i—1)/( —T']3("ji(()+[2(i' —1)/g' —1+2TI'/ri]~5 Jl(ri) =o (3.16)

By coupling tlM corldltloiis (3.15) and (3.16), tile eigellvalue equatioll ls obtaIned as fof I ~~0

(I —I)(/+2) Ji+»
2ji+i f 2

1+
'n '9 JI 'g'( )

(I -I)(2i+I) I 2i(i-I)(i+2) ji.i(»
+J&(g) ——+, +—I—

2 ji(g)
=O . (3.17)

The above equation will be solved numerically with

respect to the single variable q by the use of the rela-
tion ri'/0' = k32/k i2 = (2p, + &)/p, . It should be noted
that the eigenvalues q obtained from Eq. (3.17)
depend only on the integer I.

fun«iona alii( r, r) and iti3( r, r) take the general form

X A;'j((kIr)P) ~(cose)
~in' g I

1

xe ' &exp( ie)ki i), —

IV. QUANTIZATION OF THE SPHEROIDAL WAVES:
PHONONS IN A SPHERICAL ELASTIC BODY

The displacement vector u ( r, t) in a spherical
body is expanded by the sum of the toroidal modes
and the spheroidal modes as mentioned in Sec. III.
Since the toroidal modes do not contribute to the
heat transfer, we need only the quantized displace™
ment of the spheroidal modes for describing the heat
transfer. The quantization of the spheroidal modes is
the subject of this section. The displacement field
due to the spheroidal modes is expressed by the sum
of the first and third term of Eq. (3.2). The potential

iii3( r, r) = g A~™ji(k3ir)P) ~(cose)
I» IN» sttI

3

xe ' &exp( —icui', r) .
3

(4.2)

Here eo][I means the eigenfrequency of the spheroidalJ
mode specified by a set of integers (I,m). We allow
the potentials to be complex valued. Prom Eq.
(3.16), we find the ratio of the amphtude
a(l) =HI /Ag™t beo

2«-1)Ji(~) -2e.i(r)
~(&)=, , (4.3)[n' —2(i' —I ) ]Ji(n) —2nji+i(~)
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By using the above relation, the displacement vector due to the spheroidal modes is expressed by

-t~'r
us ( r, t) =At~ ('7 [jt(k[r)Pt~~i(cos8)e '~~]+~(l) V x '7[(r, 0, 0)jt(kt3r)Pt~~~(cos8)e '~~])e (4.4)

)g ltm
f

—2

where the lower suffix of the displacement S means the spheroidal mode. The wave numbers k~ and k3 are relat-
ed through the dispersion relation &os = ctkI = c3k3. It is clear that the spheroidal modes expressed by Eq. (4.4)
are orthogonal to each other. The normalization condition is expressed by the following integral:

(4.5)

Substituting Eq. (4.4) into Eq. (4.5), we have
rR t2e

() V [jt(kfr)Ptl~l(coslt)e ~~0]
i

+a (l)
I
& x '7[(r, 0, 0)jt(k3r)Ptl~l(cose)e '~e]

~
)r dr d II

(4.6)

The first term on the right-hand side of Eq. (4.6) be-
comes the simple relation using the integral formula
of the associated Legendre polynomial

2rrI(l, m) J,(l)/k',

where I(l, m) is defined as

2(l+ (m ))!
(l —

I ~ I) &(2l +I)
and

(4.7)

(4.g)

2n n (l) I(l, ttr) J3(l) I(l +1)/k3
where

(4.10)

tak3R

J3(l) = l(l +1)jt (g) dg

+3R
+ [(8,+ I/g) J,(g)]'g'dg . (4.11)

From Eqs. (4.7) and (4.10), Eq. (4.6) becomes

~tt"=[J,(l)/k', +~'(l)l(l+ )IJ( )i/k]3t''t-

J, (l) = „[Bp,(g)]~$2dg+l(l +1)
&

j2(g) dg

(4.9)

From the similar procedure the integral of the second
term of Eq. (4.6) can be written

It is clear now that the quantum number J used in
Eq. (2.6) is specified by a set of (I,m, cost). In Eq.
(4.13) a, t and a, t are the annihilation and"s "s
creation operator of (l, m, rust)-mode phonons satisfy-
ing the commutation relations for boson operators.

