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A classical model system, consisting of a diatomic molecule chemisorbed on a solid surface
and subjected to infrared laser radiation, is presented. A set of coupled equations of motion
characterized by the many-body effects of the surface atoms is reduced to the Langevin equa-
tions of a two-body problem in transformed coordinates. The surface-induced damping factor
and frequency red shift of the pumped mode are introduced by using a Wigner-Weisskopf-type
approximation. The asymmetric forms of the power absorption and the quantized cross section
due to the nonlinear effects of the anharmonicity are shown. The energy due to the nonlinear
effects of the anharmonicity are shown. The energy absorption profiles (energy absorbed versus
time), which are universal for any ranges of laser intensity (i.e., as the intensity changes the
profile remains the same provided the time scale is changed appropriately) are plotted for dif-
ferent sets of the damping factor and the detuning. It is found that much longer time scales
(microsecond) are required for low-power excitations than for the high-power cases. The ad-
vantage and difficulties of the normal-mode method and the numerical method are discussed,
and a new set of coupled equations in the rotating frame are developed. The energy absorption
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profiles generated by a numerical method of a CO-Ni system are shown.

I. INTRODUCTION

The interaction of infrared radiation with species
chemisorbed on a solid surface has been extensively
studied recently.!~!3 In our previous papers, the po-
tential importance of laser-stimulated surface
phenomena in heterogeneous systems (migration,
recombination, desorption, and rate processes) in
chemical industry and material science was pointed
out.’ The possibility of controlling surface phenome-
na by means of low-power radiation was presented by
a simple kinetic model combining the laser rate equa-
tion and the Langmuir equation.® Experimental evi-
dence has suggested that laser-stimulated surface
processes (LSSP) may be characterized by selective
excitations and hence are nonthermal in nature.!

The nature of LSSP (selective versus nonselective)
has been more recently studied by a theoretical
model where the level population dynamics of a mul-
tilevel system were quantitatively discussed. It was
shown, in a quantum-mechanical model, that the
time scales of LSSP in a heterogeneous system were
much longer than those of a gas phase system, due to
the fact that the associated laser power of the former
system was much lower than that of the latter sys-
tem.!!"12 Furthermore, the selectivity of the pumped
mode, essentially characterized by the ratio of the
pumping rate and the energy relaxation rate, was
analyzed in terms of a competition between multi-
photon and multiphonon processes. For high selec-
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tivity, a long lifetime (i.e., a weak damping) of the
excited pumped mode is required.!> !

Most of our previous models have been cast in a
quantum mechanical framework, using a microscopic
Hamiltonian which is based on the quantizations of
the normal model.5~* The associated reduced
masses, the coupling factors, and the driving force of
the quantum Hamiltonian are transformed quantities
defined in the normal coordinates and hence are not
explicitly expressed as the functions of the original
force and the atomic coordinates before the normal
transformation. Hence, some of the features of the
original physical system are not clearly displayed in
quantum-mechanical calculation. We have thus un-
dertaken a study of a model system based on a classi-
cal Lagrangian where the masses and the driving
forces are defined in terms of the real atomic coordi-
nates. From a classical model we may investigate
more details of the physical picture of a real system
(e.g., how the active modes and the associated gen-
eralized force may be generated and singled out from
the bath modes), which may not be readily available
in a quantum formulation.

In the present paper, we shall present a classical
model described by a Lagrangian of a system consist-
ing of admolecules chemisorbed on a solid surface.
The many-body problem due to the interactions
among the admolecules and the surface atoms will be
reduced to a two-body problem, and then the absorp-
tion cross section of the system and the stored ener-

64 ©1981 The American Physical Society



24 CLASSICAL MODEL OF LASER-STIMULATED SURFACE.. .. 65

gies of the pumped modes will be computed analyti-
cally. The nature of LSSP and the excitation time
scales, essentially characterized by the damping factor
of the pumped mode, will be discussed in light of nu-
merical results based on a set of classical equations of
motion.

In Sec. II, a model system described by a classical
Lagrangian, including the anharmonicities of the ad-
molecule and the many-body couplings of both single
phonons and multiphonons is presented. A set of
transformed equations of motion containing some
important physical features is discussed. In Sec. III,
the Langevin equation of a reduced two-body prob-
lem of single-phonon processes is developed, where
the many-body effects of the surface atoms are re-
placed by a damping factor and frequency red shift of
the pumped mode. We then obtain the power ab-
sorption and the associated cross section (in a quanti-
zation form) of the system by solving the Langevin
equation. The steady-state energies stored in the
pumped modes are computed.

The universal energy absorption profiles and the
time scales of LSSP for arbitrary laser powers
(10—~10'2 W/cm?) are shown in Sec. IV. The discus-
sion on the normal—mode method and a set of new
coupled equations in the rotating frame, which en-
ables us to overcome same difficulties of the usual
numerical methods, are presented in Sec. V. Finally,
we close the paper in Sec. VI with a summary and
conclusion of the main features of LSSP.