V. THERMAL BOUNDARY RESISTANCE BETWEEN
LIQUID HELIUM AND A SMALL PARTICLE

We have given the general formula for the heat
conductance hg for an arbitrary size of a particle by
Eqs. (2.7) and (2.10). The eigenvalue equation of
the spheroidal modes which contribute to the heat
transfer are obtained by Eq. (3.17). In this section,
we give a numerical estimation of the thermal boun-
dary resistance R~ due to phonon conduction
between liquid helium and copper or silver particles.
As seen from Eq. (2.7), we need the thermal average
of the radial component of the velocity at the surface,
The radial component of the quantized displacement
of the spheroidal waves is expressed by using Eqs.
(4.13) and (4.4) as

' 1/2

u,ps, ( r, t) =
I 2ppoJS V

x [21(l,m) m] (4.12)

Thus we have obtained the normalized spheroidal
mode u~™of Eq. (4.4). The quantized
displacement-field u, ~,s( r, t) can be expanded in
terms of us ( r, t) as follows by taking its being real
into account

where

—l tu
x [a, tug', ( r )e s +Hc]

(5.1)

u,ps( r, t) =
' 1/2

xP~ ~(cosH)e ' ~ (5.2)

up~( r ) =3 tt" [B,jt(kttr) +a(l) I(l +1)jt(k3r)/r]

x [a, , ust ( r )e +H.c.]

(4.13)
Taking the time derivative of Eq. (5.1) and putting
r = R, we have for Eq. (2.7)



Ji T [exp(-PH)u. ..„(R) M...,(R)] dn= [e,j,(kir) ~, „]'+~'(i)I2(i+1)'
4e 0

(s.s)

The heat conductance hx is obtained by differentiating Eq. (5.3) with respect to temperature T as defined by Eq.
(2.10). Thus the explicit form for the heat conductance becomes

Irp~ci (2I+1)(rug')4R'
][0,~,—(kir) ~, ,]'+n'(I) I'(I+1)'~,'(k3R)/R'] e,n(~I, T) .

4~p~, ( us(I)[cL+((asIR)']
I, cup

(s.6)

(5.3)
where n(o& sT) is the Bose-Einstein distribution function. We used in Eq. (5.3) the following definition from Eq.
(4.12)

2~I(i, m) JA I"J'=~,'v, (I) . (5.4)

Here vs(I) has the dimension of the velocity, which is defined as

v (I) =c J (I) +c u (I)I(I+1)J (I)

The prefactor (2I+1) in Eq. (5.6) means the degen-
eracy. The integer m is eliminated through the ex-
pression (5.4).

The eigenvalue equation (3.17) for the spheroidal
modes has been solved numerically on the variable

q = k38. %e have used the following set of parame-
ters c~=5.01 &105 cmsec ' and c3=2.27 &105
cmsec ' for copper particles, and c~ =3.65 & 10'
cmsec ' and c3=1.66 x10 cmsec ' for silver parti-

cles, respectively. The mass densities are taken from
the corresponding bulk values to be pp 8 96 g cm
for copper and p~ =10.5 gem

' for silver particles.
The eigenvalues up to I =10 for Copper particle are
given in Table I in Appendix A. The other eigen-
values used in the calculation need too much space to
be included here and are available elsewhere. '6 It will

be seen from Table I that the number of states per
unit interval of g increases with approaching to the
larger part of the eigenvalues. The reason of this

tendency is clear from the fact that the wavelength
corresponding to the large eigenvalue is small com-
pared with the size of a particle. Then the number of
states in the region of the large eigenvalues becomes
denser. The eigenvalues for silver particle are not
given here.