II. TRANSFORMED EQUATIONS OF MOTION
OF A MANY-BODY SYSTEM

We consider a madel system (as shown in Fig. 1)
with a diatomic molecule (admolecule) chemisorbed
on a solid surface and subject to infrared laser radia-
tion. The Lagrangian may be written as

£ =8+ I xF() 1
£0= 2 mll%(x..iz_wilez) —el,x,»3—-ez,x,4]
i=1,2
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where m;, x;, w; (i=1,2,3,...) are the mass, the dis-
placement, and the frequency of the ith atoms,
respectively, and the interaction terms with coupling
constants A; and A\ (between the ith and jth
atoms) are referred to as the single-phonon (linear)
coupling and the p-phonon (nonlinear) coupling,
respectively. Here the admolecule is treated as an
anharmonic oscillator (up to the quartic terms) while

the surface atoms are treated harmonically. The
anharmonicities €;; €;;,, and the coupling constant A,
are related to the derivatives of the potential energies
and, e.g., for a Morse potential

V(x1,x3) =D, (1 —expl—a (x;—x;—x")D? , (3)

- 7
we have e,y =—a’D,, e=7;a*D,, and \;; =2a’D.,.

Similarly, the coupling constants A; and \” are re-
lated to the pair potential energy between the ith and
Jjth atoms by

92V (x;,x;)
6x,6x_,
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The second term in Eq. (1) is the interaction energy
between the admolecule-surface system and the laser
field,

F.(1) =q,E;cos(wt) cos(6,) , (5)

where g; is the classical effective charge of the atoms,
and 0, is the angle between the linearly polarized
electric field E; (with circular frequency w) and the
coordinate vector for the optical active mode(s) of
the system.

The equations of motion associated with the gen-
eral form of the Lagrangian given in Eq. (1), in prin-
ciple, may be solved by the normal-mode treatment
or directly solved by computational method. Howev-
er, neither of the above methods is tractable due to
the complicated many-body effects of the surface
atoms. For the purpose of some analytical results,
we shall consider a less general Lagrangian, viz.,
there are no explicit interactions assumed among the
surface atoms and the interaction energy between the
adatoms is assumed to be proportional to the product
of the displacement from their equilibrium posi-
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FIG. 1. Diatomic molecule chemisorbed on a solid sur-
face. The coupling constants between the adatom 1 and 2
and among the adatoms and the surface atoms are given by
A12, Agj, and Ay, respectively.
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tions.”® Under these assumptions and the orthogonal
transform
1
Xi = S 5 1 A i + }\ i , 6a
(}\:1)';‘*’)\%_,-)”2( l,/QZ 2,/Q1) ( )
1
=5y (0= M, 00 6b
2 ()\%/_4_)\%./)1/2( 2702—7\;01) (6b)
=0, j=3, “(6¢)

the Lagrangian of the model system becomes, in the
transformed normal mode coordinates Q,
(i=1,2,3,..)

£(01,02, ....0; .. .))
= 2 MI(%QIZ_%Q?Qizh-;—KlQIJ—%K!,Ql“)

i=1,2
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where the transformed frequencies are given by

22 29
MiAgj ;01 + MmN 07 £ Ay,

0f,= My o2 , (8a)

Q=w;, j=3 , (8b)
the transformed masses by

My =(m N +maNg )N (8¢)

M=m;, j=3, (84d)

M~ =Ny, (my—my) N}, (8e)

the transformed new anharmonicities by

_ 3[(511)\%/‘, 1+ 512)\%_/.2_/) + )\f%)(h/)\%/ FALA)]

and the transformed generalized forces by

S1.200 = (g, Fr F N FD/N (9a)
fi(n=F(), j=3 . (9b)

The new coupling constants: (note—these are
surface-atom site dependent) are defined by

A 21y
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In deriving Egs. (7)—(10), we have neglected the
high-order anharmonic terms (Q/, n > 4) and con-
sidered the linear coupling terms between Q, and Q,
while keeping the high-order couplings among the
adatoms and the surface atoms. Moreover, the cou-
plings among the surface atoms (Q,Q;, i,j >2),
which give rise to an infinite number of coupled
equations of motion, are effectively absorbed into the
site-dependent coupling constants (\y;, Ay;) and the
frequency dispersion of the surface-phonon modes
(will be characterized by the phonon mode spec-
trum).

The corresponding equations of motion in the
transformed normal coordinates are'’

K ¥ 7" oL ——a§£=0, i=1,2,3, ..., (D
- (80 180 ) 90
4+ 4.
K{,= €102),1 :227\11,2_/ ’ ‘ (8g) o
: A4 and by substituting from Eq. (7),

0,+M_6,+ 010, +K,07 +K{0} = [0, + 3 X 00+ 110 | (12a)

M, M, j=3p=2
0+ M5, + 030, +K,07 +K30} = (A0 + I 0,0+ 3 ZAP0+ /(0] (12b)

M, M, =3 i=3p=2

N2
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The above equations of motion describe an
admolecule-surface system with normal frequencies
Q,, Q,, and Q; subject to the generalized forces
(0, f2(0), and f;(1), respectively. The important
features of these transformed equations of motion
are (see Fig. 2): (1) the transformation [Eq. (6)] el-
iminates linearly coupling between the (); mode and
the surface phonon modes [i.e., no A;Q; in Eq.
(12a)]; (2) the ©; mode strongly coupled to the (2,
mode (via the AQ, term), is almost singled out of
the low frequencies surface phonon modes, since
there is no single-phonon coupling in Eq. (12a) and
the p-phonon couplings (via ij) Q?) are much weak-
er processes (based on the concept of the energy-gap
law)'316: (3) from the expressions of the generalized
forces [Eq. (9)], we note that the transformed applied
field f; >> f,, for the case of A\j; = \,; and g, = —q,,
suggests that the 2, mode of the admolecule
[corresponding to an asymmetric mode—see Eq.
(8a)] may be selectively excited without significantly
heating the whole system by means of a radiation
field with frequency w = Q,.!2 We also note for the
situation of A,; >> \;; and ¢, = —q, that f, may be
comparable to fi, and hence either €2, or €2, may be
optically active depending on the field frequency
w:=()10r0)2=02.

III. LANGEVIN EQUATION OF REDUCED
TWO-BODY SYSTEM

The difficulties of obtaining exact or analytical
solutions of the coupled equations [Eq. (12)] are two-
fold: (1) the anharmonic terms of the equations of
motion, in general, will lead to time-dependent non-
linear coefficients in the second-order differential
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FIG. 2. Schematic diagram of the density of states for the
transformed normal frequencies Q,, ,, and Q; given by
Eq. (8). The coupling factors among different modes are
denoted by A and \; [given by Eq. (10)]. Note that the Q,
is uncoupled to ; modes for the single-phonon processes.

equations; (2) the many-body effects of the surface
phonon modes, characterized by the site-dependent
coupling factors, A;, A[?, etc., will rule out any tract-
able results when the dimension of j is large. In this
section we shall use an iterative scheme to investigate
possible solutions of the coupled equations and in
turn compute the power absorption and stored energy
of the system. We shall first try to linearize the
anharmonic terms and then treat the many-body cou-
plings by some physically reasonable approximations.
As mentioned in the previous section, the multipho-
non couplings (characterized by A/”Q?) are in gen-
eral much weaker than that of the single phonon
(characterized by the linear term \;Q;). This may be
realized by the fact that the p-phonon coupling con-
stant A{” [see Eqs. (4) and (10)] is a strongly de-
creasing function of the multiphonon order p.!> We
shall now examine the single-phonon processes and
neglect the multiphonon terms for the purpose of a
simple treatment of the many-body effects.

By employing the asymptotic (or harmonic balance)
method of Bogoluikov and Mitropolsky,!’ the non-
linear coupled equations of motion [Eq. (12) with no
multiphonon couplings] may be linearized as fol-
lows!8:

01+ 0] 01=[AQ:+/1(D1/M, , (13a)

@+ﬁ§&=A&+2MQ+hm]ML
= (13b)

0, + 020, =\,0,/M,, j=3 . (13¢)

We have introduced the effective frequencies Q; and
€, which are approximately related to the anharmon-
icities (K{",K5 ) and the steady-state amplitudes of
the modes (4,,4,) by

Q1,=0,,-K{A%, (14a)
where
5K, , 3K,
Ki;= - (14b)
271201, 80,

In Eq. (13c), the field acting on the Q; mode has
been dropped since the low-frequency surface pho-
non modes [ Q,(j =3) << w, which are far off
resonant] are not infrared active. In Eqgs. (13a) and
(13b), the terms of (M~/M,)Q, and (M~/M,) 0,
are also neglected since M~ << M, M, for \y; < \y;
and m, = m, [referred to Eq. (8)].