Figure 1 shows the calculated results of the ther-
mal boundary resistances Ag between liquid 4He and

copper particles with radii 8 =500 and 5000 A for
the temperature range from 10 mK up to 1 K. %e
have taken the eigenvalues up to k38 =100 in order
to calculate the full curves in Fig. 1. This figure
shows that the resistances A~ is almost proportional
to T above 200 mK for the particle with radius
R = 500 A„and above 20 mK for R =500 A. Below
these temperatures, the resistance Rg begin to in-

crease exponentially. This is because these tempera-
tures perceive the presence of the lowest eigenfre-
quency. Figure 2 shows the thermal boundary resis-
tances Ag between liquid 4He and silver particles with
radii 8 =500 and 5000 A. The eigenvalues are also
taken into account up to k38 =100. Since Lame

coefficients and the mass density of silver particles
are smaller than those of copper particles, the smaller
resistances are obtained compared with those of
copper particles. The temperatures, above which the
exponential behavior appears, are also found in the
case of silver particles. These temperatures are about

10 .—5 Cu -HeH

)c~ R=500A
g

:R=5000A'

10 .-
AM THEuRY

K
10—

10' =

10—

10' 10' 10'
T (rnK)

FIG. 1. Thermal boundary resistance between copper par-
ticles and liquid 4He. The radii of particles are taken to be
500 and 5000 A, respectively. The dotted curve is the ther-
mal boundary resistance for a particle ~ith radius F000 A by

taking only the eigenvalues up to k3R =20 into account.
The full curves represent the results by taking the eigen-
values up to k3R =100. The dot-dashed straight line indi-

cates the result for a bulk copper (Ref. 2).
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R=5

~1p.—

1

E 'p:-R=5

to the eigenvalue k3R = 20 by the dotted curve. It
will be seen that these are inadequate to recover the
high-temperature regime.

The exponential behavior in the low-temperature
regime is easily understood by taking the few lowest
eigenvalues into account. For instance, in the case of

0
copper particle with radius R =5000 A the lowest
eigenfrequency becomes &us=1.11 x 10' sec ' using

k3R =2.45 from Table I. Taking this lowest eigen-
frequency cps into account the resistance Rg becomes

16m p~us(0) ksc3 cL + (rusR)

h'pLcL(o)s)' (rusR)

1d .—
~~s

~ [jt(ic30R)] 'sinh', T' .
2k' T

(5.8)

1p .—
We see the exponential behavior of the resistance R~
originates from the lowest eigenfrequency in the
low-temperature regime.

]p' )p2
T (mK)

1p

FIG. 2. Thermal boundary resistance between silver parti-

cles and liquid 4He. The radii of particles are taken to be
0

500 and 5000 A, respectively. The dotted curve is the ther-
mal boundary resistance for a particle with radius 5000 A by

taking the eigenvalues up to k3R =20 into account. The full

curves represent the results by taking the eigenvalues up to
k3R =100. The dot-dashed line indicates the result for a

bulk silver (Ref. 2).

100 mK for a silver particle with R =500 A and
about 10 mK for R =5000 A. The other behavior is

similar to the cases of copper particles. The magni-
tude of the thermal boundary resistances R~ for bulk

copper and silver are given by the dot-dashed straight
line in Figs. 1 and 2. These are from the acoustic
mismatch theory, ' which is given by

15p~(c3) 3lt'3

R»(bulk) =
2 4

T
2m pL, cLkgFLs

(5.7)

The numerical estimation of the factor FLs for vari-
ous solids has been performed by Challis and
Cheeke, ' which gives FLs =1.53 for both copper and
silver. It should be noted that the magnitude of the
calculated resistance of small particles becomes the
same with that of a bulk solid in the high-
temperature regime. This indicates that the present
theory approaches to the acoustic mismatch limit at
large particle size. We have also added in Figs. 1 and
2 the thermal boundary resistances R~ only taking up