We shall next use a technique, which enabled us to
reduce a multilevel system to a few-level system in
our previous quantum mechanical models,'!'!? to
reduce the many-body classical problem to a few-
body problem. To establish the iterative scheme, let
us represent the zeroth-order, first-order homogene-
ous solutions of the coupled equations by Q® and
O respectively, and choose the initial conditions to
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be: 01(0) =4,, 0,(0) =By, 0,(0) =4,(; =3),
0.(0) =0 (for all ). By Eq. (13b) we get

$9() =Bycos(Qyt) (15)

and using Eq. (15) we find the homogeneous solu-
tion of Eq. (13c¢) as

QM (1) =4;cos( Q1)

O (=1 . (16)

Decomposing Q1? (¢ —¢') by Eq. (15) and its deriva-
tive, we have

Q{9 (t=1) =049 (1) cos(Q,t")

L o9 sin(my) . (4D
Q,

Substituting Eq. (17) into Eq. (16) and working out
the integrals by approximating the upper limit from ¢
to infinity, we obtain

0V (N =4;cosQ; t+-—(}’l _2]Q(°)(1)

N (508 -8(a 100 () |
2M 0,0,

(18)

where A;=Q,—Q,, A} =Q,+ Q;, and ® denotes
the principal part. In arriving at Eq. (18), we have
used the relation'®

lim f etid gt = 5(A) £ i@

1—*o0

1
A] . (19)

Substituting Eq. (18) into Eq. (13b) and using the
Wigner-Weisskopf-type approximation'® i.e., replacing
the sum over the phonon modes by the integral over
the associated phonon mode density of states p((2;),
we find the first-order solution of Eq. (13b) to be
embodied by the Langevin equation

(02) +v(0y) + (03— 5w) (0,)
=[A(Q) + LD+ (£, (D)]/M; , (20)

where ( - - - ) denotes the ensemble average over
the surface temperature, and (f;) is the surface fluc-
tuation force given by

(i =( 3 Ad;cos(Q,0)) Q1

Jj=3

v and dw, the damping factor and frequency shift,
respectively, are related to the coupling constant \;

and the phonon density of states p by

T 7\,-2(_62) —
BT e (222)
7 2 MZMs gp :
Ll 2 ) )
8w=L dQ,- )\J(QJ) p( Q‘,) (22b)

M aj-a

The above classical results [Eq. (22)] are in exact
agreement with our previous quantum-mechanical
results where the level broadening and the level shift
correspond to the damping factor and the frequency
shift, respectively.®!? It is important to note that, in
Eq. (22a), both the coupling constant \;( Q) and the
phonon mode density p_(ﬁz) are evaluated at the fre-
quency of the Q, mode which is coupled to the sur-
face phonon modes. For a Debye model spectrum
p(Q;)=30% Qp with the cutoff frequency Q,,%
we obtain

y =32 (Q,)/ QMM Q) (23a)
3IN(D,) IQD+92

dw = - - In 23b

“T MM, 0} 290 ", BY

We also note that in Eq. (20) the new frequency is
red shifted to the lower frequency (2, — 8w)'/? since
dw is a positive quantity for , < Q [see Eq.
(23b)]. For instance, the frequency of isolated CO,
Q,=2145 cm', may be red shifted to 1932 and 2069
cm~! when it is chemisorbed on a nickel surface with
on-top site and bridge site, respectively.?!

So far, we have reduced the many-body problem to
a two-body problem described by the equations of
motion (13a) and (20), where the surface-induced
damping factor and frequency shift of the 1, mode
are introduced through the Langevin equation. We
shall now solve the equations and compute the power
absorption and the stored energy of the pumped
mode(s). For the case of low surface temperature
(i.e., (fy) =0), the general solutions of the coupled
equations (13a) and (20) are found to be in the
form

Rt
(Ql(’)> 4 A,‘ A“ AlZ .é’ ' .
(Q2(0))~ & (B 4y An sin(fwt) |, (24)
cos(wt)

where R, are the roots of the equation
X4y X+ (O + DX+ 00X
+(Q, Q)= A/ (M M) =0 . (25)

The general solutions are complicated due to their
transient parts. However, for a sufficient time, the
transient solutions vanish, and the motion of the
modes follows the frequency of the field with the
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steady-state solutions given by

(O (1) An Anllsin(wr)
(05 (D)] {4n Axn)lcos(wt)] (26)
where
Ay=Dy/D, ij=1,2, 7N
Dy =yoA(M,C\V,+AV) /(M M;) (28a)
Dy =ywCi(MyCiVo+AV)/M, ,  (28b)
AV,
D= C1CM, — A2
12 an-Mz( 1C2 M, )
AXC
+C Vi |CE +yrer - ——
1€ +y'o C1M1M2]’ (28¢)
AV,
Dy=|CyV,+ 2L -
2 WVt C G MlM2] ,  (28d)
A P 2
D =(ywC))?+ - ‘
(yw 1) M1M2 C1C2] , (293)
C=0i-? , (29b)
; -
Cr=M-o’, (29¢)
Q,= (M -80)"? (29d)

and the applied field coupling terms are [see Egs. (5)
and (9)]

_ [)tzquEl COS(OI) - )\,‘jq2E2 COS(gz)]

vV s 3
1 (M) (30a)
[)‘['qlEl COS(91) + N\ q2E, COS(G;)]
L J
: WA (300)

Combining Egs. (9) and (30) and the derivative of
Eq. (27), we obtain the steady-state instantaneous

power absorption (force times velocity) of the total
system (admolecule surface) via the optically active
modes— A4 mode (with frequency Q,) and B mode
(with frequency Q,) as follows:

2 .
(Pr(0) =3, £(D(07(1)) =(P4(1)) +(Ps(D)) ,

i=1

(31a)
where
(P4(D) VnAn—%VlAlz M,cos(wr)]
(Pe(D) )™ [Vydyy — 2 V14| MasinQQuD) |
(31b)

Since the sin(2wt?) term vanishes as a result of time

averaging over the period of the field, we immediate-
ly obtain the steady-state average power absorption

(Py(D))y=FMiwViAy (32a)
T

((Pg(D))av=

The corresponding classical absorption cross section,
defined by the power absorption divided by the laser
intensity, is given by (in cgs units)

MywVy,Ay . ‘ (32b)

o,class=_68‘EL2[ ((PA(t)>)av+\<<PB(f))>av] . (338)

Upon quantization this yields the quantum absorption
cross section for a transition between levels » and
(n +1) of a quantum system!'% '8

) —
O.Quanocz (n+1)r”

; ; (33b)
= (A, =2€"(n +3)12+T7

where A, is the detuning A, = @, — » and € is the
anharmonicity. Note that the absorption cross sec-
tion is not a symmetric Lorentzian due to the non-
linear effect, 2€*(n +%), and the optimum detuning
for maximum absorption cross section is laser inten-
sity dependent (see Ref. 10 for more rigorous discus-
sions).

Using the steady-state solutions [Eq. (27)], we may
easily obtain the average stored energies (for stegdy

“state) in the pumped 4 and B modes, given by Ej

and Ejg, respectively, as follows:

Eip=3M12((072 (D))

+ M08 (D) Dy (34a)
E,=iM (O] +0) (4} +4%) (34b)
Ep=1My(03+0?) (4} +43) (340)

For the case of A =0 and w = (Q,, the stored ener-
gies reduce to the simple forms

_ — v, 2

E, =M (O} +0?) |——| . (34d)

A 1 1T Z(Q%—wz)

_ V2

Eg= Mzs 2 — Y " (34e)
(0 - w)+(Ly)?

This is the situation of very weak coupling between
the 4 and B modes where the B mode is almost iso-
lated from the 4 mode but coupled to the bath (sur-
face phonon) modes via the damping factor y. We
note that for the weak damping case (i.e., the
pumped B mode has a very long lifetime), one may
selectively excite the B mode without significantly
‘“‘heating’’ the other modes. A more quantitative
description of the dynamical nature of the selective
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and nonselective excitations has recently presented
for a quantum-mechanical system.!!- 12

IV. UNIVERSAL ENERGY ABSORPTION PROFILES

In the previous section, we have reduced the
many-body problem to a two-body problem where the
many-body effects are replaced by including a damp-
ing factor and a frequency shift in the Langevin
equations. In the two-body problem, the general
solutions of the coupled equations of motion are still
intractable due to the nonexplicit forms of the tran-
sient solutions [Eq. (24)]. Instead of evaluating the
steady-state stored energies [Eq. (34)], we shall now
investigate the time evolution of the energy absorp-
tion of the pumped mode by further reducing the
two-body problem to a single-body problem. For. this
purpose, we consider the situation where only the B
mode is resonantly pumped (w = 52) being weakly
coupled to the 4 mode (A << f,) but strongly cou-
pled to the surface phonon modes (via the damping
factor v). The Langevin equation [Eq. (20)],
neglecting the surface fluctuating force (f;), be-
comes the equation of motion of a damped anhar-
monic oscillator subject to a generalized force
fz([) =M2V2COS((U’),

(02(D) +7(02(0) +T3(0Qo(1) = Vcos(wi)
(35)
The complete solution of Eq. (35) is found to be
(Q2(D) =Asin(wt) + A, cos(wt)
+e "2 Agcos(wit) + Bysin(wyr)] , (36)

with the initial values

Ao=(0,(0))
Bo=1(02(0)) +37(Q2(0))V/w; ,
where

wy=[03— (L9212 (372)
Aw=yD,V/Z ’ (37b)
Ag= (M=) V/Z | (37¢)
Z=(ﬁ§—w2)2+(yw)2 , 37d)
=0l -s0 . (37e)

The constants 4,, and 4, are referred to as the ab-
sorptive and the elastic amplitudes because the time-
averaged power absorption is entirely due to the out-
of-phase displacement A,,sin(w?) [which leads to an
in-phase velocity with respect to the driving field
V,cos(wt)]. The corresponding stored energy in the

pumped B mode is
Eg(D)=Ep{l+e " =2e"2cos[(wy—w)rl} , (38a)

where Ej is the steady-state energy given by

Ey=—C—E2 Y 2 (38b)
=32, e”[A?,pﬁ(%y)Z] .