VI. SUMMARY AND DISCUSSIONS

We have theoretically studied the thermal boun-
dary resistance between liquid helium and small parti-
cles. The formula (5.6) for the resistance R» has
been derived by considering a spherical elastic parti-
cle. It has been shown that only the spheroidal
modes contribute to the heat transfer. The eigen-
values of the spheroidal modes have been obtained
numerically from Eq. (3.17). The resistances R»
have been calculated by using these eigenvalues for
silver and copper particles with radii R = 500 and
5000 A. The calculated resistances R~ in Figs. 1 and
2 show the T ' variation above some temperature
corresponding to the finite lowest eigenfrequencies of
small particle. This temperature dependence is iden-
tical to the prediction of the acoustic mismatch
theory2 for a bulk solid. It should be emphasized that
at the high-temperature regime the magnitude of the
resistances Rg coincides with those of bulk solids.
The physical meaning of these results is clear because
the wavelength of the thermally excited phonons be-
comes small at high temperatures in comparison with

the size of a small particle and the size effect is ir-

relevant in such a temperature region. In other
~ords, the present theory is an alternative derivation
of the acoustic mismatch theory2 at large particle size.
The resistance R~ increases exponentially with de-
creasing temperature. The exponential behavior of
the resistance R~ arises from the finite lowest eigen-
frequency which depends on the size and the elastic
properties of a particle.

The shape of a particle has been assumed to be
spherical. The exponential behavior for the tempera-
ture dependence would not be altered even if taking
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TABLE I, The dimensionless eigenvalues q = k3R for a copper particle. The integer 1 of the column means the order of
Legendre polynomial. The integer n of the row indicates the nth modes belonging to the 1th-order oscillation.
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7.33
8.70
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11.45
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17.02
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6.25
9.43

11.76
13.31
14.71
16.07
17.43
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20.11
21.46
22.81

9.21
10.76
12.68
15.13
17.40
19.61
20.61
21.99
23,35
24.69
26.02
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15.38
16.8&

18.54
20.63
22.84
24.82
26.43
27.87
29.25

13.57
16.72
18.52
19.&8

21.42
22.87
24.39
26.15
28.20
30.27
32.11

15.58
17.17
19.88
22.64
24.50
25.97
27.40
28.&2

30.27
31.82
33.60

18.74
20.27
21.77
23.37
25.74
28.32
30.39
31.91
33.34
34.75
36.17

20.61
23.41
24.91
26.39
27.87
29.41
31.42
33.87
36.12
37.80
39,26

into account the difference in the shape of particles.
This is due to the fact that the finite lowest eigenfre-

quency for any particles with finite size leads to ex-
ponential behavior on the temperature dependence.
At high temperatures, the dominant phonons for the
heat transfer have much shorter wavelength than the
size of a particle, then the shape is irrelevant and the
resistance R~ will approach to the acoustic mismatch
limit. The T ' dependence of the resistance R~ in

the high-temperature regime has been observed ex-
perimentally between liquid 'He and metallic parti-

cles. The observed resistances, ' however, show

the dip around about 10 mK. Metallic particles
have contained small amounts of various types of
magnetic impurities. Mills and Heal-Monod' '" dis-

cussed in detail the magnetic contribution to the heat
transfer in these systems.

Finally, we should note that metallic particles used
in experiments' would be covered with the oxide
layer or the 02, H20, and other adsorbed gases with

about 100-A thickness. The oxide layers may include

the molecules with paramagnetic moments as sug-

gested by Potter, ' which will be possible to exchange
heat through the magnetic coupling with liquid 'He.
In addition, it is known that phonons in a metal cou-

pie with electrons and expected' that these effects
may play some roles for the heat exchange. We hope
to consider these problems in a future paper. In con-
clusion, although we have studied only the acoustic
coupling, the present results will permit us to discuss
some aspects of the thermal boundary resistance
between small particles and liquid helium.
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APPENDIX: EIGENVALUES OF
SPHEROIDAL MODES

In this Appendix we give the ergenvalues which
have been obtained by solving Eq. (3.17) numerical-
ly. Table I shows the dimensionless eigenvalues

q = k3R for a copper particle. We used the following
set of parameters c~ =5.01 x10' cmsec ' and
c3 2.27 && 10 cm sec '. The eigenvalues k3R up to
(I = 10, n = 10) are included in Table I.
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