Here we have introduced an effective electric field
acting on the B mode [see Eq. (9)], for the classical
effective charge e =q, =—¢q,,

Ay E2c0s(8,) — N, E cos(8,)

(39)
(A} +3)12

Eo=

and the optimum detuning
Aopl A-— KZ (A 9,21 )

which is the laser intensity dependent [see Eq.
(14)1.° By using /, the laser intensity,
=FE2%:/(87/C), the steady-state energy may be ex-
pressed in a conventional form

Y

2
promrany) B
Aopt+(27)

Eo—(25x10‘7)[

M,

where the units used are Eq (eV), I (W/cm?), M,
(amu), (4.8 x107'% esu), and both the detuning and
damping factor are in the units of cm™.

For the case of y =0, we note that the solution of
Eq. (35) is

(Q2(1)>— Eeﬂ‘ sin(-i—Aop,t)

MZAopt

x cosl 5 (wf +w)d] )

and the corresponding energy absorption of the
pumped mode is

cos( Agpet)

opt

EB(I)— {27T—M2]Eeffl ] » (42)

which is an oscillatory function since the available en-
ergy, for the isolated B mode, will be necessarily
transferred back and forth between the pumped
mode and the laser field (via absorption and stimulat-
ed emission, in ‘‘quantum-mechanical’’ language).??
Note that Eq. (42) reduces to

Ez(t) = (me?/CM,) It?

which is proportional to t? for the exact resonance
case. ,

The energy absorption given by Eq. (38) is shown
in Fig. 3 for different sets of the optimum detuning
A,y and the damping factor y. It is important to note
that these energy absorption profiles are universal for
all ranges of the laser intensity (/ =0—10'> W/cm?)
when the associated time scales in units of y™! are
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FIG. 3. Universal energy absorption profiles of the
pumped mode for different sets of the optimum detuning
A, and the damping factor vy (in units of ecm™): curve
A—Agp =0, y=2x1073 curve B—A4,, =0.5y =5x107%
curve C—Ay, =y =1073 curve D—A,, =25y =2.5x 107,
curve E— A, =5y =2x1075; curve F—A,, =8y =1075,
curve G =4, =10y = 10~4; for low-power laser / =100

W/cm2 Note that the time scales are shown in units of y~L.

chosen. From Egs. (38) and (40), we may define the
time scales (in units of y~') by relating the laser in-
tensities (/; and /) and the damping factors (y; and
v2) by

(yr' /v =/ 1)V . (43)

For instance, curve D in Fig. 3 describes the time
dependence of the energy absorption of the pumped
mode for the low power case /; =102 W/cm? with the
time scale 7! =1.3 x 1077, as well as for the high
power case I, =10% W/cm?, but the time scale is re-
duced to [by Eq. (43)] y3!'=19, x 1072 It is seen
from these universal energy absorption profiles that
the energies reach the steady-state values in the mi-
crosecond time scale for the low-power case (I ~ 102
W/cm?) while being in the nanosecond region for the
high-power case (/ ~10% W/cm?) and picosecond for
[ ~10'2 W/cm?. This is one of the important
features of laser-stimulated surface processes, where
low-power radiation (/ =10—100 W/cm?) may be
used to study the adspecies-surface system in a much
longer time scale compared to that of a gas-phase sys-
tem (e.g., multiphoton dissociation of polyatomic
molecules like SFg).!""!2 It should also be noted that
for selective excitations by means of low-power radia-
tion to be possible, one requires not only a long life-
time of the pumped mode (i.e., small damping fac-
tor) but also a well-defined laser frequency such that
the optimum detuning A, and the damping factor vy
both have the small values like 107> —10"* cm™

[see Eq. (40)].

For a comparison of the energy absorption profiles
given by the reduced single-body Langevin equation
[Eq. (35)] and those of a set of coupled equations,
we show in Fig. 4 the numerical results obtained by
solving the classical equations of motion are for a

1.8 rorprr ot g T T r T T r:-l
1 s£ 4
o HIGH-POWER EXCITATION
Jrar OF CO-Ni SYSTEM 4
Y |
Q.2+ -
S
= F 4
& 1.0+ B
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g 0.8+ —
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o L B
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z L 4
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TIME t (psec)

FIG. 4. Energy absorption of the pumped CO mode in
the CO-Ni system for laser power / =10!2 W/cm? with
Agp=0.2y =20 cm™,
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FIG. 5. Energy absorption of the same system as in Fig.
4, but with A, =y =0.

model system of CO-Ni.2> We see that the energy

absorption curve shown in Fig. 4 is different from
curve D in Fig. 3 by the fluctuation (broadening)
feature of the energy absorption. In the single-body
problem, we obtain only the average value of the
fluctuating energy, whereas by directly solving a
many-body problem we may investigate in detail fast
oscillations of the energy absorption profile caused by
the energy relaxation of the pumped mode and the
feedback from the surface. We also show that the
energy absorption profile for the CO-Ni system with
A=y =0 in Fig. 5. We see, except for the fluc-
tuating behavior, the resonance excitation curve of
Eq. (42) Ez(1) o« I1?, as expected in the single-body
problem.

V. DISCUSSION

In this section we shall discuss some advantages
and difficulties of the normal-mode method and
present a set of transformed equations of motion (in
the rotating-wave approach), which are more practical
in the classical trajectory calculations for the case of
low-power excitation processes where very long
time scales are involved.

A. Normal-mode method

Consider a Lagrangian in the general form

L=3(T;=V;+F)+ZxF ) (44)

where T);, F;, and V; are the kinetic energy, the

dissipation function, and the potential energy,

. respectively:

1 .

T =7mﬂixl)%f ’ (45a)

Fy= %%j’.ﬂf‘f , (45b)
=L xx N SN c

Vi =3 XixiX; +p§2 (G +1)! AP xixl +

(45¢)

The corresponding equations of motion of this dis-
sipative system are given by?*

The normal-mode method capitalizes on the fact that
each equation of motion in Eq. (46) in the normal
coordinates involves only a single coordinate and all
the variables are completely separated. However, the
mass coefficient m; and the dissipation factor y,; are
in general functions of the coordinate x;, and hence a
set of normal transforms which simultaneously diago-
nalizes T, F;, and V), is not in general available.!’
For a physical system consisting of N adatoms chem-
isorbed on a solid surface, there are 3N ‘‘frustrated”
surface normal modes so that the normal-mode
method essentially involves the diagonalization of a
3N x 3N matrix, which is in general not available par-
ticularly for the case where the mass coefficient m;; is
coordinate dependent and when N is a big number.
For a tractable model, we shall seek a method in
which the dimension of a related matrix may be sig-
nificantly reduced. Consider the case where the total
system (subject to a laser field) may be decomposed
into two (or more) almost isolated subsystems, then
each subsystem involves the diagonalization of a
small matrix which is possible by a set of normal
transform. Such subsystems may be, in principle,
physically possible when there is a big energy gap
between them.!>!® This decomposition may also be
mathematically possible by a set of partially orthogo-
nal transforms, e.g., in Sec. I where we used the
transformed coordinates in Eq. (6) to decompose the
total system into the 2, mode and a subsystem (Q,
mode plus bath modes) with the ; mode (or/and
the Q, mode) able to be selectively excited.

For a simple example, let us consider a system
which is decomposed into two subsystems, where
subsystem 2 (with / normal modes referred to as the
inactive bath modes) is weakly coupled to the subsys-
tem 1 [with 3N —/ normal modes referred to as the
pumped mode(s)], then the average power absorp-
tion of the system is given by

IN—I

P(n=13,

71.[1‘02
S (0= o)+ (y0)? 47)

’
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where w; is a normal frequency of the pumped sub-
system with the associated damping factor vy, and f; is
a transformed generalized force related to the gen-
eralized force in the original coordinates Vy; (for
driving forces given by F,;(1) = Vy,coswt) by

fi=2CiVo; (48)
J

where C;; are the elements of the transformation ma-
trix which simultaneously diagonalizes the kinetic en-
ergy, dissipation function, and potential energy of
subsystem 1, but does not necessarily diagonalize
those of the subsystem 2.

B. Numerical method in the rotating frame

Consider a model system consisting of adspecies
(adatoms 1 and 2) chemisorbed on a solid surface
and subject to an external field [ V;sin(w?) ],
described by a set of coupled equations (for only the
nearest interactions are considered) as

.. aVlz(Xl,)Q) .
mx, =—T—ml)’|)‘1 + V;sin(wt) ,
(49)
m x - 6V12(X1,X2) _ 6V23(x2,X3)
2X2 o, o,
—mz-yz)'c2+ stin(wt) , (50)
i, = — V=i o) 8V (X, %)
i ax; ax;
—myy;x;+ V;sin(wt) , j=3 , 51

where x;(i=1,2,3,...,) is the coordinate of the ith
atom for the longitudinal motion, and the damping
terms m;y;x; are included to take into account the la-
teral interactions between the atoms of one row with
those of another. The damping factors y; (i =1,2)
of the adatoms [which may be expressed in the form -
of Eq. (22a)] simulate the surface effects of the solid
crystal, and the damping factors y; (j =3) of the
solid atoms simulate the effect of the bulk of the lat-
tice in presenting the free translational motion of the
one-dimensional linear chain. This is the significant
difference of Eqs. (49)—(51) from that of the usual
one-dimensional chain model, where the latter loses
all the many-body surface effects of the adatoms and
the many-body bulk effects of the solid atoms.

As discussed in Sec. IV, the time scales of the en-
ergy absorption profiles (in units of y~!) for the
low-power excitations (/ ~ 102 W/cm?) are in the
ranges of microseconds, which are much longer than

the oscillation cycle of the field (w ~ 10! sec). This
causes the difficulty in obtaining the absorption pro-
files by a computational method which solves the
above coupled equations directly. Furthermore, the
energy absorption of the pumped mode is very sensi-
tive to the amount of detuning (A=wy— ). For

1 ~10* W/cm?, we require that A,y, ¥y =107 —107*
cm ~! which also causes difficulty in tuning the field
frequency to obtain optimum excitations. Note that
for the cases of high-power excitations (/ > 108
W/cm?), these difficulties would not be encountered
and hence we may obtain the absorption profiles nu-
merically from Eqgs. (49)—(51) (Figs. 4 and 5).

In order to overcome the difficulties described
above and obtain the energy absorption profiles by a
numerical method, particularly for the low-power ex-
citation processes, we now present a method which
relies on the rotating-wave approximation (RWA), a
well-known technique for quantum-mechanical sys-
tems.!>?2 By using the rotating frame

i) =x;(1) exp(iwot) , (52)

where wy is the frequency of the optically active
mode of the adspecies-surface system, we shall con-
sider the near-resonant excitation with the detuning
A =wy— w =0 (for the harmonic model) or A = wj.
~K*A?— =0 [for the anharmonic model—see Eq.
(14)]. The coupled equations of motion (49)—(51)
become

. vy,
my,=— ‘a—yl‘ +m1w5y1
—my (91 +iwey)) + 5 Vie'd (53)
L aVn vk )
My, =——(————F— +tmuwsy;
0y, 9y,
= myy2 (¥ +iweyy) +% Vie s, (54)
. Vi, 9V
m ,=__~__'»___.:-_+mw2 .
sV 3y, 3y, s W0Y;

. 1 i )
—myy,; (y; +iwey;) +5 Ve =3,

(55)

where A =wy— w is the detuning. In obtaining Eqgs.
(53)—(55) we have used the RWA, that is, we have
neglected the fast oscillating terms expl +(wy + w) ).
The important features of the new equations of mo-
tion are (1) due to the complex coefficients, the j
coupled equations are in fact 2/ real equations
(equivalent to 4/ first-order differential equations
which must be numerically solved); (2) the time-
dependent field with the very fast sinusoidal function
sin(w?) is eliminated in the rotating frame in the
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RWA and the coupled equations are characterized by
the detuning A which leads to a much slower oscillat-
ing function exp(—iAt) for near resonance.

Therefore, by using the new set of equations of
motion, we are able to compute the energy absorp-
tion by solving the coupled equations numerically. It
is important to note that the new coupled equations
(53)—(55) may be solved by using, for example, the
Runge-Kutta method with a much longer time step
(=1078 sec) than for the original coupled equations
(49)—(51) (=107'% sec). The applications of the
new coupled equations on some real adspecies-
surface system, e.g., CO-Ni and H-Pt, are in pro-
gress.

VI. SUMMARY OF THE MAIN FEATURES OF LSSP

We conclude the main feature of LSSP and sum-
marize the specific results obtained in this classical
model as follows:

(a) By a set of orthogonal transforms, we are able
to generate two normal modes where the high-
frequency asymmetric () mode is uncoupled to
the bath mode while being coupled to the low-
frequency symmetric (Q,) mode. From the
transformed frequencies [Eq. (8a)] and the general-
ized forces [Eq. (9a)], we are able to see some selec-
tive nature of the system.

(b) The nonlinear coupled equation due to the
anharmonicities of the potential energies may be
linearized by the asymptotic (or harmonic balance)
method where the amplitude-dependent frequencies
are presented in Eq. (14).

(c) By the iterative procedure, the many-body ef-
fects of the surface atoms are absorbed into the
Langevin equation, where a damping factor and fre-

quency red shift are introduced [Eq. (22)]. These
classical results are in agreement with those of the
quantum-mechanical calculation presented in our ear-
lier work, where the Markovian statistics and
Wigner-Weisskopf theory were used.’~!?

(d) The power absorption and the quantized cross
section are obtained by solving the coupled Langevin
equations and the asymmetric behavior is shown by
the nonlinear effects of the anharmonicities [Egs.
(32) and (33)].

(e) The energy absorption profiles of the pumped
mode, which are universal for any laser power (rang-
ing from 10 to 10'2 W/cm?), are shown for different
sets of the damping factor and the detuning (Fig. 3).
The long time scales of LSSP (in the range of mi-
croseconds) are discussed for the case of low-power
excitations [Eq. (43)].

(f) The average power absorption of a system,
which may be decomposed into almost isolated sub-
systems, is computed by the normal-mode method
[Eq. (47)].

(g) Finally, the difficulties in numerical methods of
solving a set of coupled equations are pointed out,
and a set of new coupled equations, which enable one
to numerically generate the energy absorption curves
of low-power LSSP, are presented in the rotating
frame [Egs. (53)—(55)].
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